Package ‘PDMIF’

February 16, 2022

Title Fits Heterogeneous Panel Data Models

Version 0.1.0

License MIT + file LICENSE

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.1.1

Imports diagonals, ncvreg, quantreg

Depends R (>= 2.10)

NeedsCompilation no

Author Tomohiro Ando [aut, cre],
 Hani Fayad [aut]

Maintainer Tomohiro Ando <t.ando@mbs.edu>

Repository CRAN

Date/Publication 2022-02-16 20:20:14 UTC
R topics documented:

- data1X .. 2
- data1Y .. 3
- data2X .. 3
- data2Y .. 4
- data3X .. 4
- data3Y .. 5
- data4LAB .. 5
- data4X .. 6
- data4Y .. 6
- data5X .. 7
- data5Y .. 7
- data6X .. 8
- data6Y .. 8
- data7X .. 9
- data7Y .. 9
- data8Y .. 10
- HOMTEST ... 10
- HOMTESTGLM ... 11
- HYPTEST ... 12
- PDMIFCLUST ... 13
- PDMIFCLUSTGLM 14
- PDMIFCOUNT ... 16
- PDMIFGLM ... 17
- PDMIFLIN ... 18
- PDMIFLING ... 19
- PDMIFLOGIT .. 20
- PDMIFPROBIT .. 21
- PDMIFQUANTILE .. 22
- PDMIFQVAR .. 23

Index ... 24

data1X .. A synthesized input variable dataset to fit a linear model on a panel dataset.

Description

A synthesized input variable dataset to fit a linear model on a panel dataset.

Usage

data1X
data1Y

Format

A data frame with 5,000 rows and 2 columns:

- **columns** the two independent variables
- **rows** each 100 rows represent the timeseries of each of the 50 individuals ...

Description

A synthesized output variable dataset to fit a linear model on a panel dataset.

Usage

`data1Y`

Format

A data frame with 100 rows and 50 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...

data2X

A synthesized input variable dataset to fit a binomial model on a panel dataset.

Description

A synthesized input variable dataset to fit a binomial model on a panel dataset.

Usage

`data2X`

Format

A data frame with 5,000 rows and 2 columns:

- **columns** the two independent variables
- **rows** each 50 rows represent the timeseries of each of the 100 individuals ...
data2Y

A synthesized output variable dataset to fit a binomial model on a panel dataset.

Description

A synthesized output variable dataset to fit a binomial model on a panel dataset.

Usage

data2Y

Format

A data frame with 50 rows and 100 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...

data3X

A synthesized input variable dataset to fit a poisson model on a panel dataset.

Description

A synthesized input variable dataset to fit a poisson model on a panel dataset.

Usage

data3X

Format

A data frame with 5,000 rows and 3 columns:

- **columns** the three independent variables
- **rows** each 50 rows represent the timeseries of each of the 100 individuals ...
data3Y

A synthesized output variable dataset to fit a poisson model on a panel dataset.

Description

A synthesized output variable dataset to fit a poisson model on a panel dataset.

Usage

data3Y

Format

A data frame with 50 rows and 100 columns:

- **columns**: the individuals
- **rows**: the time points in the timeseries of each individual ...

data4LAB

A synthesized vector of memberships needed to fit a linear model on a panel dataset under known group memberships.

Description

A synthesized vector of memberships needed to fit a linear model on a panel dataset under known group memberships.

Usage

data4LAB

Format

A vector with 300 entries indicating the group membership of each individual.
data4X

A synthesized input variable dataset to fit a linear model on a panel dataset under known group memberships.

Description

A synthesized input variable dataset to fit a linear model on a panel dataset under known group memberships.

Usage

data4X

Format

A data frame with 30,000 rows and 2 columns:

- **columns** the two independent variables
- **rows** each 100 rows represent the timeseries of each of the 300 individuals ...

data4Y

A synthesized output variable dataset to fit a linear model on a panel dataset under known group memberships.

Description

A synthesized output variable dataset to fit a linear model on a panel dataset under known group memberships.

Usage

data4Y

Format

A data frame with 100 rows and 300 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...
data5X

A synthesized input variable dataset to cluster individuals by heterogeneous panel data models with interactive effects.

