Package ‘OVtool’

August 18, 2021

Type Package

Title Omitted Variable Tool

Version 1.0.2

Description This tool was designed to assess the sensitivity of research findings to omitted variables when estimating causal effects using propensity score (PS) weighting. This tool produces graphics and summary results that will enable a researcher to quantify the impact an omitted variable would have on their results. Burgette et al. (2021) describe the methodology behind the primary function in this package, ov_sim. The method is demonstrated in Griffin et al. (2020) <doi:10.1016/j.jsat.2020.108075>.

License GPL-3

Encoding UTF-8

LazyData true

Imports Amelia, EnvStats, devtools, dplyr, ggplot2, ggrepel, glue, magrittr, metR, purrr, progress, rlang, survey, stats, tibble, tidyselect, varhandle

Suggests rmarkdown, knitr

Depends R (>= 2.10), twang

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Joseph Pane [aut, cre], Lane Burgette [aut], Beth Ann Griffin [aut], Daniel McCaffrey [aut]

Maintainer Joseph Pane <josephp@rand.org>

Repository CRAN

Date/Publication 2021-08-18 19:50:02 UTC
add_pvals_plot

Description
Plot of effect size contours with pvalue overlay

Usage
add_pvals_plot(prep, col = "color")

Arguments
prep Input from prep_for_plots
col If user wants color or black and white. Specify color with "color" or black and white "bw"

Value
a list of class gg and ggplot

Examples
```r
data(sud)
sud = data.frame(sud[sample(1:nrow(sud),100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
                           weights = "wts",
                           treatment = "treat",
                           outcome = "eps7p_6")
```
add_reps

```
model_covariates = c("sfs8p_0", "eps7p_0", "ada_0"),
estimand = "ATE"

ovtool_results = ov_sim(model_results=outcome_mod,
    plot_covariates=c("sfs8p_0", "ada_0"),
es_g = 0,
rho_g = 0,
n_reps = 2,
progress=FALSE)
prep = prep_for_plots(ovtool_results, p_contours=.05)
plot = add_pvals_plot(prep = prep)
```

Description

This function will run additional simulations of the unobserved confounder and add the results to the object returned from the previous call to OVtool::ov_sim.

Usage

```
add_reps(OVtool_results, model_results, more_reps)
```

Arguments

- `OVtool_results`: The object returned from OVtool::ov_sim()
- `model_results`: The object returned from OVtool::outcome_model()
- `more_reps`: The number of additional repetitions the user wants to simulate the unobserved confounder

Value

`add_reps` returns an updated object returned from OVtool::ov_sim()

Examples

```
data(sud)
sud = data.frame(sud[sample(1:nrow(sud),100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
    weights = "wts",
    treatment = "treat",
    outcome = "eps7p_6",
    model_covariates = c("sfs8p_0", "eps7p_0"),
estimand = "ATE")
```
ovtool_results = ov_sim(model_results=outcome_mod,
 plot_covariates=c("sfs8p_0"),
 es_grid = .1,
 rho_grid = .1,
 n_reps = 2,
 progress=FALSE)

additional = add_reps(OVtool_results = ovtool_results,
 model_results = outcome_mod,
 more_reps = 2)

description

Plot of the effect size contours

usage

es_plot(prep, col="bw")

arguments

prep Input from prep_for_plots

col If user wants color (a heat map layered with contours) or black and white (contours only). Specify the heat map with "color" or black and white "bw".

value

a list of class gg and ggplot

examples

data(sud)
sud = data.frame(sud[sample(1:nrow(sud),100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
 weights = "wts",
 treatment = "treat",
 outcome = "eps7p_6",
 model_covariates = c("sfs8p_0", "eps7p_0",
 "ada_0"),
 estimand = "ATE")

ovtool_results = ov_sim(model_results=outcome_mod,
 plot_covariates=c("sfs8p_0", "ada_0"),
 es_grid = 0,
Description
Plot of effect size contours with p-value contours and observed covariate points overlayed

Usage
```r
es_point_plot(prep, col = "color")
```

Arguments
- `prep`: Input from `prep_for_plots`
- `col`: If user wants color or black and white. Specify color with "color" or black and white "bw".

Value
a list of class `gg` and `ggplot`

Examples
```r
data(sud)
sud = data.frame(sud[sample(1:nrow(sud), 100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
  weights = "wts",
  treatment = "treat",
  outcome = "eps7p_6",
  model_covariates = c("sfs8p_0", "eps7p_0",
                        "ada_0"),
  estimand = "ATE")

ovtool_results = ov_sim(model_results=outcome_mod,
  plot_covariates=c("sfs8p_0", "ada_0"),
  es_grid = 0,
  rho_grid = 0,
  n_reps = 2,
  progress=FALSE)
prep = prep_for_plots(ovtool_results, p_contours=.05)
plot = es_point_plot(prep = prep)
```
Description
Finds a reasonable effect size grid to simulate over.

