Package ‘PRIMME’

May 27, 2020

Type Package
Title Eigenvalues and Singular Values and Vectors from Large Matrices
Version 3.1-1
Date 2020-05-02
Maintainer Eloy Romero <eloy@cs.wm.edu>
Description R interface to ‘PRIMME’ <http://www.cs.wm.edu/~andreas/software>, a C library for computing a few
eigenvalues and their corresponding eigenvectors of a real symmetric or complex
Hermitian matrix, or generalized Hermitian eigenproblem. It can also compute
singular values and vectors of a square or rectangular matrix. ‘PRIMME’ finds
largest, smallest, or interior singular/eigenvalues and can use preconditioning
to accelerate convergence. General description of the methods are provided in the papers
See `citation("PRIMME")` for details.

URL http://www.cs.wm.edu/~andreas/software
 https://github.com/primme/primme
BugReports https://github.com/primme/primme/issues
Imports Rcpp
LinkingTo Rcpp, Matrix
Suggests Matrix
SystemRequirements A POSIX system. Currently Linux and OS X are known
to work. GNU make.

NeedsCompilation yes
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.0
Author Eloy Romero [aut, cre],
Andreas Stathopoulos [aut],
College of William & Mary [cph]

Repository CRAN
Date/Publication 2020-05-26 22:10:25 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eigs_sym</td>
<td>Find a few eigenvalues and vectors on large, sparse Hermitian matrix</td>
</tr>
</tbody>
</table>

Description

Compute a few eigenpairs from a specified region (the largest, the smallest, the closest to a point) on a symmetric/Hermitian matrix using PRIMME [1]. Generalized symmetric/Hermitian problem is also supported. Only the matrix-vector product of the matrix is required. The used method is usually faster than a direct method (such as eigen) if seeking a few eigenpairs and the matrix-vector product is cheap. For accelerating the convergence consider to use preconditioning and/or educated initial guesses.

