Package ‘NetMix’

January 14, 2020

Type Package

Title Dynamic Mixed-Membership Network Regression Model

Version 0.1.5

Date 2019-12-20

Encoding UTF-8

Author Santiago Olivella [aut, cre],
Adeline Lo [aut, cre],
Tyler Pratt [aut, cre],
Kosuke Imai [aut, cre]

Maintainer Santiago Olivella <olivella@unc.edu>

Description Variational EM estimation of mixed-membership stochastic blockmodel for networks, incorporating node-level predictors of mixed-membership vectors, as well as dyad-level predictors. For networks observed over time, the model defines a hidden Markov process that allows the effects of node-level predictors to evolve in discrete, historical periods. In addition, the package offers a variety of utilities for exploring results of estimation, including tools for conducting posterior predictive checks of goodness-of-fit and several plotting functions. The package implements methods described in Olivella, Pratt and Imai (2019) ``Dynamic Stochastic Blockmodel Regression for Social Networks: Application to International Conflicts'', available at <http://santiagoolivella.info/wp-content/uploads/2018/07/dSBM_Reg.pdf>.

BugReports https://github.com/solivella/NetMix/issues

NeedsCompilation yes

License GPL (>= 2)

Depends R (>= 3.5.0)

SystemRequirements C++11

Suggests ergm (>= 3.9.4), ggplo2 (>= 3.1.1), network (>= 1.13), scales (>= 1.0.0)

Imports clue (>= 0.3-54), graphics (>= 3.5.2), grDevices (>= 3.5.2), gtools (>= 3.8.1), igraph (>= 1.2.4.1), lda (>= 1.4.2), Matrix (>= 1.2-15), MASS (>= 7.3-51.4), methods (>= 3.5.2), poisbinom (>= 1.0.1), Rcpp (>= 1.0.2), RSpectra (>= 0.14-0), stats (>= 3.5.2), utils (>= 3.5.2)
NetMix-package

Description

Variational EM estimation of mixed-membership stochastic blockmodel for networks, incorporating node-level predictors of mixed-membership vectors, as well as dyad-level predictors. For networks observed over time, the model defines a hidden Markov process that allows the effects of node-level predictors to evolve in discrete, historical periods. In addition, the package offers a variety of utilities for exploring results of estimation, including tools for conducting posterior predictive checks of goodness-of-fit and several plotting functions. The package implements methods described in Olivella, Pratt and Imai (2019) “Dynamic Stochastic Blockmodel Regression for Social Networks: Application to International Conflicts”, available at <http://santiagoolivella.info/wp-content/uploads/2018/07/dSBM_Reg.pdf>.

Details

The DESCRIPTION file:

- **Package:** NetMix
- **Type:** Package
- **Title:** Dynamic Mixed-Membership Network Regression Model
This section should provide a more detailed overview of how to use the package, including the most important functions.
Author(s)
Santiago Olivella [aut, cre], Adeline Lo [aut, cre], Tyler Pratt [aut, cre], Kosuke Imai [aut, cre]
Maintainer: Santiago Olivella <olivella@unc.edu>

References
This optional section can contain literature or other references for background information.

See Also
Optional links to other man pages

Examples
Optional simple examples of the most important functions
Use \dontrun{} around code to be shown but not executed

approxB Internal functions and generics for mmsbm package

Description
These are various utilities and generic methods used by the main package function.

Usage
approxB(y, d_id, pi_mat)

getZ(pi_mat)

alphaLB(par, tot_nodes, c_t, x_t, s_mat, t_id, var_beta, mu_beta)

.cbind.fill(...)

.transf_muvar(
 orig,
 is_var,
 is_array,
 des.mat,
 nblock = NULL,
 nstate = NULL,
 devs = NULL
)

.bar.legend(colPalette, range)

.mpower(mat, p)
`.findPerm(block_list, target_mat = NULL, use_perms = TRUE)`

`.transf(mat)`

`.pi.hat(X, beta)`

`.e.pi(pi_l, kappa)`

Arguments

- **y**
 - Numeric vector; vector of edge values.