Usage
find_esgrid(my_data, my_cov, treatment, outcome, my_estimand)

Arguments
- my_data : Data
- my_cov : vector of covariates
- treatment : column name of treatment indicator in my_data
- outcome : column name of outcome in my_data
- my_estimand : Relevant estimand ("ATE" or "ATT")

Value
a data frame with three columns, "Cor_Outcome", "es", and "cov". "Cor_Outcome" represents rho grid values, "ES" represents the range of grid values to represent the association between the unobserved confounder and the treatment indicator on the effect size scale, and "cov" is a vector of all the covariates used in the propensity score model.

Examples
```r
data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
                         weights = "wts",
                         treatment = "treat",
                         outcome = "eps7p_3",
                         model_covariates = c("sf8p_0"),
                         estimand = "ATE")

find_es = find_esgrid(sud, my_cov="sf8p_0", treatment="treat",
                      outcome="eps7p_3",
                      my_estimand="ATE")
```
Description

This function will generate a at finish.

Usage

\texttt{gen_a_finish(a_res, my_estimand, wts)}

Arguments

- \texttt{a_res} : A list of values returned by \texttt{gen_a_start}
- \texttt{my_estimand} : "ATE" or "ATT"
- \texttt{wts} : A vector of the original weights

Value

\texttt{a} : used to control the strength of the relationship between the omitted variable and the treatment

Examples

data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
 weights = "wts",
 treatment = "treat",
 outcome = "eps7p_3",
 model_covariates = c("sfs8p_0"),
 estimand = "ATE")

start = gen_a_start(y=sud$eps7p_3, tx=sud$treat,
 residuals=residuals(outcome_mod$mod_results),
 es = .01,
 rho = .01,
 my_estimand = "ATE")

finish = gen_a_finish(a_res = start, my_estimand = "ATE", wts = sud$wts)
Description

This function is a wrapper to ov_simgrid. It generates the a. a is used to control the strength of the relationship between the unobserved counfounder, U, and the treatment indicator.

Usage

gen_a_start(y, tx, residuals, es, rho, my_estimand)

Arguments

y A vector that represents the outcome.
 tx A vector for the treatment indicator (must be 0s and 1s).
 residuals A vector of residuals from regressing Y on X and controlling for treatment.
 es An effect size value to simulate over.
 rho A rho (correlation) value to simulate over.
 my_estimand "ATE" or "ATT"

Value

gen_a_start returns a list containing the following components:

n1 scalar representing sample size of treatment group (treat == 1)
ve1 1 - b1^2 multiplied by the variance of Ystar1
b1 bounded parameter for treatment group (treat == 1) that it with b0 are selected to set the correlation of the omitted variable and the outcome equal to rho
es
pi proportion of population that is in the treatment group (treat == 1)
n0 scalar representing sample size of control group (treat == 0)
ve0 1 - b0^2 multiplied by the variance of Ystar0
b0 bounded parameter for control group (treat == 0) that it with b1 are selected to set the correlation of the omitted variable and the outcome equal to rho
n scalar representing the total sample size
ind vector of positions in data that represent treatment group (treat == 1)
Rstar_1 Residuals in treatment group
Rstar_0 Residuals in control group
Examples

data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
 weights = "wts",
 treatment = "treat",
 outcome = "eps7p_3",
 model_covariates = c("sfs8p_0"),
 estimand = "ATE")

start = gen_a_start(y=sud$eps7p_3, tx=sud$treat,
 residuals=residuals(outcome_mod$mod_results),
 es = .01,
 rho = .01,
 my_estimand = "ATE")

Description

This function will run the outcomes model for your analysis. Upon completion, use the model object returned from this function and call ov_simgrid to check the sensitivity of your findings.

Usage

outcome_model(ps_object = NULL, stop.method=NULL, data, weights=NULL, treatment, outcome, model_covariates, estimand = "ATE")

Arguments

ps_object A ps object exported from TWANG
stop.method If the user specifies ps_object, stop.method should be used to export the weights (e.g "ks.max")
data A data frame containing the data
weights A column name in data that represents the relevant weights
treatment A column name in data for the treatment indicator
outcome A column name in data indicating the outcome vector
model_covariates A vector of column names representing the covariates in your final outcome’s model
estimand "ATE" or "ATT"
Value

outcome_model returns a list containing the following components:

- **ps_object**: The ps_object from TWANG specified in the function call. If ignored, this component will be NULL.
- **stop.method**: The stop method, if applicable, specified in the function call.
- **data**: the updated data frame.
- **weights**: the original vector of weights.
- **tx**: a character name in data indicating the treatment indicator.
- **y**: a character name in data indicating the outcome.
- **outcome_mod_fmla**: the final outcome model formula.
- **estimand**: The estimand specified in the function call.
- **mod_results**: an object of class "svyglm".