Usage

```r
eigs_sym(
  A,
  NEig = 1,
  which = "LA",
  targetShifts = NULL,
  tol = 1e-06,
  x0 = NULL,
  ortho = NULL,
  prec = NULL,
  isreal = NULL,
  B = NULL,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>symmetric/Hermitian matrix or a function with signature f(x) that returns A %*% x.</td>
</tr>
<tr>
<td>NEig</td>
<td>number of eigenvalues and vectors to seek.</td>
</tr>
<tr>
<td>which</td>
<td>which eigenvalues to find:</td>
</tr>
<tr>
<td></td>
<td>"LA" the largest (rightmost) values;</td>
</tr>
<tr>
<td></td>
<td>"SA" the smallest (leftmost) values;</td>
</tr>
<tr>
<td></td>
<td>"LM" the farthest from targetShifts;</td>
</tr>
<tr>
<td></td>
<td>"SM" the closest to targetShifts;</td>
</tr>
<tr>
<td></td>
<td>"CLT" the closest but left to targetShifts;</td>
</tr>
</tbody>
</table>
eigs_sym

"CGT" the closest but greater than targetShifts;

vector of numbers the closest values to these points.

targetShifts return the closest eigenvalues to these points as indicated by target.
tol the convergence tolerance: \(\| Ax - x\lambda \| \leq tol \| A \| \).
x0 matrix whose columns are educated guesses of the eigenvectors to to find.
ortho find eigenvectors orthogonal to the space spanned by the columns of this matrix; useful to avoid finding some eigenvalues or to find new solutions.
pref preconditioner used to accelerated the convergence; usually it is an approximation of the inverse of \(A - \sigma I \) if finding the closest eigenvalues to \(\sigma \). If it is a matrix it is used as pref %*% x; otherwise it is used as pref(x).
isreal whether A %*% x always returns real number and not complex.
B symmetric/Hermitian positive definite matrix or a function with signature f(x) that returns B %*% x. If given, the function returns the eigenpairs of (A,B).

... other PRIMME options (see details).

Details

Optional arguments to pass to PRIMME eigensolver (see further details at [2]):

method used by the solver, one of:

"DYNAMIC" switches dynamically between DEFAULT_MIN_TIME and DEFAULT_MIN_MATVECS
"DEFAULT_MIN_TIME" best method for light matrix-vector product
"DEFAULT_MIN_MATVECS" best method for heavy matrix-vector product or preconditioner
"Arnoldi" an Arnoldi not implemented efficiently
"GD" classical block Generalized Davidson
"GD_plusK" GD+k block GD with recurrence restarting
"GD_Olsen_plusK" GD+k with approximate Olsen preconditioning
"JD_Olsen_plusK" GD+k, exact Olsen (two preconditioner applications per step)
"RQI" Rayleigh Quotient Iteration, also Inverse Iteration if targetShifts is provided
"JDQR" original block, Jacobi Davidson
"JDQMR" our block JDQMR method (similar to JDCG)
"JDQMR_ETol" slight, but efficient JDQMR modification
"STEEPEST_DESCENT" equivalent to GD(maxBlockSize,2*maxBlockSize)
"LOBPCG_OrthoBasis" equivalent to GD(neig,3*neig)+neig
"LOBPCG_OrthoBasis_Window" equivalent to GD(maxBlockSize,3*maxBlockSize)+maxBlockSize when neig>maxBlockSize

aNorm estimation of norm-2 of A, used in convergence test (if not provided, it is estimated as the largest eigenvalue in magnitude seen).

maxBlockSize maximum block size (like in subspace iteration or LOBPCG).

printLevel message level reporting, from 0 (no output) to 5 (show all).

locking 1, hard locking; 0, soft locking.

maxBasisSize maximum size of the search subspace.
\text{minRestartSize} \quad \text{minimum Ritz vectors to keep in restarting.}
\text{maxMatvecs} \quad \text{maximum number of matrix vector multiplications.}
\text{maxit} \quad \text{maximum number of outer iterations.}
\text{scheme} \quad \text{the restart scheme (thick restart by default).}
\text{maxPrevRetain} \quad \text{number of approximate eigenvectors retained from previous iteration, that are kept after restart.}
\text{robustShifts} \quad \text{set to true to avoid stagnation.}
\text{maxInnerIterations} \quad \text{maximum number of inner QMR iterations.}
\text{LeftQ} \quad \text{use the locked vectors in the left projector.}
\text{LeftX} \quad \text{use the approx. eigenvector in the left projector.}
\text{RightQ} \quad \text{use the locked vectors in the right projector.}
\text{RightX} \quad \text{use the approx. eigenvector in the right projector.}
\text{SkewQ} \quad \text{use the preconditioned locked vectors in the right projector.}
\text{SkewX} \quad \text{use the preconditioned approximate eigenvector in the right projector.}
\text{relTolBase} \quad \text{a legacy from classical JDQR (recommend not use).}
