Package ‘PheCAP’

October 12, 2022

Type Package

Title High-Throughput Phenotyping with EHR using a Common Automated Pipeline

Version 1.2.1

Description Implement surrogate-assisted feature extraction (SAFE) and common machine learning approaches to train and validate phenotyping models. Background and details about the methods can be found at Zhang et al. (2019) <doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.

URL https://celehs.github.io/PheCAP/, https://github.com/celehs/PheCAP

BugReports https://github.com/celehs/PheCAP/issues

License GPL-3

Encoding UTF-8

ByteCompile yes

Imports graphics, methods, stats, utils, glmnet, RMySQL

Suggests ggplot2, e1071, randomForestSRC, xgboost, knitr, rmarkdown

VignetteBuilder knitr

Depends R (>= 3.3.0)

RoxygenNote 7.1.1

LazyData true

NeedsCompilation no

Author Yichi Zhang [aut], Chuan Hong [aut], Tianxi Cai [aut], PARSE LTD [aut, cre]

Maintainer PARSE LTD <software@parse-health.org>

Repository CRAN

Date/Publication 2020-09-17 09:30:18 UTC
Description

Details

The DESCRIPTION file:

Package: PheCAP
Type: Package
Title: High-Throughput Phenotyping with EHR using a Common Automated Pipeline
Version: 1.2.1
Authors@R: c(person("Yichi", "Zhang", role = "aut"), person("Chuan", "Hong", role = "aut"), person("Tianxi", "Cai", role = "aut"), person("PARSE LTD", role = "aut"), email = "software@parse-health.org")
Description: Implement surrogate-assisted feature extraction (SAFE) and common machine learning approaches to train and validate phenotyping models. Background and details about the methods can be found at Zhang et al. (2019) <doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.
URL: https://celehs.github.io/PheCAP/, https://github.com/celehs/PheCAP
BugReports: https://github.com/celehs/PheCAP/issues
License: GPL-3
Encoding: UTF-8
ByteCompile: yes
Imports: graphics, methods, stats, utils, glmnet, RMySQL
Suggests: ggplot2, e1071, randomForestSRC, xgboost, knitr, rmarkdown
VignetteBuilder: knitr
Depends: R (>= 3.3.0)
RoxygenNote: 7.1.1
LazyData: true
PheCAP-package

Author: Yichi Zhang [aut], Chuan Hong [aut], Tianxi Cai [aut], PARSE LTD [aut, cre]
Maintainer: PARSE LTD <software@parse-health.org>

Index of help topics:

PheCAP-package High-Throughput Phenotyping with EHR using a Common Automated Pipeline
PhecapData Define or Read Datasets for Phenotyping
PhecapSurrogate Define a Surrogate Variable used in Surrogate-Assisted Feature Extraction (SAFE)
ehr_data A Synthetic EHR Dataset
phecap_generate_dictionary_file Generate a Dictionary File for Note Parsing
phecap_perform_majority_voting Perform Majority Voting on the CUIs from Multiple Knowledge Sources
phecap_plot_roc_curves Plot ROC and Related Curves for Phenotyping Models
phecap_predict_phenotype Predict Phenotype
phecap_run_feature_extraction Run Surrogate-Assisted Feature Extraction (SAFE)
phecap_train_phenotyping_model Train Phenotyping Model using the Training Labels
phecap_validate_phenotyping_model Validate the Phenotyping Model using the Validation Labels

PheCAP provides a straightforward interface for conducting phenotyping on electronic health records. One can specify the data via PhecapData, define surrogate using PhecapSurrogate. Next, one may run surrogate-assisted feature extraction (SAFE) by calling phecap_run_feature_extraction, and then train and validate phenotyping models via phecap_train_phenotyping_model and phecap_validate_phenotyping_model. The predictive performance can be visualized using phecap_plot_roc_curves. Predicted phenotype is provided by phecap_predict_phenotype.

