Package ‘NutrienTrackeR’

November 14, 2021

Type Package

Title Food Composition Information and Dietary Assessment

Version 1.2.0

Date 2021-11-14

Author Andrea Rodriguez-Martinez, Rafael Ayala, Mark Balchunas, Yacine Debbabi, Lara Selles Vidal

Maintainer Rafael Ayala <rafael.ayala@oist.jp>

Contact Andrea Rodriguez-Martinez
 <andrea.rodriguez-martinez13@imperial.ac.uk>, Rafael Ayala
 <rafael.ayala@oist.jp>

Description Provides a tool set for food information and dietary assessment. It uses food composition data from several reference databases, including: 'USDA' (United States), 'CIQUAL' (France), 'BEDCA' (Spain) and 'CNF' (Canada). 'NutrienTrackeR' calculates the intake levels for both macronutrient and micronutrients, and compares them with the recommended dietary allowances (RDA). It includes a number of visualization tools, such as time series plots of nutrient intake, and pie-charts showing the main foods contributing to the intake level of a given nutrient. A shiny app exposing the main functionalities of the package is also provided.

License GPL-3

Depends R(>= 3.5)

Suggests RUnit, knitr, BiocStyle, rmarkdown, BiocGenerics

VignetteBuilder knitr

Imports ggplot2, shiny

NeedsCompilation no

LazyData true

Encoding UTF-8

Repository CRAN

Date/Publication 2021-11-14 11:40:02 UTC
R topics documented:

- dietBalance
- findFoodName
- food_composition_data
- getFoodGroups
- getNutrientNames
- NIH_nutrient_recommendations
- nutrientIntakePlot
- nutrientPiePlot
- NutrienTrackeRapp
- nutrientsTimeTrend
- nutrient_group
- sample_diet_USDA
- subsetFoodRichIn

Index

dietBalance

Nutrition calculator

Description

This function calculates the daily nutrient intake of an individual and compares it with the NIH nutrient recommendations (recommended dietary allowances (RDA) and tolerable upper intake levels (TUIL)).

Usage

```r
dietBalance(my_daily_food, food_database = "USDA", age = 27, gender = "female", pregnant = FALSE, lactation = FALSE, summary_report = TRUE)
```

Arguments

- `my_daily_food`: matrix or a list of matrices, where each matrix reports all the foods eaten in a given day. The matrix must have two columns: 1) "food" (reporting food names) and 2) "units" (reporting the number of units relative to 100 grams, e.g. 125 g -> 1.25). For more details, see the dataset "sample_diet_USDA".
- `food_database`: character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA", "CNF".
- `age`: numeric vector indicating age.
- `gender`: character vector indicating gender (i.e. "female" or "male").
- `pregnant`: logical constant indicating pregnancy status.
- `lactation`: logical constant indicating lactation status.
- `summary_report`: logical constant indicating whether a summary of results (e.g. nutrients whose daily intake level is below RDA or above TUIL) will be reported.
findFoodName

Value

A list, where the first element indicates daily nutrient intake; the second element indicates the contribution of each food to the total intake level of each nutrient (as percentage); and the second element reports the total intake level of each nutrient relative to the RDA (as percentage). When my_daily_food is a list, the results correspond to an average daily intake.

References

https://ndb.nal.usda.gov/ndb/
http://www.bedca.net/
https://ciqual.anses.fr/

Examples

```r
## Load data
data(food_composition_data)
data(NIH_nutrient_recommendations)
data(nutrient_group)
data(sample_diet_USDA) ## contains an example of a one-week diet
day1 = sample_diet_USDA[[1]]

weekly_balanceF <- dietBalance(my_daily_food = sample_diet_USDA,
    food_database = "USDA", age = 27, gender = "female")

day1_balanceF <- dietBalance(my_daily_food = day1,
    food_database = "USDA", age = 27, gender = "female")

day1_balanceM <- dietBalance(my_daily_food = day1,
    food_database = "USDA", age = 27, gender = "male")

day1_balanceF <- dietBalance(my_daily_food = day1,
    food_database = "USDA", age = 27, gender = "male")
```

findFoodName

Find food names based on keywords

Description

This function allows finding food names based on query keywords.

Usage

`findFoodName(keywords, food_database = "USDA", food_group = NULL, ignore_case = TRUE)`
food_composition_data

Arguments

- **keywords**: character vector containing one or several keywords. For example, "peppers, green" and "raw" would be good keywords for the food: "Peppers, sweet, green, raw".
- **food_database**: character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA", "CNF".
- **food_group**: character vector indicating the food groups that are likely to contain the food of interest. NULL indicates that the search is done using all food groups.
- **ignore_case**: logical constant indicating whether the search is case sensitive.

