Package ‘PANACEA’

August 19, 2023

Title Personalized Network-Based Anti-Cancer Therapy Evaluation
Version 1.0.1
Maintainer Ege Ulgen <egeulgen@gmail.com>
Description Identification of the most appropriate pharmacotherapy for each patient based on genomic alterations is a major challenge in personalized oncology. ‘PANACEA’ is a collection of personalized anti-cancer drug prioritization approaches utilizing network methods. The methods utilize personalized “driverness” scores from ‘driveR’ to rank drugs, mapping these onto a protein-protein interaction network. The “distance-based” method scores each drug based on these scores and distances between drugs and genes to rank given drugs. The “RWR” method propagates these scores via a random-walk with restart framework to rank the drugs. The methods are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2023. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology. Bioinformatics <doi:10.1093/bioinformatics/btad022>.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
URL https://github.com/egeulgen/PANACEA,
 https://egeulgen.github.io/PANACEA/
BugReports https://github.com/egeulgen/PANACEA/issues
biocViews
Imports org.Hs.eg.db, DBI, igraph, reshape2
Suggests rmarkdown, knitr, testthat (>= 3.0.0), covr
Config/testthat/edition 3
Depends R (>= 4.0)
LazyData true
LazyDataCompression xz
VignetteBuilder knitr
NeedsCompilation yes
Description

Add Drugs as Nodes

Usage

```r
add_drugs_as_nodes(W_mat, drug_target_interactions, edge_weight = 1000)
```

Arguments

- `W_mat` : adjacency matrix for the chosen PIN
- `drug_target_interactions` : data frame containing (processed) drugs and target genes
- `edge_weight` : edge weight for drug-target gene interaction (default = 1000)

Value

adjacency matrix with the drugs added as nodes
adj_list2mat

Turn Adjacency List into Adjacency Matrix

Description

Turn Adjacency List into Adjacency Matrix

Usage

adj_list2mat(adj_list)

Arguments

adj_list Adjacency list

Value

Adjacency matrix

convert2alias

Convert Input Gene Symbols to Alias

Description

Convert Input Gene Symbols to Alias

Usage

convert2alias(input_genes, target_genes)

Arguments

input_genes vector of input genes
target_genes vector of target genes

Value

vector of converted gene symbols (if any alias in target genes)
DGIdb_interactions_df DGIdb Interactions Expert-curated Sources

Description

Data frame containing drug-gene interactions from expert-curated sources (CancerCommons, CGI, ChemblInteractions, CIViC, ClearityFoundationBiomarkers, ClearityFoundationClinicalTrial, COSMIC, DoCM, MyCancerGenome, MyCancerGenomeClinicalTrial, TALC, TdgClinicalTrial, TEND) from DGIdb.

Usage

DGIdb_interactions_df

Format

a data frame containing 11323 rows and 2 variables:

- **drug_name** Drug name
- **gene_name** HGNC gene symbol for the interacting gene

example_driveR_res Example driveR Result

Description

Data frame containing 'driveR' results for a lung adenocarcinoma case.

Usage

example_driveR_res

Format

a data frame containing 106 rows and 3 variables:

- **gene_symbol** HGNC gene symbol
- **driverness_prob** 'driverness' probability
- **prediction** driveR’s prediction for whether the gene is a 'driver' or 'non-driver'
example_scores_dist

Example PANACEA "distance-based" Method Result

Description
Vector containing 'PANACEA' "distance-based" results for a lung adenocarcinoma case. Names are drug names, values are scores

Usage
example_scores_dist

Format
named vector of 1423 values

example_scores_RWR

Example PANACEA "RWR" Method Result

Description
Vector containing 'PANACEA' "RWR" results for a lung adenocarcinoma case. Names are drug names, values are scores

Usage
example_scores_RWR

Format
named vector of 1423 values

Laplacian.norm

Graph Laplacian Normalization

Description
Graph Laplacian Normalization

Usage
Laplacian.norm(W)
network_propagation

Arguments

\(W \)
- square symmetric adjacency matrix

Value

normalized adjacency matrix

network_propagation

Network Propagation (Random-walk with Restart)

Description

Network Propagation (Random-walk with Restart)