Description

A synthesized input variable dataset to cluster individuals by heterogeneous panel data models with interactive effects.

Usage

data5X

Format

A data frame with 30,000 rows and 2 columns:

- **columns** the two independent variables
- **rows** each 100 rows represent the timeseries of each of the 300 individuals ...

data5Y

A synthesized output variable dataset to cluster individuals by heterogeneous panel data models with interactive effects.

Description

A synthesized output variable dataset to cluster individuals by heterogeneous panel data models with interactive effects.

Usage

data5Y

Format

A data frame with 100 rows and 300 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...
data6X
Description
A synthesized input variable dataset to cluster individual units by nonlinear heterogeneous panel data models with interactive effects when the group membership is unknown.

Usage
data6X

Format
A data frame with 4,500 rows and 2 columns:
- **columns** the two independent variables
- **rows** each 50 rows represent the timeseries of each of the 90 individuals ...

data6Y
Description
A synthesized output variable dataset to cluster individual units by nonlinear heterogeneous panel data models with interactive effects when the group membership is unknown.

Usage
data6Y

Format
A data frame with 50 rows and 90 columns:
- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...
data7X

A synthesized input variable dataset to fit a quantile panel data model on a panel dataset.

Description

A synthesized input variable dataset to fit a quantile panel data model on a panel dataset.

Usage

data7X

Format

A data frame with 20,000 rows and 3 columns:

- **columns** the three independent variables
- **rows** each 100 rows represent the timeseries of each of the 200 individuals ...

data7Y

A synthesized output variable dataset to fit a quantile panel data model on a panel dataset.

Description

A synthesized output variable dataset to fit a quantile panel data model on a panel dataset.

Usage

data7Y

Format

A data frame with 100 rows and 200 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...
data8Y

A synthesized output variable dataset to fit a quantile VAR model with interactive effects and lag=2.

Description

A synthesized output variable dataset to fit a quantile VAR model with interactive effects and lag=2.

Usage

data8Y

Format

A data frame with 102 rows and 15 columns:

- **columns** the individuals
- **rows** the time points in the timeseries of each individual ...

HOMTEST

HOMTEST

Description

This function tests homogeneity of the regression coefficients in heterogeneous panel data models with interactive effects.

Usage

HOMTEST(X, Y, Nfactors, Maxit = 100, tol = 0.001)

Arguments

- **X** The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.
- **Y** The T times N panel of response where N=number of individuals, T=length of time series.
- **Nfactors** A pre-specified number of common factors.
- **Maxit** A maximum number of iterations in optimization. Default is 100.
- **tol** Tolerance level of convergence. Default is 0.001.
Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated factor loadings for the common factors.
- pvalue: The p-value of the homogeneity test.

References

Examples

```r
fit <- HOMTEST(data1X, data1Y, 2, 20, 0.5)
```

Description

This function tests homogeneity of the regression coefficients in heterogeneous generalized linear models with interactive effects.

Usage

```
HOMTESTGLM(X, Y, FAMILY, Nfactors, Maxit = 100, tol = 0.001)
```

Arguments

- **X**: The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.
- **Y**: The T times N panel of response where N=number of individuals, T=length of time series.
- **FAMILY**: A description of the error distribution and link function to be used in the model just like in glm functions.
- **Nfactors**: A pre-specified number of common factors.
- **Maxit**: A maximum number of iterations in optimization. Default is 100.
- **tol**: Tolerance level of convergence. Default is 0.001.
Value

A list with the following components:

• Coefficients: The estimated heterogeneous coefficients.
• Factors: The estimated common factors across groups.
• Loadings: The estimated factor loadings for the common factors.
• pvalue: The p-value of the homogeneity test.

References

Examples

fit <- HOMTESTGLM(data2X, data2Y, binomial(link=logit), 2, 10, 0.5)

Description

This function undergoes hypothesis testing for regression coefficients obtained from the various functions in the package.