- **d_id**
 - Integer matrix; two-column matrix with nr. dyads rows, containing zero-based sender (first column) and receiver (second column) node id’s for each dyad.

- **pi_mat**
 - Numeric matrix; row-stochastic matrix of mixed-memberships.

- **par**
 - Vector of parameter values.

- **tot_nodes**
 - Integer vector; total number of nodes each node interacts with.

- **c_t**
 - Integer matrix; samples from Poisson-Binomial counts of a node instantiating a group.

- **x_t**
 - Numeric matrix; transposed monadic design matrices.

- **s_mat**
 - Integer matrix; Samples of HMM states by time period.

- **t_id**
 - Integer vector; for each node, what time-period is it observed in? zero-indexed.

- **mu_beta, var_beta**
 - Numeric arrays; prior mean and variances of monadic coefficients.

- **...**
 - Numeric vectors; vectors of potentially different length to be cbind-ed.

- **orig**
 - Object to be transformed.

- **is_var**
 - Boolean. Is the object to be transformed a variance term?

- **is_array**
 - Boolean. Is the object to be transformed an array?

- **des.mat**
 - Numeric matrix. Design matrix corresponding to transformed object.

- **nblock**
 - Number of groups in model, defaults to NULL.

- **nstate**
 - Number of hidden Markov states in model, defaults to NULL.

- **devs**
 - Vector of standard deviations to use in transformation of variances. Defaults to NULL.

- **colPalette**
 - A function produced by colorRamp.

- **range**
 - The range of values to label the legend.

- **mat**
 - Numeric matrix

- **p**
 - Numeric scalar; power to raise matrix to.

- **block_list**
 - List of matrices; each element is a square, numeric matrix that defines a block-model.

- **target_mat**
 - Numeric matrix; reference blockmodel that those in block_list should be aligned to. Optional, defaults to NULL.
use_perms Boolean; should all row/column permutations be explored when realigning matrices? defaults to TRUE.

X Numeric matrix; design matrix of monadic predictors.

beta Numeric array; array of coefficients associated with monadic predictors. It of dimensions Nr. Predictors by Nr. of Blocks by Nr. of HMM states.

pi_l List of mixed-membership matrices.

kappa Numeric matrix; matrix of marginal HMM state probabilities.

Details

These functions are meant for internal use only.

Value

See individual return section for each function:

.cbind.fill Matrix of cbind'ed elements in ..., with missing values in each vector filled with NA.

.mpower Matrix; the result of raising mat to the p power.

.findPerm List of permuted blockmodel matrices

.transf Matrix with transformed mixed-membership vectors along its rows, s.t. no element is equal to 0.0 or 1.0.

.pi.hat List of predicted mixed-membership matrices, one element per HMM state.

.e.pi Matrix of expected mixed-membership vectors along its rows, with expectation computed over marginal distribution over HMM states for each time period.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)
covFX

Arguments

object An object of class mmsbm, a result of a call to mmsbm

param Character string, which set of parameters should the vcov be extracted for? One of "MonadCoef", "DyadCoef" or "All" (the default).

... Currently ignored

Value

For param="DyadCoef", a numeric vector. For param="MonadCoef", an array with HMM states along the third dimension. For param="All", named list of individual return components.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")
Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers, ~ School,
 senderID = "Lawyer1",
 receiverID = "Lawyer2",
 nodeID = "Lawyer",
 data.dyad = lazega_dyadic,
 data.monad = lazega_monadic,
 n.blocks = 2,
 mmsbm.control = list(seed = 123,
 hessian = FALSE))

coef(lazega_mmsbm, "MonadCoef")

covFX Generate estimated monadic covariate effects for estimated mmsbm model

Description

The function estimates the effect of a shift in monadic covariate values on the probability of edge formation in the network.