Usage

\[
\text{network_propagation}(\text{prior_vec}, W_{\text{prime}}, \alpha, \text{max._iter} = 1000, \epsilon = 1e^{-04})
\]

Arguments

- \text{prior_vec}
 - vector of prior knowledge on selected genes (names are gene symbols)
- \text{W_prime}
 - (Laplacian-normalized, symmetric) adjacency matrix
- \text{alpha}
 - restart parameter, controlling trade-off between prior information and network smoothing
- \text{max._iter}
 - maximum allowed number of iterations (default = 1000)
- \text{eps}
 - epsilon value to assess the L2 norm of the difference between iterations (default = 1e-4)

Details

Value

vector of propagation values
PANACEA: Personalized Network-based Anti-Cancer Therapy Evaluation

Description

Identification of the most appropriate pharmacotherapy for each patient based on genomic alterations is a major challenge in personalized oncology. PANACEA is a collection of personalized anti-cancer drug prioritization approaches utilizing network methods. The methods utilize personalized "driveness" scores from 'driveR' to rank drugs, mapping these onto a protein-protein interaction network (PIN). The "distance-based" method scores each drug based on these scores and distances between drugs and genes to rank given drugs. The "RWR" method propagates these scores via a random-walk with restart framework to rank the drugs.

Author(s)

Maintainer: Ege Ulgen <egeulgen@gmail.com> (ORCID) [copyright holder]

See Also

score_drugs for the wrapper function for scoring of drugs via network-based methods

process_drug_target_interactions

Process Drug-Target Interactions

Description

Process Drug-Target Interactions

Usage

process_drug_target_interactions(
 drug_target_interactions,
 PIN_genes,
 drug_name_col = "drug_name",
 target_col = "gene_name"
)

Arguments

drug_target_interactions
 data frame containing drugs and target genes

PIN_genes
 gene symbols for the chosen PIN

drug_name_col
 name of the column containing drug names (default = "drug_name")

target_col
 name of the column containing drug targets (default = "converted_target_gene")
processed drug-target interactions. Processing involves converting symbols missing in the PIN, merging drugs that have the same target gene(s).

score_drugs
Scoring of Drugs via Network-based Methods

Description
Scoring of Drugs via Network-based Methods

Usage
```
score_drugs(driveR_res, drug_interactions_df, W_mat, method, ...)
```

Arguments
- `driveR_res` data frame of driveR results
- `drug_interactions_df` data frame of drug-gene interactions
- `W_mat` adjacency matrix for the PIN
- `method` scoring method (one of ‘distance-based’ or ‘RWR’)
- `...` additional arguments for `score_drugs_distance_based` or `score_drugs_RWR_based`

Details
This is the wrapper function for the two proposed methods for personalized scoring of drugs for individual cancer samples via network-based methods. The available methods are ‘distance-based’ and ‘RWR’. For the ‘distance-based’ method, the score between a gene (g) and drug (d) is formulated as:

\[
score(g, d) = \frac{\text{driver}(g)}{(d(g, d) + 1)^2}
\]

where driver(g) is the driverness probability of gene g, as predicted by ‘driveR’ and d(g, d) is the distance within the PIN between gene g and drug d. The final score of the drug d is then the average of the scores between each altered gene and d:

\[
score(d) = \Sigma score(g, d)/|\text{genes}|
\]

For the ‘RWR’ method, a random-walk with restart framework is used to propagate the driverness probabilities.

By default `DGIdb_interactions_df` is used as the `drug_interactions_df`.

If the `W_mat` argument is not supplied, the built-in STRNG data `STRING_adj_df` is used to generate `W_mat`.

Value
vector of scores per drug.
Examples

```r
toy_data <- data.frame(
  gene_symbol = c("TP53", "EGFR", "KDR", "ATM"),
  driverness_prob = c(0.94, 0.92, 0.84, 0.72)
)
toy_interactions <- DGIdb_interactions_df[1:25, ]
res <- score_drugs(
  driveR_res = toy_data,
  drug_interactions_df = toy_interactions, # leave blank for default
  W_mat = toy_W_mat, # leave blank for default
  method = "distance-based",
  verbose = FALSE
)
```

score_drugs_distance_based

Distance-based Scoring of Drugs

Description

Distance-based Scoring of Drugs

Usage

```r
score_drugs_distance_based(
  driveR_res, 
  drug_interactions_df, 
  W_mat, 
  driver_prob_cutoff = 0.05, 
  drug_name_col = "drug_name", 
  target_col = "gene_name", 
  verbose = TRUE
)
```