Usage

HYPTEST(
 B,
 B0,
 Se,
 test = "two",
 variables = seq(1, nrow(B)),
 individuals = seq(1, ncol(B))
)

Arguments

B A dataframe of Coefficients as obtained in the output of any function in the package.
B0 A dataframe of hypothetical coefficients to be evaluated in the test. (nrows should match number of variables and ncols should match number of individuals)
Se A dataframe of Standard Errors as obtained in the output of any function in the package.
test A string to determine what kind of test to run ("two" for two-tailed, "right" for right-tailed and "left" for left-tailed).

variables A list of variables whose coefficients are to be tested. Default is all variables in the B dataframe.

individuals A list of individuals whose coefficients are to be tested. Default is all individuals in the B dataframe.

Value A dataframe of p-values resulting from each individual test.

Examples

```r
fit <- PDMIFLOGIT(data2X,data2Y,2,20,0.5)
HYPTEST(fit$Coefficients,data.frame(c(0,1),c(-1,2)),fit$Se,"two",c(1,3),c(1,2))
```

Description

Under a pre-specified number of groups and the number of common factors, this function implements clustering for N individuals in the panels. Each of individuals in the group are subject to the group-specific unobserved common factors.

Usage

```
PDMIFCLUST(X, Y, NGfactors, NLfactors, Maxit = 100, tol = 0.001)
```

Arguments

- **X**: The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.
- **Y**: The T times N panel of response where N=number of individuals, T=length of time series.
- **NGfactors**: A pre-specified number of common factors across groups (see example).
- **NLfactors**: A pre-specified number of factors in each groups (see example).
- **Maxit**: A maximum number of iterations in optimization. Default is 100.
- **tol**: Tolerance level of convergence. Default is 0.001.
Value

A list with the following components:

- Label: The estimated group membership for each of the individuals.
- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- GlobalFactors: The estimated common factors across groups.
- GlobalLoadings: The estimated factor loadings for the common factors.
- GroupFactors: The estimated group-specific factors.
- GroupLoadings: The estimated factor loadings for each group.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

```r
fit <- PDMIFCLUST(data5X, data5Y, 2, c(2, 2, 2), 20, 0.5)
```

Description

Under a pre-specified number of groups and the number of common factors, this function implements clustering for N individual units by nonlinear heterogeneous panel data models with interactive effects. Exponential family of distributions are used Each of individuals in the group are subject to the group-specific unobserved common factors.

Usage

```r
PDMIFCLUSTGLM(X, Y, FAMILY, NFactors, Maxit = 100, tol = 0.001)
```
Arguments

X The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y The T times N panel of response where N=number of individuals, T=length of time series.

FAMILY A description of the error distribution and link function to be used in the model just like in glm functions.

NLfactors A pre-specified number of factors in each groups (see example).

Maxit A maximum number of iterations in optimization. Default is 100.

tol Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

• Label: The estimated group membership for each of the individuals.
• Coefficients: The estimated heterogeneous coefficients.
• Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
• Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
• GroupFactors: The estimated group-specific factors.
• GroupLoadings: The estimated factor loadings for each group.
• pval: p-value for testing hypothesis on heterogeneous coefficients.
• Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFCLUSTGLM(data6X, data6Y, binomial(link=logit), c(1,1,1), 3, 0.5)
Description

Under a known group membership, this function estimates heterogeneous poisson panel data models with interactive effects.

Usage

PDMIFCOUNT(X, Y, Nfactors, Maxit = 100, tol = 0.001)

Arguments

X
The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y
The T times N panel of response where N=number of individuals, T=length of time series.

Nfactors
A pre-specified number of common factors.

Maxit
A maximum number of iterations in optimization. Default is 100.

tol
Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated factor loadings for the common factors.
- Predict: The conditional expectation of response variable.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFCOUNT(data3X, data3Y, 3, 30, 0.5)
Description

This function estimates heterogeneous panel data models with interactive effects through generalised linear models.

Usage

PDMIFGLM(X, Y, FAMILY, Nfactors, Maxit = 100, tol = 0.001)

Arguments

- **X** The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.
- **Y** The T times N panel of response where N=number of individuals, T=length of time series.
- **FAMILY** A description of the error distribution and link function to be used in the model just like in glm functions.
- **Nfactors** A pre-specified number of common factors.
- **Maxit** A maximum number of iterations in optimization. Default is 100.
- **tol** Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated factor loadings for the common factors.
- Predict: The conditional expectation of response variable.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFGLM(data2X,data2Y,binomial(link=logit),2,20,0.5)
Description

This function estimates heterogeneous panel data models with interactive effects. This function is similar version of PDMIFLING which accommodates a group structure.