Usage

covFX(fm, cov, shift, max.val = FALSE)
Arguments

fm An object of class mmsbm, a result of a call to mmsbm.
cov Character string identifying the monadic covariate to be shifted.
shift Numeric value specifying the desired increase or decrease in the monadic covariate. The monadic predictor will be shifted by this value for all nodes and time periods.
max.val An optional numeric value specifying the maximum possible value for the monadic covariate.

Value

List with named components:

Overall Avg. Effect Overall average effect of the covariate shift on the predicted probability of edge formation.

Avg. Effect by Time Vector of average effects of the covariate shift on the predicted probability of edge formation for each time period.

Avg. Effect by Node Vector of average effects of the covariate shift on the predicted probability of edge formation for each node.

Avg. Effect by Dyad Vector of average effects of the covariate shift on the predicted probability of edge formation for each node dyad.

Avg. Effect Dyad-Time Vector of estimated effects of the covariate shift on the predicted probability of edge formation for each node dyad-time unit.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")
Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers, ~ Age,
 senderID = "Lawyer1",
 receiverID = "Lawyer2",
 nodeID = "Lawyer",
 data.dyad = lazega_dyadic,
 data.monad = lazega_monadic,
 n.blocks = 2,
 mmsbm.control = list(seed = 123,
 hessian = FALSE))

Compute effect of decreasing every lawyers' age by 10 years
fx_list <- covFX(lazega_mmsbm, cov = "Age", shift = -10)
fx_list[['Overall Avg. Effect of Age']]
Details

Goodness of fit of network models has typically been established by evaluating how the structural characteristics of predicted networks compare to those of the observed network. When estimated in a Bayesian framework, this approach is equivalent to conducting posterior predictive checks on these structural quantities of interest. When new.data.dyad and/or new.data.monad are passed that are different from those used in estimation, this is equivalent to conducting posterior predictive checks out-of-sample.

The set of structural features used to determine goodness of fit is somewhat arbitrary, and chosen mostly to incorporate various first order, second order, and (to the extent possible) third-order characteristics of the network. "Geodesics" focuses on the distribution over observed and predicted geodesic distances between nodes; "Indegree" and "Outdegree" focuses on the distribution over incoming and outgoing connections per node; "3-motifs" focus on a distribution over possible connectivity patterns between triads (i.e. the triadic census); "Dyad Shared Partners" focuses on the distribution over the number of shared partners between any two dyads; "Edge Shared Partners" is similarly defined, but w.r.t. edges, rather than dyads; and finally "Incoming K-stars" focuses on a frequency distribution over stars with k=1,... spokes.

Obtaining samples of the last three structural features can be very computationally expensive, and is discouraged on networks with more than 50 nodes.

Value

A ggplot object.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")

Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
 senderID = "Lawyer1",
 receiverID = "Lawyer2",
 nodeID = "Lawyer",
 data.dyad = lazega_dyadic,
 data.monad = lazega_monadic,
 n.blocks = 2,
 mmsbm.control = list(seed = 123,
 hessian = FALSE))

Plot observed (red) and simulated (gray) distributions over
indegrees
(typically a larger number of samples would be taken)
go(lazega_mmsbm, gof.stat = "Indegree", samples = 2)
Description

The function lists the nodes (optionally, node-time periods) that most frequently instantiate membership in each latent group.