Author(s)
NA
Maintainer: NA

References

Examples

Simulate an EHR dataset
size <- 2000
latent <- rgamma(size, 0.3)
latent2 <- rgamma(size, 0.3)
ehr_data <- data.frame(
 ICD1 = rpois(size, 7 * (rgamma(size, 0.2) + latent) / 0.5),
 ICD2 = rpois(size, 6 * (rgamma(size, 0.8) + latent) / 1.1),
 ICD3 = rpois(size, 1 * rgamma(size, 0.5 + latent2) / 0.5),
 ICD4 = rpois(size, 2 * rgamma(size, 0.5) / 0.5),
 NLP1 = rpois(size, 8 * (rgamma(size, 0.2) + latent) / 0.6),
 NLP2 = rpois(size, 2 * (rgamma(size, 1.1) + latent) / 1.5),
 NLP3 = rpois(size, 5 * (rgamma(size, 0.1) + latent) / 0.5),
 NLP4 = rpois(size, 11 * rgamma(size, 1.9 + latent) / 1.9),
 NLP5 = rpois(size, 3 * rgamma(size, 0.5 + latent2) / 0.5),
 NLP6 = rpois(size, 2 * rgamma(size, 0.5) / 0.5),
 NLP7 = rpois(size, 1 * rgamma(size, 0.5) / 0.5),
 HU = rpois(size, 30 * rgamma(size, 0.1) / 0.1),
 label = NA)
ii <- sample.int(size, 400)
ehr_data[ii, "label"] <- with(ehr_data[ii,], rbinom(400, 1, plogis(-5 + 1.5 * log1p(ICD1) + log1p(NLP1) +
 0.8 * log1p(NLP3) - 0.5 * log1p(HU))))

Define features and labels used for phenotyping.
data <- PhecapData(ehr_data, "HU", "label", validation = 0.4)
data

Specify the surrogate used for
surrogate-assisted feature extraction (SAFE).
The typical way is to specify a main ICD code, a main NLP CUI,
as well as their combination.
The default lower_cutoff is 1, and the default upper_cutoff is 10.
In some cases one may want to define surrogate through lab test.
Feel free to change the cutoffs based on domain knowledge.
surrogates <- list(
 PhecapSurrogate(
 variable_names = "ICD1",
 lower_cutoff = 1, upper_cutoff = 10),
 PhecapSurrogate(
 variable_names = "NLP1",
 lower_cutoff = 1, upper_cutoff = 10))

Run surrogate-assisted feature extraction (SAFE)
and show result.
feature_selected <- phecap_run_feature_extraction(
 data, surrogates, num_subsamples = 50, subsample_size = 200)
feature_selected

Train phenotyping model and show the fitted model,
with the AUC on the training set as well as random splits.
model <- phecap_train_phenotyping_model(
 data, surrogates, feature_selected, num_splits = 100)
model

Validate phenotyping model using validation label,
and show the AUC and ROC.
validation <- phecap_validate_phenotyping_model(data, model)
validation

phecap_plot_roc_curves(validation)

Apply the model to all the patients to obtain predicted phenotype.
phenotype <- phecap_predict_phenotype(data, model)

A more complicated example

Load Data.
data(ehr_data)
data <- PhecapData(ehr_data, "healthcare_utilization", "label", 0.4)
data

Specify the surrogate used for
surrogate-assisted feature extraction (SAFE).
The typical way is to specify a main ICD code, a main NLP CUI,
as well as their combination.
In some cases one may want to define surrogate through lab test.
The default lower_cutoff is 1, and the default upper_cutoff is 10.
Feel free to change the cutoffs based on domain knowledge.
surrogates <- list(
 PhecapSurrogate(
 variable_names = "main_ICD",
 lower_cutoff = 1, upper_cutoff = 10),
 PhecapSurrogate(
 variable_names = "main_NLP",
 lower_cutoff = 1, upper_cutoff = 10),
 PhecapSurrogate(
 variable_names = c("main_ICD", "main_NLP"),
 lower_cutoff = 1, upper_cutoff = 10))

Run surrogate-assisted feature extraction (SAFE)
and show result.
feature_selected <- phecap_run_feature_extraction(data, surrogates)
feature_selected