Arguments

- `driveR_res` data frame of driveR results
- `drug_interactions_df` data frame of drug-gene interactions
- `W_mat` adjacency matrix for the PIN
- `driver_prob_cutoff` cut-off value for 'driverness_prob' (default = 0.05)
- `drug_name_col` for 'drug_interactions_df', the column name containing drug names/identifiers
- `target_col` for 'drug_interactions_df', the column name containing target gene symbols
- `verbose` boolean to control verbosity (default = TRUE)
Value
vector of scores per drug. Drugs with the same target gene(s) are merged (via process_drug_target_interactions).

Examples
```
toy_data <- data.frame(
  gene_symbol = c("TP53", "EGFR", "KDR", "ATM"),
  driverness_prob = c(0.94, 0.92, 0.84, 0.72)
)
toy_interactions <- DGIdb_interactions_df[1:100, ]
res <- score_drugs_distance_based(
  driveR_res = toy_data,
  drug_interactions_df = toy_interactions,
  W_mat = toy_W_mat, verbose = FALSE
)
```

score_drugs_RWR_based RWR-based Scoring of Drugs

Description
RWR-based Scoring of Drugs

Usage
```
score_drugs_RWR_based(
  driveR_res, drug_interactions_df, W_mat, alpha = 0.05,
  max.iter = 1000, eps = 1e-04, drug_name_col = "drug_name",
  target_col = "gene_name", verbose = TRUE
)
```

Arguments
- driveR_res data frame of driveR results
- drug_interactions_df data frame of drug-gene interactions
- W_mat adjacency matrix for the PIN
- alpha restart parameter, controlling trade-off between prior information and network smoothing
- max.iter maximum allowed number of iterations (default = 1000)
eps epsilon value to assess the L2 norm of the difference between iterations (default = 1e-4)

drug_name_col for 'drug_interactions_df', the column name containing drug names/identifiers

target_col for 'drug_interactions_df', the column name containing target gene symbols

verbose boolean to control verbosity (default = TRUE)

Value vector of scores per drug. Drugs with the same target gene(s) are merged (via process_drug_target_interactions)

Examples

toy_data <- data.frame(
 gene_symbol = c("TP53", "EGFR", "KDR", "ATM"),
 driverness_prob = c(0.94, 0.92, 0.84, 0.72)
)

toy_interactions <- DGIdb_interactions_df[1:100,]

res <- score_drugs_RWR_based(
 driver_res = toy_data,
 drug_interactions_df = toy_interactions,
 W_mat = toy_W_mat, verbose = FALSE
)

STRING_adj_df Adjacency List for STRING v11.5 - High Confidence Interactions

Description Data frame of adjacency list for STRING v11.5 interactions with combined score > 700 (high confidence)

Usage STRING_adj_df

Format a data frame with 887797 rows and 3 variables:

protein1 Interactor 1
protein2 Interactor 2
value edge weight(combined score)
toy_W_mat

Toy Adjacency Matrix (for examples)

Description

Symmetric matrix containing example adjacency data

Usage

`toy_W_mat`

Format

Matrix of 84 rows and 84 columns
Index

* datasets
 - DGIdb_interactions_df, 4
 - example_driveR_res, 4
 - example_scores_dist, 5
 - example_scores_RWR, 5
 - STRING_adj_df, 11
 - toy_W_mat, 12

 add_drugs_as_nodes, 2
 adj_list2mat, 3

 convert2alias, 3
 DGIdb_interactions_df, 4, 8
 example_driveR_res, 4
 example_scores_dist, 5
 example_scores_RWR, 5

 Laplacian.norm, 5

 network_propagation, 6

 PANACEA, 7
 PANACEA-package (PANACEA), 7
 process_drug_target_interactions, 7, 10, 11

 score_drugs, 7, 8
 score_drugs_distance_based, 8, 9
 score_drugs_RWR_based, 8, 10
 STRING_adj_df, 8, 11

 toy_W_mat, 12