Usage

```r
## S3 method for class 'mmsbm'
head(x, n = 6, t = NULL, node = TRUE, t.correct = FALSE, ...)
```

Arguments

- `x`: An object of class `mmsbm`, a result of a call to `mmsbm`.
- `n`: Numeric or integer; specifies how many units will be identified for each group.
- `t`: Optional vector of time periods to be used for assessing latent group membership.
- `node`: Logical; indicates whether latent group memberships should be averaged at the node level. If FALSE, the function returns the node-time period units with highest estimated membership in each latent group.
- `t.correct`: Logical; indicates whether latent group memberships should be corrected for temporal trends. If TRUE, the function returns the node-time period units with highest estimated membership in each latent group.
- `...`: Currently ignored

Value

List of length `n.blocks`. Each entry contains a sorted vector of average latent membership probabilities of length `n`.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)
Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")
Estimate model with 2 groups
set.seed(123)
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
[217x588]~ School + Practice + Status,
[217x577]senderID = "Lawyer1",
[217x566]receiverID = "Lawyer2",
[217x556]nodeID = "Lawyer",
data.dyad = lazega_dyadic,
data.monad = lazega_monadic,
n.blocks = 2,
mmsbm.control = list(seed = 123,
hessian = FALSE))
Show top 6 lawyers in each estimated latent block
head(lazega_mmsbm)

lazega_dyadic

Dyadic predictors in the Lazega friendship network (Lazega 2001).

Description

Usage

data(lazega_dyadic)

Format

A data frame with 5041 rows and 4 variables:

Lawyer1, Lawyer2 lawyer ID, corresponding to identifiers common to those in lazega_monadic; numeric

SocializeWith value of edge in network; binary

Coworkers are the corresponding lawyers in the same office? boolean

Source

https://github.com/Z-co/networkdata/blob/master/networkdata/data/lazega.rda
References

lazega_monadic

Monadic predictors in the Lazega friendship network (Lazega 2001).

Description

Usage

```
data(lazega_monadic)
```

Format

A data frame with 71 rows and 7 variables:

- **Lawyer**: lawyer ID, corresponding to identifiers common to those in `lazega_dyadic`; numeric
- **Age**: age, in years; numeric
- **Gender**: 1=man; 2=woman; factor
- **School**: 1=harvard, yale; 2=ucon; 3= other; factor
- **Practice**: 1=litigation; 2=corporate; factor
- **Seniority**: time in the firm, in years; numeric
- **Status**: 1=partner; 2=associate; factor

Source

mmsbm
Dynamic mixed-membership stochastic blockmodel with covariates

Description

The function estimates a dynamic mixed-membership stochastic blockmodel that incorporates covariates.

Usage

```r
mmsbm(
  formula.dyad,
  formula.monad = ~1,
  senderID,
  receiverID,
  nodeID = NULL,
  timeID = NULL,
  data.dyad,
  data.monad = NULL,
  n.blocks,
  n.hmmstates = 1,
  directed = TRUE,
  mmsbm.control = list()
)
```

Arguments

- `formula.dyad`: A formula object. The variable in `data.dyad` that contains binary edges should be used as a LHS, and any dyadic predictors can be included on the RHS (when no dyadic covariates are available, use `y ~ 1`). Same syntax as a `glm` formula.
- `formula.monad`: An optional formula object. LHS is ignored. RHS contains names of nodal attributes found in `data.monad`.
- `senderID`: Character string. Quoted name of the variable in `data.dyad` identifying the sender node. For undirected networks, the variable simply contains name of first node in dyad. Cannot contain special character `"@"`.
- `receiverID`: Character string. Quoted name of the variable in `data.dyad` identifying the receiver node. For undirected networks, the variable simply contains name of second node in dyad. Cannot contain special character `"@"`.
- `nodeID`: Character string. Quoted name of the variable in `data.monad` identifying a node in either `data.dyad[,senderID]` or `data.dyad[,senderID]`. If not NULL, every node `data.dyad[,senderID]` or `data.dyad[,senderID]` must be present in `data.monad[,nodeID]`. Cannot contain special character `"@"`.
- `timeID`: Character string. Quoted name of the variable in both `data.dyad` and `data.monad` indicating the time in which network (and corresponding nodal attributes) were observed. The variable itself must be composed of integers. Cannot contain special character `"@"`.