Train phenotyping model and show the fitted model,
with the AUC on the training set as well as random splits.
model <- phecap_train_phenotyping_model(data, surrogates, feature_selected)
model
Validate phenotyping model using validation label, # and show the AUC and ROC
validation <- phecap_validate_phenotyping_model(data, model)
validation
phecap_plot_roc_curves(validation)

Apply the model to all the patients to obtain predicted phenotype.
phenotype <- phecap_predict_phenotype(data, model)

ehr_data

A Synthetic EHR Dataset

Description

This dataset gives a sample dataset for EHR phenotyping. It contains counts for ICD codes, counts for NLP mentions, healthcare utilization (HU) features for all observations. It also contains the accurate phenotypes for 181 observations.

Usage

```r
data(ehr_data)
```

Format

A data.frame with 10000 observations of 588 variables.

PhecapData

Define or Read Datasets for Phenotyping

Description

Specify the data to be used for phenotyping.

Usage

```r
PhecapData(
  data, hu_feature, label, validation,
  patient_id = NULL, subject_weight = NULL,
  seed = 12300L, feature_transformation = log1p)
```
Arguments

- **data**: A data.frame consisting of all the variables needed for phenotyping, or a character scalar of the path to the data, or a list consisting of either character scalar or data.frame. If a list is given, patient_id cannot be NULL. All the datasets in the list will be joined into a single dataset according to the columns specified by patient_id.

- **hu_feature**: A character scalar or vector specifying the names of one or more healthcare utilization (HU) variables. These variables are always included in the phenotyping model.

- **label**: A character scalar of the column name that gives the phenotype status (1 or TRUE: present, 0 or FALSE: absent). If label is not ready yet, just put a column filled with NA in data. In such cases only the feature extraction step can be done.

- **validation**: A character scalar, a real number strictly between 0 and 1, or an integer not less than 2. If a character scalar is used, it is treated as the column name in the data that specifies whether this observation belongs to the validation samples (1 or TRUE: validation, 0 or FALSE: training). If a real number strictly between 0 and 1 is used, it is treated as the proportion of the validation samples. The actual validation samples will be drawn from all labeled samples. If an integer not less than 2 is used, it is treated as the size of the validation samples. The actual validation samples will be drawn from all labeled samples.

- **patient_id**: A character vector for the column names, if any, that uniquely identifies each patient. Such variables must appear in the data. patient_id can be NULL if such fields are not contained in the data.

- **subject_weight**: An optional numeric vector of weights for observations.

- **seed**: If validation samples need to be drawn from all labeled samples, seed specifies the random seed for sampling.

- **feature_transformation**: A function that will be applied to all the features. Since count data are typically right-skewed, by default \(\log(1 + p) \) will be used. feature_transformation can be NULL, in which case no transformation will be done on any of the feature.

Value

An object of class PhecapData.

See Also

See PheCAP-package for code examples.
phecap_generate_dictionary_file

Description
Define a surrogate variable from existing features, and specify associated lower and upper cutoffs.

Usage
PhecapSurrogate(variable_names, lower_cutoff = 1L, upper_cutoff = 10L)

Arguments
variable_names a character scalar or vector consisting of variable names. If a vector is given, the value of the surrogate is defined as the sum of the values of each variable.
lower_cutoff a numeric scalar. If the surrogate value of a patient is less than or equal to this cutoff, then this patient is treated as a control in SAFE.
upper_cutoff a numeric scalar. If the surrogate value of a patient is greater than or equal to this cutoff, then this patient is treated as a case in SAFE.

Details
This function only stores the definition. No calculation is done.

Value
An object of class PhecapSurrogate.

See Also
See PheCAP-package for code examples.

phecap_generate_dictionary_file

Generate a Dictionary File for Note Parsing

Description
Given a list of CUIs, connect to the UMLS database stored in MySQL, extract CUIs and associated terms, and write a dictionary file for use in note parsing.

Usage
phecap_generate_dictionary_file(cui_list, dict_file,
 user = "username", password = "password",
 host = "localhost", dbname = "umls", ...)