\text{iseed} \quad \text{an array of four numbers used as a random seed.}

\text{Value}
\text{list with the next elements}
\text{values} \quad \text{the eigenvalues } \lambda_i
\text{vectors} \quad \text{the eigenvectors } x_i
\text{rnorms} \quad \text{the residual vector norms } \|Ax_i - \lambda_iBx_i\|
\text{stats$numMatvecs} \quad \text{number of matrix-vector products performed}
\text{stats$numPreconds} \quad \text{number of preconditioner applications performed}
\text{stats$elapsedTime} \quad \text{time expended by the eigensolver}
\text{stats$timeMatvec} \quad \text{time expended in the matrix-vector products}
\text{stats$timePrecond} \quad \text{time expended in applying the preconditioner}
\text{stats$timeOrtho} \quad \text{time expended in orthogonalizing}
\text{stats$estimateMinEval} \quad \text{estimation of the smallest eigenvalue of A}
\text{stats$estimateMaxEval} \quad \text{estimation of the largest eigenvalue of A}
\text{stats$estimateANorm} \quad \text{estimation of the norm of A}

\text{References}
See Also
eigen for computing all values; svds for computing a few singular values

Examples
A <- diag(1:10) # the eigenvalues of this matrix are 1:10 and the
eigenvectors are the columns of diag(10)
r <- eigs_sym(A, 3);
r$values # the three largest eigenvalues on diag(1:10)
r$vectors # the corresponding approximate eigenvectors
r$norms # the corresponding residual norms
r$stats$numMatvecs # total matrix-vector products spend
r <- eigs_sym(A, 3, 'SA') # compute the three smallest values
r <- eigs_sym(A, 3, 2.5) # compute the three closest values to 2.5
r <- eigs_sym(A, 3, 2.5, tol=1e-3); # compute the values with
r$norms # residual norm <= 1e-3*||A||
B <- diag(rev(1:10));
r <- eigs_sym(A, 3, B=B); # compute the 3 largest eigenpairs of
 # the generalized problem (A,B)

Build a Jacobi preconditioner (too convenient for a diagonal matrix!)
and see how reduce the number matrix-vector products
A <- diag(1:1000) # we use a larger matrix to amplify the difference
P <- diag(diag(A) - 2.5)
eigs_sym(A, 3, 2.5, tol=1e-3)$stats$numMatvecs
eigs_sym(A, 3, 2.5, tol=1e-3, prec=P)$stats$numMatvecs

Passing A and the preconditioner as functions
Af <- function(x) (1:100) * x; # = diag(1:100) %*% x
Pf <- function(x) x / (1:100 - 2.5); # = solve(diag(1:100 - 2.5), x)
r <- eigs_sym(Af, 3, 2.5, tol=1e-3, prec=Pf, n=100)

Passing initial guesses
A <- diag(1:1000) # we use a larger matrix to amplify the difference
x0 <- diag(1,1000,4) + matrix(rnorm(4000), 1000, 4)/100;
eigs_sym(A, 4, "SA", tol=1e-3)$stats$numMatvecs
eigs_sym(A, 4, "SA", tol=1e-3, x0=x0)$stats$numMatvecs

Passing orthogonal constrain, in this case, already compute eigenvectors
r <- eigs_sym(A, 4, "SA", tol=1e-3); r$values
eigs_sym(A, 4, "SA", tol=1e-3, ortho=r$vectors)$values

svds
Find a few singular values and vectors on large, sparse matrix
Description

Compute a few singular triplets from a specified region (the largest, the smallest, the closest to a point) on a matrix using PRIMME [1]. Only the matrix-vector product of the matrix is required. The used method is usually faster than a direct method (such as svd) if seeking few singular values and the matrix-vector product is cheap. For accelerating the convergence consider to use preconditioning and/or educated initial guesses.

Usage

svds(
 A,
 NSvals,
 which = "L",
 tol = 1e-06,
 u0 = NULL,
 v0 = NULL,
 orthou = NULL,
 orthov = NULL,
 prec = NULL,
 isreal = NULL,
 ...
)

Arguments

A matrix or a function with signature f(x, trans) that returns A %*% x when trans == "n" and t(Conj(A)) %*% x when trans == "c".

NSvals number of singular triplets to seek.

which which singular values to find:
"L" the largest values;
"S" the smallest values;
vector of numbers the closest values to these points.

tol a triplet \((\sigma, u, v)\) is marked as converged when\[\sqrt{\| Av - \sigma u \|^2 + \| A^* u - \sigma v \|^2} \leq tol \| A \| \]
is smaller than \(tol \times || A || \), or close to the minimum tolerance that the selected method can achieve.

u0 matrix whose columns are educated guesses of the left singular vectors to find.

v0 matrix whose columns are educated guesses of the right singular vectors to find.

orthou find left singular vectors orthogonal to the space spanned by the columns of this matrix; useful to avoid finding some triplets or to find new solutions.