Examples

```r
library(DyadMod)

# Example usage
mmsbm(
  formula.dyad = ~ x1 + x2,
  formula.monad = ~ age + gender,
  senderID = "participant",
  receiverID = "partner",
  nodeID = "nodeID",
  timeID = "time",
  data.dyad = dyad_data,
  data.monad = monad_data,
  n.blocks = 3,
  n.hmmstates = 2,
  directed = FALSE,
  mmsbm.control = list()
)
```
Data frame. Sociomatrix in “long” (i.e. dyadic) format. Must contain at least three variables: the sender identifier (or identifier of the first node in an undirected networks dyad), the receiver identifier (or identifier of the second node in an undirected network dyad), and the value of the edge between them. Currently, only edges between zero and one (inclusive) are supported.

data.monad

Data frame. Nodal attributes. Must contain a node identifier matching the names of nodes used in the data.dyad data frame.

n.blocks

Integer value. How many latent groups should be used to estimate the model?

n.hhmmstates

Integer value. How many hidden Markov state should be used in the HMM? Defaults to 1 (i.e. no HMM).

directed

Boolean. Is the network directed? Defaults to TRUE.

mmsbm.control

A named list of optional algorithm control parameters.

seed

Integer value. Seed the RNG. By default, a random seed is generated and returned for reproducibility purposes.

spectral

Boolean. Type of initialization algorithm for mixed-membership vectors in static case. If TRUE (default), use spectral clustering with degree correction; otherwise, use kmeans algorithm.

init_gibbs

Boolean. Should a collapsed Gibbs sampler of non-regression mmsbm be used to initialize mixed-membership vectors, instead of a spectral or simple kmeans initialization? Setting to TRUE will result in slower initialization and faster model estimation. When TRUE, results are typically very sensitive to choice of alpha (see below).

alpha

Numeric positive value. Concentration parameter for collapsed Gibbs sampler to find initial mixed-membership values when init_gibbs=TRUE. Defaults to 1.0.

missing

Means of handling missing data. One of "indicator method" (default) or "listwise deletion".

em_iter

Number of maximum iterations in variational EM. Defaults to 5e3.

opt_iter

Number of maximum iterations of BFGS in M-step. Defaults to 10e3.

hessian

Boolean indicating whether the Hessian matrix of regression coefficients should e returned. Defaults to TRUE.

mu_b

Numeric vector with two elements: prior mean of blockmodel’s main diagonal elements, and and prior mean of blockmodel’s offdiagonal elements. Defaults to c(5.0, -5.0).

var_b

Numeric vector with two positive elements: prior variance of blockmodel’s main diagonal elements, and and prior variance of blockmodel’s offdiagonal elements. Defaults to c(1.0, 1.0).

mu_beta

Either single numeric value, in which case the same prior mean is applied to all monadic coefficients, or an array with that is npredictors by n.blocks by n.hhmmstates, where npredictors is the number of monadic predictors for which a prior mean is being set (prior means need not be set for all) predictors). The rows in the array should be named to identify which variables a prior mean is being set for. Defaults to a common prior mean of 0.0 for all monadic coefficients.

var_beta

See mu_beta. Defaults to a single common prior variance of 1.0 for all monadic coefficients.
mu_gamma Either a single numeric value, in which case the same prior mean is applied to all dyadic coefficients, or a named vector of numeric values (with names corresponding to the name of the variable for which a prior mean is being set). Defaults to a common prior mean of 0.0 for all dyadic coefficients.

var_gamma See mu_gamma. Defaults to a single common prior variance of 1.0 for all dyadic coefficients.

eta Numeric positive value. Concentration hyper-parameter for HMM. Defaults to 10.3.

se_sim Number of samples from variational posterior of latent variables on which approximation to variance-covariance matrices are based. Defaults to 10.

dyad_vcov_samp Number of dyads to sample in computation of variance-covariance of dyadic and blockmodel parameters. Defaults to 1000.