Value

A vector of matched food names.

Examples

```r
## Load data
data(food_composition_data)

findFoodName(keywords = c("Rice", "brown", "raw"), food_database = "USDA")
findFoodName(keywords = c("Rice", "brown", "raw"), food_database = "CIQUAL")
findFoodName(keywords = c("Rice", "brown", "raw"), food_database = "BEDCA")
findFoodName(keywords = c("rice", "brown"), food_database = "CNF")
```

food_composition_data Nutritional values for common foods and products

Description

This list contains 3 different food composition tables, which provide information on the average nutritional value of foods consumed in United States (USDA standard reference database), France (CIQUAL database), Spain (BEDCA database) and Canada (CNF database). All nutrition information is provided per 100 grams of food.

Usage

data(food_composition_data)

Format

List

Value

List
getFoodGroups

Get the names of the food groups included in a given database

Description

This function returns the names of the different food groups included in a given database.

Usage

```r
getFoodGroups(food_database = "USDA")
```

Arguments

- `food_database`: character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA", "CNF".

Value

A vector of food groups.

Examples

```r
## Load data
data(Food_composition_data)

## Get food groups from USDA
getFoodGroups("USDA")

## Get food groups from CIQUAL
getFoodGroups("CIQUAL")

## Get food groups from BEDCA
getFoodGroups("BEDCA")

## Get food groups from CNF
getFoodGroups("CNF")
```
getNutrientNames Get the names of nutrients included in a given database

Description

This function returns the names of all nutrients included in a given database.

Usage

getNutrientNames(food_database = "USDA")

Arguments

food_database character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA", "CNF".

Value

A vector of nutrient names.

Examples

Load data
data(_food_composition_data_

Get nutrient names from USDA
gnutrientNames("USDA")

Get nutrient names from CIQUAL
gnutrientNames("CIQUAL")

Get nutrient names from BEDCA
gnutrientNames("BEDCA")

Get nutrient names from CNF
gnutrientNames("CNF")

NIH_nutrient_recommendations Nutrient recommendations

Description

This list contains nutrient recommendations from the NIH (National Institutes of Health) database:
- The first element of the list contains the recommended dietary allowance (RDA) of 33 nutrients, by gender and age.
- The second element of the list contains the tolerable upper intake level (TUIL) of 30 nutrients, by gender and age.
nutrientIntakePlot

Usage

```
data(NIH_nutrient_recommendations)
```

Format

```
List
```

Value

```
List
```

nutrientIntakePlot Visualize nutrient intake levels

Description

This function generates a barplot of nutrient intake levels, based on the output generated with the function `dietBalance()`.

Usage

```
nutrientIntakePlot(daily_intake, color_scale = c("salmon", "cornflowerblue", "palegreen3"), macronutrientsOnly = FALSE)
```

Arguments

- `daily_intake`: list generated with the function `dietBalance()`.
- `color_scale`: character vector indicating the colors used to fill the bars, according to nutrient groups: macronutrient (first color), mineral (second color), vitamin (third color).
- `macronutrientsOnly`: logical indicating if only macronutrients should be plotted. In the default behaviour, `macronutrientsOnly = FALSE` and all nutrients will be plotted, including minerals and vitamins.

Value

A barplot of nutrient intake levels, expressed as a percentage of RDA.

Examples

```r
## Load data
data(food_composition_data)
data(NIH_nutrient_recommendations)
data(nutrient_group)
data(sample_diet_USDA) ## contains an example of a one-week diet

## Get daily intake
balanceF <- dietBalance(my_daily_food = sample_diet_USDA,
```

```r
```
nutrientPiePlot

food_database = "USDA", age = 27, gender = "female")

Generate plot
nutrientIntakePlot(daily_intake = balanceF)

Description

This function generates a pie-chart of the main foods contributing to the intake levels of a nutrient, based on the output from the function dietBalance().

Usage

```
nutrientPiePlot(daily_intake, nutrient_name = "Vitamin B-12 (ug)", n = 10)
```

Arguments

- `daily_intake` list generated with the function dietBalance().
- `nutrient_name` character vector indicating the name of the nutrient of interest (e.g. "Vitamin B-12 (ug)").
- `n` maximum number of foods to be displayed.

Value

A pie-chart showing the contribution (as percentage) of each food to the intake level of a given nutrient.