References

Examples

data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
 weights = "wts",
 treatment = "treat",
 outcome = "eps7p_3",
 model_covariates = c("sfs8p_0"),
 estimand = "ATE")

Description

This function will create the simulation grid. The simulation will iterate over effects sizes and absolute correlations with the outcome (rho) and see how the treatment effect and relevant p-value changes.

Usage

ov_sim(model_results, plot_covariates, es_grid = seq(-.4, .4, by = 0.05),
 rho_grid = seq(0, .4, by = 0.05), n_reps = 50, progress = TRUE, add = FALSE, sim_archive = NULL)
ov_sim

Arguments

model_results object returned from outcome_model

plot_covariates vector of column names representing the covariates that will be plotted on the graphic as observed covariates. Most users will include the variables on the right-hand side of the propensity score model

es_grid Not required. A grid of effect sizes to simulate over

rho_grid Not required. A grid of correlations to simulate over; rho relates the correlation to the effect size.

n_reps Number of repetitions to simulate over

progress Whether or not the function progress should print to screen. The default value is TRUE. If the user does not want the output to print to screen, they should set to FALSE.

add Default is FALSE. This is set to true if the user is running additional repetitions after the first call to ov_sim

sim_archive Default is NULL

Value

ov_sim returns a list containing the following components:

p_val matrix of p-values for each grid point

trt_effect matrix of effect sizes for each grid point

es_grid vector of the effect size grid

rho_grid vector of the rho grid

cov vector of covariates used to estimate propensity score weights

data the initial data frame containing data with new weights

tx column name in data representing the treatment indicator

y column name in data representing the outcome

estimand estimand used

n_reps number of repetitions to simulate over

std.error matrix of standard errors for each grid point

es_se_raw matrix that stores each repetitions results at every grid point

Examples

data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
 weights = "wts",
 treatment = "treat",
 outcome = "eps7p_3",

 covariates = c("cov1", "cov2", "cov3"),
 est_method = "logit",
 estimand = "ATT"
)

result = ov_sim(model_results = outcome_mod, n_reps = 5, plot_covariates = c("cov1", "cov2"), progress = TRUE, add = TRUE)
ovtool_results = ov_sim(model_results=outcome_mod,
plot_covariates=c("sfs8p_0"),
es_grid = NULL,
rho_grid = NULL,
n_reps = 2,
progress=FALSE)

plot.ov

Description
Plots the user specified graphic(s)

Usage
S3 method for class 'ov'
plot(x, col="color", print_graphic="1", p_contours = c(0.01, 0.05, 0.1), ...)

Arguments

x Object returned from the call to ov_sim
col If user wants color or black and white. Specify color with "color" or black and white "bw"
print_graphic Takes values "1", "2", or "3", depending what graphics the user wants
p_contours P-value countours to plot. The default plots: 0.01, 0.05, and 0.1. We only recommend changing this if the raw effect p-value is very close to one of these values. Do not specify more than four p-value contours.
... Additional arguments.

Value
This function will print the plot to screen that the use specifies with print_graphic.

Examples

data(sud)
sud = data.frame(sud[sample(1:nrow(sud),100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
weights = "wts",
treatment = "treat",
outcome = "eps7p_6",
model_covariates = c("sfs8p_0", "eps7p_0",

```r
prep_for_plots

estimand = "ATE")

ovtool_results = ov_sim(model_results=outcome_mod,
    plot_covariates=c("sTsSp_0", "ada_0"),
    es_grid = 0,
    rho_grid = 0,
    n_reps = 2,
    progress=FALSE)

plot = plot.ov(ovtool_results, print_graphic="3", p_contours=.05)
```

Description

Data preparation for producing the graphics and summary results.

Usage

```r
prep_for_plots(r1, p_contours)
```

Arguments

- `r1`: An object returned from `ov_sim`
- `p_contours`: P-value contours to plot. The default plots: 0.01, 0.05, and 0.1. We only recommend changing this if the raw effect p-value is very close to one of these values. Do not specify more than four p-value contours.