Arguments

cui_list a character vector consisting of CUIs of interest.
dict_file a character scalar for the path to the dictionary file that will be generated.
user a character scalar for the username for database connection; passed to RMySQL::dbConnect as it is.
password a character scalar for the password for database connection; passed to RMySQL::dbConnect as it is.
host a character scalar for the host (or URL) for database connection; passed to RMySQL::dbConnect as it is.
dbname a character scalar for the database name for database connection; passed to RMySQL::dbConnect as it is.
... Other arguments passed to RMySQL::dbConnect as they are.

Value

The dictionary will be written to the location given by dict_file. Return the dictionary invisibly.

Usage

phecap_perform_majority_voting(
 input_folder)

Arguments

input_folder a character scalar for the path to the folder that contains the parsed knowledge sources

Value

A character vector consisting of CUIs that pass the majority voting criterion.
phecap_plot_roc_curves

Plot ROC and Related Curves for Phenotyping Models

Description

Plot ROC-like curves to illustrate phenotyping accuracy.

Usage

```r
phecap_plot_roc_curves(
  x, axis_x = "1 - spec", axis_y = "sen",
  what = c("training", "random-splits", "validation"),
  ggplot = TRUE, ...)
```

Arguments

- `x` either a single object of class PhecapModel or PhecapValidation (returned from `phecap_train_phenotyping_model` or `phecap_validate_phenotyping_model`), or a named list of such objects
- `axis_x` an expression that leads to the x coordinate. Recognized quantities include: `cut` (probability cutoff), `pct` (percent of predicted cases), `acc` (accuracy), `tpr` (true positive rate), `fpr` (false positive rate), `tnr` (true negative rate), `ppv` (positive predictive value), `fdr` (false discovery rate), `npv` (negative predictive value), `sen` (sensitivity), `spec` (specificity), `prec` (precision), `rec` (recall), `f1` (F1 score).
- `axis_y` an expression that leads to the y coordinate. Recognized quantities are the same as those in `axis_x`.
- `what` The curves to be included in the figure.
- `ggplot` if `TRUE` and `ggplot2` is installed, `ggplot` will be used for the figure. Otherwise, the base R graphics functions will be used.
- `...` arguments to be ignored.

See Also

See `PheCAP-package` for code examples.
phecap_predict_phenotype

Predict Phenotype

Description
Compute predicted probability of having the phenotype for each patient in the dataset.

Usage
```
phecap_predict_phenotype(data, model)
```

Arguments
- `data`: an object of class `PhecapData`, obtained by calling `PhecapData(…)`.
- `model`: an object of class `PhecapModel`, probably returned from `phecap_train_phenotyping_model`.

Value
A `data.frame` with two columns:
- `patient_index`: patient identifier
- `prediction`: predicted phenotype

See Also
See `PheCAP-package` for code examples.

phecap_run_feature_extraction

Run Surrogate-Assisted Feature Extraction (SAFE)

Description
Run surrogate-assisted feature extraction (SAFE) using unlabeled data and subsampling.

Usage
```
phecap_run_feature_extraction(
    data, surrogates, 
    subsample_size = 1000L, num_subsamples = 200L, 
    dropout_proportion = 0, frequency_cutoff = 0.5, 
    start_seed = 45600L, verbose = 0L)
```
Arguments

data An object of class PhecapData, obtained by calling PhecapData(...)
surrogates A list of objects of class PhecapSurrogate, obtained by something like list(PhecapSurrogate(...), PhecapSurrogate(...))
subsample_size An integer scalar giving the size of each subsample
num_subsamples The number of subsamples drawn for each surrogate
dropout_proportion A scalar between 0 and 1. If it is positive, for each predictor a random subset of observations will be set to zero
frequency_cutoff A scalar between 0 and 1. Variables selected in at least this proportion of the subsamples are the variables finally selected
start_seed in the i-th subsample, the seed is set to start_seed + i
verbose print progress every verbose subsample if verbose is positive, or remain quiet if verbose is zero

Details

In this unlabeled setting, the extremes of each surrogate are used to define cases and controls. The variables selected are those selected in at least half (or the proportion specified) of the subsamples.