phi_init_t Matrix, n.blocks by total number of nodes across years. Optional initial values for variational parameters for mixed-membership vectors. Column names must be of the form nodeid\@year.

kappa_init_t Matrix, n.hmmstates by number of years. Optional initial values for variational parameters for state probabilities.

b_init_t Matrix, n.blocks by n.blocks. Optional initial values for blockmodel.

beta_init Array, predictors by n.blocks by n.hmmstates. Optional initial values for monadic coefficients. If

gamma_init Vector. Optional initial values for dyadic coefficients.

permute Boolean. Should all permutations be tested to realign initial block models in dynamic case? If FALSE, realignment is done via faster graph matching algorithm, but may not be exact. Defaults to TRUE.

conv_tol Numeric value. Absolute tolerance for VI convergence. Defaults to 1e-3.

verbose Boolean. Should extra information be printed as model iterates? Defaults to FALSE.

Value

Object of class mmsbm. List with named components:

- **MixedMembership** Matrix of variational posterior of mean of mixed-membership vectors. nodes by n.groups.

- **BlockModel** n.groups by n.groups matrix of estimated tie log-odds between members of corresponding latent groups. The blockmodel.

- **vcov_blockmodel** If hessian=TRUE, variance-covariance matrix of parameters in blockmodel, ordered in column-major order.

- **MonadCoef** Array of estimated coefficient values for monadic covariates. Has n.groups columns, and n.hmmstates slices.

- **vcov_monad** If hessian=TRUE, variance-covariance matrix of monadic coefficients.

- **DyadCoef** Vector estimated coefficient values for dyadic covariates.
vcov_dyad If hessian=TRUE, variance-covariance matrix of dyadic coefficients.

TransitionKernel Matrix of estimated HMM transition probabilities.

Kappa Matrix of marginal probabilities of being in an HMM state at any given point in time.

n_hmmstates by years (or whatever time interval networks are observed at).

niter Final number of VI iterations.

converged Convergence indicator; zero indicates failure to converge.

NodeIndex Order in which nodes are stored in all return objects.

monadic.data, dyadic.data Model frames used during estimation (stripped of attributes).

forms Values of selected formal arguments used by other methods.

seed The value of RNG seed used during estimation.

call Original (unevaluated) function call.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")
Estimate model with 2 groups
Setting to `hessian=TRUE` increases computation time
but is needed if standard errors are to be computed.
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
 ~ School + Practice + Status,
 senderID = "Lawyer1",
 receiverID = "Lawyer2",
 nodeID = "Lawyer",
 data.dyad = lazega_dyadic,
 data.monad = lazega_monadic,
 n.blocks = 2,
 mmsbm.control = list(seed = 123,
 hessian = FALSE))
Arguments

- **z_t**: Numeric matrix; transpose of monadic design matrix. Should not include intercept row.
- **x_t**: Numeric matrix; transpose of dyadic design matrix.
- **y**: Numeric vector; vector of edge values. Must have same number of elements as \(\text{ncol}(x_t) \)
- **time_id_dyad**: Integer vector; zero-based time-period identifier for each node.
- **nodes_per_period**: Integer vector; total number of unique nodes observed in each time period.
- **node_id_dyad**: Integer matrix; zero-based sender and receiver identifier per dyad.
- **mu_b**: Numeric matrix; matrix of prior means for elements in blockmodel matrix.
- **var_b**: Numeric matrix; matrix of prior variances for elements in blockmodel matrix.
- **phi_init**: Numeric matrix; matrix of initial mixed-memberships. Nodes along columns.
- **kappa_init_t**: Numeric matrix; matrix of initial marginal HMM state probabilities. Time-periods along columns.
- **b_init_t**: Numeric matrix; square matrix of initial values of blockmodel.
- **beta_init**: Numeric vector; flat array (column-major order) of initial values of monadic coefficients.
- **gamma_init**: Numeric vector; vector of initial values of dyadic coefficients
- **control**: List; see the `mmsbm.control` argument of `mmsbm`

Value

Unclassed list with named components; see Value of `mmsbm`

Warning

This function is for internal use only. End-users should always resort to `mmsbm`. In particular, that interface post-processes the return value of this internal in important ways.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (adelinel@princeton.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)
plot.mmsbm

Various visualization tools for 'mmsbm' objects

Description

The function provides a variety of plotting options for a fitted mmsbm object.