Usage

PDMIFLIN(X, Y, Nfactors, Maxit = 100, tol = 0.001)

Arguments

X
The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y
The T times N panel of response where N=number of individuals, T=length of time series.

Nfactors
A pre-specified number of common factors.

Maxit
A maximum number of iterations in optimization. Default is 100.

tol
Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated factor loadings for the common factors.
- Predict: The conditional expectation of response variable.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFLIN(data1X, data1Y, 2)
Description

Under a known group membership, this function estimates heterogeneous panel data models with interactive effects. Together with the regression coefficients, this function estimates the unobserved common factor structures both for across/within groups.

Usage

PDMIFLING(X, Y, Membership, NGfactors, NLfactors, Maxit = 100, tol = 0.001)

Arguments

X
The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y
The T times N panel of response where N=number of individuals, T=length of time series.

Membership
A pre-specified group membership.

NGfactors
A pre-specified number of common factors across groups (see example).

NLfactors
A pre-specified number of factors in each groups (see example).

Maxit
A maximum number of iterations in optimization. Default is 100.

tol
Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- GlobalFactors: The estimated common factors across groups.
- GlobalLoadings: The estimated factor loadings for the common factors.
- GroupFactors: The estimated group-specific factors.
- GroupLoadings: The estimated factor loadings for each group.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

```r
fit <- PDMIFLOGIT(data4X, data4Y, data4LAB, 2, c(2, 2, 2), 30, 0.1)
```

PDMIFLOGIT

Description

This function estimates heterogeneous logistic panel data models with interactive effects.

Usage

```r
PDMIFLOGIT(X, Y, Nfactors, Maxit = 100, tol = 0.001)
```

Arguments

- `X` The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.
- `Y` The T times N panel of response where N=number of individuals, T=length of time series.
- `Nfactors` A pre-specified number of common factors.
- `Maxit` A maximum number of iterations in optimization. Default is 100.
- `tol` Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated factor loadings for the common factors.
- Predict: The conditional expectation of response variable.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

```r
fit <- PDMIFLOGIT(data2X, data2Y, 2, 20, 0.5)
```
Description

This function estimates heterogeneous probit panel data models with interactive effects.

Usage

PDMIFPROBIT(X, Y, Nfactors, Maxit = 100, tol = 0.001)

Arguments

X
The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y
The T times N panel of response where N=number of individuals, T=length of time series.

Nfactors
A pre-specified number of common factors.

Maxit
A maximum number of iterations in optimization. Default is 100.

tol
Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

• Coefficients: The estimated heterogeneous coefficients.
• Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
• Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
• Factors: The estimated common factors across groups.
• Loadings: The estimated factor loadings for the common factors.
• Predict: The conditional expectation of response variable.
• pval: p-value for testing hypothesis on heterogeneous coefficients.
• Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFPROBIT(data2X, data2Y, 2, 20, 0.5)
Description

This function estimates heterogeneous quantile panel data models with interactive effects.

Usage

PDMIFQUANTILE(X, Y, TAU, Nfactors, Maxit = 100, tol = 0.001)

Arguments

X
The (NT) times p design matrix, without an intercept where N=number of individuals, T=length of time series, p=number of explanatory variables.

Y
The T times N panel of response where N=number of individuals, T=length of time series.

TAU
A pre-specified quantile point.

Nfactors
A pre-specified number of common factors.

Maxit
A maximum number of iterations in optimization. Default is 100.

tol
Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

- Coefficients: The estimated heterogeneous coefficients.
- Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
- Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
- Factors: The estimated common factors across groups.
- Loadings: The estimated quantile point under a given tau.
- Predict: The conditional expectation of response variable.
- pval: p-value for testing hypothesis on heterogeneous coefficients.
- Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFQUANTILE(data7X, data7Y, 0.95, 2, 10, 0.8)
Description

This function estimates heterogeneous quantile panel data VAR models with interactive effects.

