Package ‘PAmeasures’

January 22, 2018

Type Package

Title Prediction and Accuracy Measures for Nonlinear Models and for
 Right-Censored Time-to-Event Data

Version 0.1.0

Date 2018-01-18

Author Xiaoyan Wang, Gang Li

Maintainer Xiaoyan Wang<xywang@ucla.edu>

Description We propose a pair of summary measures for the predictive power of a prediction
 function based on a regression model. The regression model can be linear
 or nonlinear, parametric, semi-parametric, or nonparametric, and correctly
 specified or mis-specified. The first measure, R-squared, is an extension of
 the classical R-squared statistic for a linear model, quantifying the prediction
 function's ability to capture the variability of the response. The second
 measure, L-squared, quantifies the prediction function's bias for predicting the
 mean regression function. When used together, they give a complete summary of
 the predictive power of a prediction function. Please refer to Gang Li and Xi-

Depends R (>= 3.1)

Imports survival, stats

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2018-01-22 10:06:41 UTC
R topics documented:

moore ... 2
pam.censor .. 2
pam.coxph ... 3
pam.nlm .. 4
pam.survreg ... 5

Index 7

moore Moore's Law data

Description

A dataset containing the number of transistors and the corresponding years. The Moore’s Law states that the number of transistors in a dense integrated circuit doubles approximately every two years. moore.

Usage

moore

Format

A data frame with 48 rows and 3 variables:

- **year** year, from 1973 to 2011
- **time** time starting from 1973
- **count** number of transistors

pam.censor Prediction Accuracy Measures for Regression Models of Right-Censored Data

Description

This function calculates a pair of measures, R-Squared and L-Squared, for any regression models of right-censored data. R-squared is an extension of the classical R2 statistic for a linear model, quantifying the amount of variability in the response that is explained by a corrected prediction based on the original prediction function. L-squared is the proportion of the prediction error of the original prediction function that is explained by the corrected prediction function, quantifying the distance between the corrected and uncorrected predictions. When used together, they give a complete summary of the predictive power of a prediction function.
Usage

\[\text{pam.censor}(y, \text{y.predict}, \text{delta}) \]

Arguments

- \(y \): A numeric vector containing the response values.
- \(\text{y.predict} \): A numeric vector containing the predicted response values from a fitted model.
- \(\text{delta} \): A numeric vector indicating the status of the event, normally 0=alive, 1=dead.

Value

A list containing two components: R-squared and L-squared.

Examples

```r
library(survival)
library(PAmeasures)

# Use Mayo Clinic Primary Biliary Cirrhosis Data
data(pbc)

# Fit an exponential model with bilirubin
fit1 <- survreg(Surv(time, status==2) ~ bili, data = pbc, dist="exponential")

# Obtain predicted response from the fitted exponential model
predict.time<-predict(fit1,type="response")

# Recode status at endpoint, 0 for censored, 1 for dead
delta.pbc<- as.numeric(pbc$status == 2)

# R.squared and L.squared of log-linear model
pam.censor(pbc$time, predict.time, delta.pbc)
```

Description

This function calculates a pair of measures, R-Squared and L-Squared, for Cox proportional hazards model. R-squared is an extension of the classical R2 statistic for a linear model, quantifying the amount of variability in the response that is explained by a corrected prediction based on the original prediction function. L-squared is the proportion of the prediction error of the original prediction function that is explained by the corrected prediction function, quantifying the distance between the corrected and uncorrected predictions. When used together, they give a complete summary of the predictive power of a prediction function.
Usage
 pam.coxph(fit.cox)

Arguments
 fit.cox object inheriting from class coxph representing a fitted Cox proportional hazards regression model. Specifying x = TRUE and y=TRUE are required in the call to coxph() to include the design matrix and the response vector in the object fit.

Value
 A list containing two components: R-squared and L-squared

Examples
 library(survival)
 library(PAMEasures)
 # Use Mayo Clinic Primary Biliary Cirrhosis Data
 data(pbc)

 head(pbc)

 # Fit a univariate Cox PH model with standardised blood clotting time
 fit1 <- coxph(Surv(time, status==2) ~ protime, data = pbc,x=TRUE,y=TRUE)

 # R.squared and L.squared of Cox PH model
 pam.coxph(fit1)

 # Fit a multiple Cox PH model with bilirubin and standardised blood clotting time
 fit2 <- coxph(Surv(time, status==2) ~ bili + protime, data = pbc,x=TRUE,y=TRUE)

 # R.squared and L.squared of Cox PH model
 pam.coxph(fit2)

Description
 This function calculates a pair of measures, R-Squared and L-Squared, for any nonlinear regression model. R-squared is an extension of the classical R2 statistic for a linear model, quantifying the amount of variability in the response that is explained by a corrected prediction based on the original prediction function. L-squared is the proportion of the prediction error of the original prediction function that is explained by the corrected prediction function, quantifying the distance between the corrected and uncorrected predictions. When used together, they give a complete summary of the predictive power of a prediction function.
pam.survreg

Usage

pam.nlm(y, y.predict)

Arguments

y A numeric vector containing the response values.
y.predict A numeric vector containing the predicted response values from a fitted model.

Value

A list containing two components: R-squared and L-squared

Examples

library(PAmeasures)
data(moore)
head(moore)

Transistor count
count <- moore$count
time<--moore$time

Fit a log-linear model
moore.glm= glm(log2(count) ~ time, family=gaussian(link = "identity"))

Obtain predicted transistor count
count.predict<-2*(predict(moore.glm,newdata = data.frame(X = time),type = "response"))

R.squared and L.squared of log-linear model
pam.nlm(count, count.predict)

pam.survreg Prediction Accuracy Measures for Parametric Survival Regression Models

Description

This function calculates a pair of measures, R-Squared and L-Squared, for parametric survival regression models. R-squared is an extension of the classical R2 statistic for a linear model, quantifying the amount of variability in the response that is explained by a corrected prediction based on the original prediction function. L-squared is the proportion of the prediction error of the original prediction function that is explained by the corrected prediction function, quantifying the distance between the corrected and uncorrected predictions. When used together, they give a complete summary of the predictive power of a prediction function.
Usage

pam.survreg(fit.survreg)

Arguments

fit.survreg object inheriting from class survreg representing a fitted parametric survival regression model. Specifying x = TRUE and y=TRUE are required in the call to survreg() to include the design matrix and the response vector in the object fit.

Value

A list containing two components: R-squared and L-squared

Examples

library(survival)
library(PAMEasures)

Use Mayo Clinic Primary Biliary Cirrhosis Data
data(pbc)

head(pbc)

Fit an exponential model with bilirubin
fit1 <- survreg(Surv(time, status==2) ~ bili, data = pbc,dist="exponential",x=TRUE,y=TRUE)

R.squared and L.squared of exponential model
pam.survreg(fit1)

Fit a lognormal model with standardised blood clotting time
fit2 <- survreg(Surv(time, status==2) ~ protime, data = pbc,dist="lognormal",x=TRUE,y=TRUE)

R.squared and L.squared of lognormal model
pam.survreg(fit2)

Fit a weibull model with bilirubin and standardised blood clotting time
fit3 <- survreg(Surv(time, status==2) ~ bili + protime, data = pbc,dist="weibull",x=TRUE,y=TRUE)

R.squared and L.squared of weibull model
pam.survreg(fit3)
Index

*Topic datasets
 moore, 2

moore, 2

pam.censor, 2
pam.coxph, 3
pam.nlm, 4
pam.survreg, 5