Usage

S3 method for class 'mmsbm'
plot(x, type = "groups", FX = NULL, ...)

Arguments

- **x**: An object of class mmsbm, a result of a call to mmsbm.
- **type**: character string denoting the type of plot. The default, "groups," plots the estimated matrix of group by group edge formation probabilities as a network plot, with nodes representing groups (sized proportional to relative membership) and edge colors encoding probability of between-group ties. "blockmodel" plots the same information, but using a tile plot instead of a network plot. "membership" plots average membership in each latent group by time period. "effect" provides a series of plots showing the estimated effect of a shift in monadic covariate values.
- **FX**: with type == "effect"; a list resulting from a call to covFX.
- **...**: Currently ignored

Value

The requested plot object.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aaylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

```r
library(NetMix)
## Load datasets
data("lazega_dyadic")
data("lazega_monadic")
## Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers, ~ School + Practice + Status,
           senderID = "Lawyer1", receiverID = "Lawyer2",
           nodeID = "Lawyer",
```
predict.mmsbm

Predict edges based on estimated mmsbm model

Description

The function produces expected posterior edges based on estimated parameters and (optionally new) predictor data

Usage

S3 method for class 'mmsbm'
predict(
 object,
 new.data.dyad = NULL,
 new.data.monad = NULL,
 parametric_mm = FALSE,
 forecast = FALSE,
 type = c("link", "response"),
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object of class mmsbm.</td>
</tr>
<tr>
<td>new.data.dyad</td>
<td>An optional data.frame object.</td>
</tr>
<tr>
<td>new.data.monad</td>
<td>An optional data.frame object.</td>
</tr>
<tr>
<td>parametric_mm</td>
<td>Boolean. Should the variational posterior be used for sampling the mixed-memberships (FALSE), or should the mixed-memberships be formed using the parameters in the monadic regression equation (TRUE)? Defaults to FALSE. If (new.data.monad</td>
</tr>
<tr>
<td>forecast</td>
<td>Boolean. Should prediction forecast one step into the future? Defaults to FALSE.</td>
</tr>
<tr>
<td>type</td>
<td>Character string. The default is to use the linear predictor of edges. The alternative "response" returns predicted probabilities.</td>
</tr>
<tr>
<td>...</td>
<td>Currently ignored</td>
</tr>
</tbody>
</table>

data.dyad = lazega_dyadic,
data.monad = lazega_monadic,
n.blocks = 2,
mmsbm.control = list(seed = 123,
hessian = FALSE))

Plot blockmodel as network
plot(lazega_mmsbm)
Value

If `new.data.dyad = NULL`, vector of length `nrow(object$dyadic.data)`. Else, vector of length `nrow(new.data.dyad)`.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

```r
library(NetMix)
## Load datasets
data("lazega_dyadic")
data("lazega_monadic")
## Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
                        ~ School + Practice + Status,
                        senderID = "Lawyer1",
                        receiverID = "Lawyer2",
                        nodeID = "Lawyer",
                        data.dyad = lazega_dyadic,
                        data.monad = lazega_monadic,
                        n.blocks = 2,
                        mmsbm.control = list(seed = 123,
                                             hessian = FALSE))

## Get in-sample predicted edge probabilities
lazega_preds <- predict(lazega_mmsbm, type = "response")
```

simulate.mmsbm

Simulate a complete sociomatrix from an `mmsbm` object

Description

The function generates one sample network from the posterior predictive of the model represented by a fitted `mmsbm` object.