Examples

```r
## Load data
data(food_composition_data)
data(NHI_nutrient_recommendations)
data(nutrient_group)
data(sample_diet_USDA) ## contains an example of a one-week diet

## Get daily intake
balanceF <- dietBalance(my_daily_food = sample_diet_USDA,
                         food_database = "USDA", age = 27, gender = "female")

## Generate plots
nutrientPiePlot(daily_intake = balanceF, nutrient_name = "Fiber, total dietary (g)")
nutrientPiePlot(daily_intake = balanceF, nutrient_name = "Magnesium, Mg (mg)")
nutrientPiePlot(daily_intake = balanceF, nutrient_name = "Calcium, Ca (mg)")
nutrientPiePlot(daily_intake = balanceF, nutrient_name = "Niacin (mg)")
```
NutrienTrackeRapp

Description
This function starts the shiny app for NutrienTrackeR running locally. Personal data and the database of choice should be input in the side panel. Diet should be input in the "Diet input" tab, with one food per line for each day and separating with a semicolon (;) the food name and the eaten amount (in grams). Food names should match those found in the chosen database. A quick assessment of the diet for a 24-h period can be performed from the "One-day diet fast assessment" tab.

Usage
NutrienTrackeRapp()

Examples
Start the NutrienTrackeR shiny app
if(interactive()) {
 NutrienTrackeRapp()
}

nutrientsTimeTrend

Description
This function allows visualizing time trends of intake levels of one or several nutrients.

Usage
nutrientsTimeTrend(my_daily_food, food_database = "USDA", nutrients = NULL, age = 27, gender = "female", pregnant = FALSE, lactation = FALSE)

Arguments
my_daily_food matrix or list of matrices, where each matrix reports a daily intake. The matrix must have two columns: 1) "food" (reporting food names) and 2) "units" (reporting the number of units relative to 100 grams, e.g. 125 g -> 1.25).
food_database character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA".
nutrients character vector indicating the subset of nutrients that will be displayed. NULL indicates that all nutrients will be displayed.
age numeric vector indicating age.
gender character vector indicating gender (i.e. "female" or "male").

pregnant logical constant indicating pregnancy status.

lactation logical constant indicating lactation status.

Value

A timeseries plot displaying nutrient intake levels against time.

Examples

```r
## Load data
data(food_composition_data)
data(NIH_nutrient_recommendations)
data(nutrient_group)
data(sample_diet_USDA) ## contains an example of a one-week diet

## Generate plots
nutrientsTimeTrend(my_daily_food = sample_diet_USDA, food_database = "USDA",
age = 27, gender = "female")

nutrientsTimeTrend(my_daily_food = sample_diet_USDA, food_database = "USDA",
nutrients = c("Calcium, Ca (mg)", "Iron, Fe (mg)"), age = 27,
gender = "female")
```

nutrient_group

<table>
<thead>
<tr>
<th>Nutrient groups</th>
</tr>
</thead>
</table>

Description

This matrix contains nutrient names and groups, for all nutrients included in the NIH_nutrient_recommendations dataset.

Usage

```r
data(nutrient_group)
```

Format

Matrix

Value

List

References

https://www.nih.gov/
Example of a one-week diet

Description
This list is an example of a one-week diet, using foods from the USDA database. Each element of
the list is a matrix, which includes the all the foods eaten in a given day.

Usage
data(sample_diet_USDA)

Format
List

Value
List

References
https://ndb.nal.usda.gov/ndb/

Find nutrient-rich foods

Description
This function selects the foods with the highest amount of a given nutrient from a food composition
database.

Usage
subsetFoodRichIn(nutrient_name, food_database = "USDA", food_group = NULL, n = 10)

Arguments
nutrient_name character vector indicating the name of the nutrient of interest.
food_database character vector indicating the food database to be used. Possible values are: "USDA", "CIQUAL", "BEDCA".
food_group character vector indicating the food group(s) of interest. NULL indicates that all food groups are considered.
n numeric value indicating the number of foods to be selected.
Value

A subset from the food composition database containing the foods with the highest amount of the nutrient of interest.

Examples

```r
## Load data
data(food_composition_data)

## Get foods rich in niacin
subsetFoodRichIn(nutrient_name = "Niacin (mg)", food_database = "USDA", n = 5)
subsetFoodRichIn(nutrient_name = "Niacin (mg)", food_database = "CIQUAL", n = 5)
subsetFoodRichIn(nutrient_name = "Niacin (mg)", food_database = "BEDCA", n = 5)

## Get foods rich in niacin from CIQUAL within the group "diary products and deserts"
subsetFoodRichIn(nutrient_name = "Niacin (mg)", food_database = "CIQUAL", n = 5,
food_group = "dairy products and deserts")
```
Index

dietBalance, 2
findFoodName, 3
food_composition_data, 4
getFoodGroups, 5
getNutrientNames, 6

NIH_nutrient_recommendations, 6
nutrient_group, 10
nutrientIntakePlot, 7
nutrientPiePlot, 8
NutrienTrackeRapp, 9
nutrientsTimeTrend, 9

sample_diet_USDA, 11
subsetFoodRichIn, 11