orthov find right singular vectors orthogonal to the space spanned by the columns of this matrix.

prec preconditioner used to accelerated the convergence; it is a named list of matrices or functions such as solve(prec[[mode]],x) or prec[[mode]](x) return an approximation of \(OP^{-1} x \), where

\[mode \quad OP \]
The three values haven’t to be set. It is recommended to set "AHA" for matrices with nrow > ncol; "AAH" for matrices with nrow < ncol; and additionally "aug" for tol < 1e-8.

isreal whether A %*% x always returns real number and not complex.

... other PRIMME options (see details).

Details

Optional arguments to pass to PRIMME eigensolver (see further details at [2]):

aNorm estimation of norm-2 of A, used in convergence test (if not provided, it is estimated as the largest eigenvalue in magnitude seen)
maxBlockSize maximum block size (like in subspace iteration or LOBPCG)
printLevel message level reporting, from 0 (no output) to 5 (show all)
locking 1, hard locking; 0, soft locking
maxBasisSize maximum size of the search subspace
minRestartSize minimum Ritz vectors to keep in restarting
maxMatvecs maximum number of matrix vector multiplications
iseed an array of four numbers used as a random seed
method which equivalent eigenproblem to solve
 "primme_svds_normalequation" A*A or AA*
 "primme_svds_augmented" [0A*; A0]
 "primme_svds_hybrid" first normal equations and then augmented (default)
locking 1, hard locking; 0, soft locking
primmeStage1, primmeStage2 list with options for the first and the second stage solver; see eigs_sym

If method is "primme_svds_normalequation", the minimum tolerance that can be achieved is \|A\|\epsilon/\sigma, where \epsilon is the machine precision. If method is "primme_svds_augmented" or "primme_svds_hybrid", the minimum tolerance is \|A\|\epsilon. However it may not return triplets with singular values smaller than \|A\|\epsilon.

Value

list with the next elements

d the singular values \sigma_i
u the left singular vectors u_i
v the right singular vectors v_i
rnorms the residual vector norms \sqrt{\|Av - \sigma u\|^2 + \|A^*u - \sigma v\|^2}
stats$numMatvecs matrix-vector products performed
stats$numPreconds number of preconditioner applications performed
stats$elapsedTime time expended by the eigensolver
stats$timeMatvec time expended in the matrix-vector products
stats$timePrecond time expended in applying the preconditioner
stats$timeOrtho time expended in orthogonalizing
stats$estimateANorm estimation of the norm of A

References

See Also

svd for computing all singular triplets; eigs_sym for computing a few eigenvalues and vectors from a symmetric/Hermitian matrix.

Examples

A <- diag(1:5,10,5) # the singular values of this matrix are 1:10 and the
left and right singular vectors are the columns of
diag(1,100,10) and diag(10), respectively
r <- svds(A, 3);
r$d # the three largest singular values on A
r$u # the corresponding approximate left singular vectors
r$v # the corresponding approximate right singular vectors
r$rnorms # the corresponding residual norms
r$stats$numMatvecs # total matrix-vector products spend

r <- svds(A, 3, "S") # compute the three smallest values
r <- svds(A, 3, 2.5) # compute the three closest values to 2.5
A <- diag(1:500,500,100) # we use a larger matrix to amplify the difference
r <- svds(A, 3, 2.5, tol=1e-3); # compute the values with
r$rnorms # residual norm <= 1e-3*||A||

Build the diagonal squared preconditioner
and see how reduce the number matrix-vector products
P <- diag(colSums(A^2));
svds(A, 3, "S", tol=1e-3)$stats$numMatvecs
svds(A, 3, "S", tol=1e-3, prec=list(AHA=P))$stats$numMatvecs

Passing A and the preconditioner as functions
Af <- function(x,mode) if (mode == "n") A*x else crossprod(A,x);
P = colSums(A^2);
\[PAHAf \leftarrow \text{function}(x) \ x \ / \ P; \]
\[r \leftarrow \text{svds(Af, 3, "S", tol=1e-3, prec=list(AHA=PAHAf), m=500, n=100)} \]

\# Passing initial guesses
\[v0 \leftarrow \text{diag(1,100,4) + matrix(rnorm(400), 100, 4)/100}; \]
\[\text{svds(A, 4, "S", tol=1e-3)}\text{-stats$\text{numMatvecs}} \]
\[\text{svds(A, 4, "S", tol=1e-3, v0=v0)}\text{-stats$\text{numMatvecs}} \]

\# Passing orthogonal constrain, in this case, already compute singular vectors
\[r \leftarrow \text{svds(A, 4, "S", tol=1e-3)}; r$d \]
\[\text{svds(A, 4, "S", tol=1e-3, orthov=r$v)}\dollar \]
Index

eigen, 2, 5
eigs_sym, 2, 7, 8

svd, 6, 8
svds, 5, 5