Value

`prep_for_plots` returns a list containing the following components:

- `r1`: a list with the components returned from `ov_sim` grid
- `r1_df`: a data frame with components used to create the contour graphic
- `obs_cors`: a data frame with components used to plot the observed covariates on `plot_graphic` = "2" and `plot_graphic` = "3"
- `text_high`: a character noting the covariates whose absolute correlation with the outcome is greater than the grid allows
- `text_high_es`: a character noting the covariates with effect sizes greater than the maximum the plot will allow
- `pvals`: a vector of p-value thresholds to be plotted on the graphics
- `pval_lines`: a vector of line types to represent pvals
- `raw`: a character with the raw effect and pvalue from the outcome model
Examples

```r
data(sud)
sud = data.frame(sud[sample(1:nrow(sud),100),])
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
                          weights = "wts",
                          treatment = "treat",
                          outcome = "eps7p_6",
                          model_covariates = c("sfs8p_0", "eps7p_0",
                                            "ada_0"),
                          estimand = "ATE")

ovtool_results = ov_sim(model_results=outcome_mod,
                          plot_covariates=c("sfs8p_0", "ada_0"),
                          es_grid = 0,
                          rho_grid = 0,
                          n_reps = 2,
                          progress=FALSE)
prep = prep_for_plots(ovtool_results, p_contours=.05)
```

sud

Longitudinal observational data from adolescents receiving SUD treatment.

Description

A dataset containing substance use disorder and mental health measures for adolescents who had one of two substance use treatments.

Usage

data("sud")

Format

A data frame with 4000 observations on the following 29 variables.

treat treatment indicator
tss_0 Traumatic Stress Scale, baseline
tss_3 Traumatic Stress Scale, recorded at 3-months
tss_6 Traumatic Stress Scale, recorded at 6-months
sfs8p_0 Substance Frequency Scale, baseline
sfs8p_3 Substance Frequency Scale, recorded at 3-months
sfs8p_6 Substance Frequency Scale, recorded at 6-months
eps7p_0 Emotional Problems Scale, baseline
eps7p_3 Emotional Problems Scale, recorded at 3-months
eps7p_6 Emotional Problems Scale, recorded at 6-months
ias5p_0 Illegal Activity Scale, baseline
dss9_0 Depressive Symptom Scale-9 Item, baseline
mhtrt_0 MH treatment, past 90 days, baseline
sati_0 Substance Abuse Tx Index, baseline
sp_sm_0 Substance Problem Scale, Past Month, baseline
sp_sm_3 Substance Problem Scale, Past Month, recorded at 3-months
sp_sm_6 Substance Problem Scale, Past Month, recorded at 6-months
gvs General Victimization Scale
ers21_0 Environment Risk Scale, baseline
nproc Count of Treatment A procedures delivered to client
ada_0 Adjusted Days Abstinent-Any, baseline
ada_3 Adjusted Days Abstinent-Any, recorded at 3-months
ada_6 Adjusted Days Abstinent-Any, recorded at 6-months
reco_v0 Binary indicator indicating if in recovery, baseline
reco_v3 Binary indicator indicating if in recovery, recorded at 3-months
reco_v6 Binary indicator indicating if in recovery, recorded at 6-months
subgrp_n Categorical variable where: 1="Alcohol and/or marijuana disorder/weekly use; 2="Other
drugs"; 3="Opiate disorder/weekly use"
sncnt Total number of sessions for Treatment A
engage Binary indicator indicating initiated treatment and had 4+ sessions within 45 days for
 Treatment A

Source

Global Appraisal of Individual Needs biopsychosocial assessment instrument - GAIN - Dennis,
Titus et al. 2003

Examples

data(sud)
Description

Produces summary information that contains a recommendation for reporting the sensitivity analyses.

Usage

```r
## S3 method for class 'ov'
summary(object, model_results, sig_level = 0.05, progress = TRUE, ...)
```

Arguments

- `object`: The object returned from OVtool::ov_simgrid()
- `model_results`: The object returned from OVtool::outcome_model()
- `sig_level`: The alpha level with default 0.05
- `progress`: Whether or not the function progress should print to screen. The default value is TRUE. If the user does not want the output to print to screen, they should set to FALSE.
- `...`: Additional arguments.

Value

This function will print a recommendation for reporting the sensitivity analyses.

Examples

```r
data(sud)
sud = data.frame(sud)
sud$treat = ifelse(sud$treat == "A", 1, 0)
sud$wts = sample(seq(1, 10, by=.01), size=nrow(sud), replace = TRUE)
outcome_mod = outcome_model(data = sud,
  weights = "wts",
  treatment = "treat",
  outcome = "eps7p_6",
  model_covariates = c("sfs8p_0", "eps7p_0"),
  estimand = "ATE")

ovtool_results = ov_sim(model_results=outcome_mod,
  plot_covariates=c("sfs8p_0"),
  es_grid = NULL,
  rho_grid = NULL,
  n_reps = 2,
  progress=FALSE)
summary = summary.ov(object = ovtool_results,
  model_results = outcome_mod,
  sig_level = 0.05)
sig_level=0.05,
progress = FALSE)
Index

* datasets
  sud, 14

add_pvals_plot, 2
add_reps, 3

es_plot, 4
es_point_plot, 5

find_esgrid, 6

gen_a_finish, 7
gen_a_start, 8

outcome_model, 9
ov_sim, 10

plot.ov, 12
prep_for_plots, 13

sud, 14
summary.ov, 16