Value

An object of class PhecapFeatureExtraction, with components

selected the names of selected features
frequency the proportion of being selected for each feature

See Also

See PheCAP-package for code examples.

phecap_train_phenotyping_model

Train Phenotyping Model using the Training Labels

Description

Train the phenotyping model on the training dataset, and evaluate its performance via random splits of the training dataset.
Usage

phecap_train_phenotyping_model(
 data, surrogates, feature_selected,
 method = "lasso_bic",
 train_percent = 0.7, num_splits = 200L,
 start_seed = 78900L, verbose = 0L)

Arguments

data an object of class PhecapData, obtained by calling PhecapData(...).
surrogates a list of objects of class PhecapSurrogate, obtained by something like list(PhecapSurrogate(...), PhecapSurrogate(...)). The surrogates used here might be different from that used in feature extraction.
feature_selected a character vector of the features that should be included in the model, probably returned by phecap_run_feature_extraction (but not necessary). The features listed here might be different from those returned from feature extraction.
method Either a character vector or a list of two components. If a character vector is used, possible entries are given below. When at least two methods are specified, the predicted probability is the simple average of the predicted probabilities from each method.
• 'plain' (logistic regression without penalty)
• 'ridge_cv' (logistic regression with ridge penalty and CV tuning)
• 'lasso_cv' (logistic regression with lasso penalty and CV tuning)
• 'lasso_bic' (logistic regression with lasso penalty and BIC tuning)
• 'alasso_cv' (logistic regression with adaptive lasso penalty and CV tuning)
• 'alasso_bic' (logistic regression with adaptive lasso penalty and BIC tuning)
• 'svm' (support vector machine with CV tuning, package e1071 needed, subject_weight not supported)
• 'rf' (random forest with default parameters, package randomForestSRC needed)
• 'xgb' (extreme gradient boosting with default parameters, package xgboost needed)

If a list is used, it should contain two named components as follows.
• fit (a function for model fitting, with arguments x, y, subject_weight, penalty_weight)
• predict (a function for prediction, with arguments object which was returned by fit, x which was used as the new data to predict on)
train_percent The percentage (between 0 and 1) of labels that are used for model training during random splits
num_splits The number of random splits.
start_seed in the i-th split, the seed is set to start_seed + i.
verbose print progress every verbose splits if verbose is positive, or remain quiet if verbose is zero
Value

An object of class `PhecapModel`, with components

- **coefficients**: the fitted object
- **method**: the method used for model training
- **feature_selected**: the feature selected by SAFE
- **train_roc**: ROC on training dataset
- **train_auc**: AUC on training dataset
- **split_roc**: average ROC on random splits of training dataset
- **split_auc**: average AUC on random splits of training dataset
- **fit_function**: the function used for fitting
- **predict_function**: the function used for prediction

See Also

See [PheCAP-package](#) for code examples.

Description

Apply the trained model to all patients in the validation dataset, and measure the prediction accuracy via ROC and AUC.

Usage

```
phecap_validate_phenotyping_model(data, model)
```

Arguments

- **data**: an object of class `PhecapData`, obtained by calling `PhecapData(...)`
- **model**: an object of class `PhecapModel`, obtained by calling `phecap_train_phenotyping_model`.

Value

An object of class `PhecapValidation`, with components

- **method**: the method used for model training
- **train_roc**: ROC on training dataset
- **train_auc**: AUC on training dataset
split_roc average ROC on random splits of training dataset

split_auc average AUC on random splits of training dataset

valid_roc ROC on validation dataset

valid_auc AUC on validation dataset

See Also

See [PheCAP-package](#) for code examples.
Index

* datasets
 ehr_data, 6

* package
 PheCAP-package, 2
 ehr_data, 6

PheCAP (PheCAP-package), 2
PheCAP-package, 2
phecap_generate_dictionary_file, 8
phecap_perform_majority_voting, 9
phecap_plot_roc_curves, 3, 10
phecap_predict_phenotype, 3, 11
phecap_run_feature_extraction, 3, 11
phecap_train_phenotyping_model, 3, 12
phecap_validate_phenotyping_model, 3, 14
PhecapData, 3, 6
Phecapsurrogate, 3, 7