Usage

PDMIFQVAR(Y, LAG, TAU, Nfactors, Maxit = 100, tol = 0.001)

Arguments

Y The T times N panel of response where N=number of individuals, T=length of time series.
LAG The number of lags from y_t-1 to y_t-LAG used in the VAR.
TAU A pre-specified quantile point.
Nfactors A pre-specified number of common factors.
Maxit A maximum number of iterations in optimization. Default is 100.
tol Tolerance level of convergence. Default is 0.001.

Value

A list with the following components:

• Coefficients: The estimated heterogeneous coefficients.
• Lower05: Lower end (5%) of the 90% confidence interval of the regression coefficients.
• Upper95: Upper end (95%) of the 90% confidence interval of the regression coefficients.
• Factors: The estimated common factors across groups.
• Loadings: The estimated quantile point under a given tau.
• Predict: The conditional expectation of response variable.
• pval: p-value for testing hypothesis on heterogeneous coefficients.
• Se: Standard error of the estimated regression coefficients.

References

Examples

fit <- PDMIFQVAR(data8Y, 2, 0.1, 2, 5, 0.8)
Index

* datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>data1X</td>
<td>2</td>
</tr>
<tr>
<td>data1Y</td>
<td>3</td>
</tr>
<tr>
<td>data2X</td>
<td>3</td>
</tr>
<tr>
<td>data2Y</td>
<td>4</td>
</tr>
<tr>
<td>data3X</td>
<td>4</td>
</tr>
<tr>
<td>data3Y</td>
<td>5</td>
</tr>
<tr>
<td>data4LAB</td>
<td>5</td>
</tr>
<tr>
<td>data4X</td>
<td>6</td>
</tr>
<tr>
<td>data4Y</td>
<td>6</td>
</tr>
<tr>
<td>data5X</td>
<td>7</td>
</tr>
<tr>
<td>data5Y</td>
<td>7</td>
</tr>
<tr>
<td>data6X</td>
<td>8</td>
</tr>
<tr>
<td>data6Y</td>
<td>8</td>
</tr>
<tr>
<td>data7X</td>
<td>9</td>
</tr>
<tr>
<td>data7Y</td>
<td>9</td>
</tr>
<tr>
<td>data8Y</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>data1X</td>
<td>2</td>
</tr>
<tr>
<td>data1Y</td>
<td>3</td>
</tr>
<tr>
<td>data2X</td>
<td>3</td>
</tr>
<tr>
<td>data2Y</td>
<td>4</td>
</tr>
<tr>
<td>data3X</td>
<td>4</td>
</tr>
<tr>
<td>data3Y</td>
<td>5</td>
</tr>
<tr>
<td>data4LAB</td>
<td>5</td>
</tr>
<tr>
<td>data4X</td>
<td>6</td>
</tr>
<tr>
<td>data4Y</td>
<td>6</td>
</tr>
<tr>
<td>data5X</td>
<td>7</td>
</tr>
<tr>
<td>data5Y</td>
<td>7</td>
</tr>
<tr>
<td>data6X</td>
<td>8</td>
</tr>
<tr>
<td>data6Y</td>
<td>8</td>
</tr>
<tr>
<td>data7X</td>
<td>9</td>
</tr>
<tr>
<td>data7Y</td>
<td>9</td>
</tr>
<tr>
<td>data8Y</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMTEST</td>
<td>10</td>
</tr>
<tr>
<td>HOMTESTGLM</td>
<td>11</td>
</tr>
<tr>
<td>HYPTEST</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDMIFCLUST</td>
<td>13</td>
</tr>
<tr>
<td>PDMIFCLUSTGLM</td>
<td>14</td>
</tr>
<tr>
<td>PDMIFCOUNT</td>
<td>16</td>
</tr>
<tr>
<td>PDMIFGLM</td>
<td>17</td>
</tr>
<tr>
<td>PDMIFLIN</td>
<td>18</td>
</tr>
<tr>
<td>PDMIFLING</td>
<td>19</td>
</tr>
<tr>
<td>PDMIFLOGIT</td>
<td>20</td>
</tr>
<tr>
<td>PDMIFPROBIT</td>
<td>21</td>
</tr>
<tr>
<td>PDMIFQUANTILE</td>
<td>22</td>
</tr>
<tr>
<td>PDMIFQVAR</td>
<td>23</td>
</tr>
</tbody>
</table>