Usage

```r
## S3 method for class 'mmsbm'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  new.data.dyad = NULL,
  new.data.monad = NULL,
  ...
)
```
simulate.mmsbm

```r
parametric_mm = FALSE,
...
)
```

Arguments

- `object`: An object of class `mmsbm`, a result of a call to `mmsbm`
- `nsim`: Number of networks to simulate
- `seed`: RNG seed.
- `new.data.dyad`: An optional `data.frame` object. If not `NULL`, use these dyadic predictor values instead of those used to fit the original model.
- `parametric_mm`: Boolean. Should the variational posterior be used for sampling the mixed-memberships (FALSE), or should the mixed-memberships be formed using the parameters in the monadic regression equation (TRUE)? Defaults to FALSE. If `is.null(new.data.monad)=FALSE`, setting this to FALSE will produce an error.

... Currently ignored

Value

List of length `nsim` of simulated networks. If `new.data.dyad = NULL`, each element is a vector of length `nrow(object$dyadic.data)`. Else, vector of length `nrow(new.data.dyad)`. If `seed` is not `NULL`, return object includes its value as attribute "seed".

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

```r
library(NetMix)
## Load datasets
data("lazega_dyadic")
data("lazega_monadic")
## Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
  ~ School + Practice + Status,
  senderID = "Lawyer1",
  receiverID = "Lawyer2",
  nodeID = "Lawyer",
  data.dyad = lazega_dyadic,
  data.monad = lazega_monadic,
  n.blocks = 2,
  mmsbm.control = list(seed = 123,
                       hessian = FALSE))

## Simulate 5 new networks
lazega_sim <- simulate(lazega_mmsbm, nsim = 5, seed = 123)
```
summary.mmsbm

Summarize `mmsbm` object

Description

The function summarizes the output of a dynMMSBM model object

Usage

```
## S3 method for class 'mmsbm'
summary(object, ...)
```

Arguments

- `object` An object of class `mmsbm`, a result of a call to `mmsbm`.
- `...` Currently ignored

Value

List with named components:

- `N` Total number of dyad-time period observations.
- **Number of Clusters** Number of latent groups included in the dynMMSBM model.
- **Percent of Observations in Each Cluster** Average membership in each latent group, across all node-time periods.
- **Edge Formation Probabilities** `n.groups` by `n.groups` matrix of estimated edge formation probabilities between latent groups.
- **Dyadic Coefficients** Vector of estimated coefficient values for dyadic covariates.
- **Monadic Coefficients** Array of estimated coefficient values for monadic covariates. Has `n.groups` columns, and `n.hmmstates` slices.
- **Markov State Probabilities** Average HMM state probabilities across all time periods.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)

Examples

```
library(NetMix)
## Load datasets
data("lazega_dyadic")
data("lazega_monadic")
## Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
                      ~ School + Practice + Status,
```
senderID = "Lawyer1",
receiverID = "Lawyer2",
nodeID = "Lawyer",
data.dyad = lazega_dyadic,
data.monad = lazega_monadic,
n.blocks = 2,
mmsbm.control = list(seed = 123,
hessian = TRUE))

Summarize estimated model
summary(lazega_mmsbm)

vcov.mmsbm

Extract Variance-Covariance Matrix for a Fitted mmsbm Object

Description

Extract Variance-Covariance Matrix for a Fitted mmsbm Object

Usage

```r
## S3 method for class 'mmsbm'
vcov(object, param = "All", ...)
```

Arguments

- **object**
 - An object of class mmsbm, a result of a call to mmsbm
- **param**
 - Character string, which set of parameters should the vcov be extracted for? One of "MonadCoef", "DyadCoef", "BlockModel" or "All" (the default).
- **...**
 - Currently ignored

Value

For param="All", named list of individual return components. For all other values of param, a numeric covariance matrix.

Author(s)

Santiago Olivella (olivella@unc.edu), Adeline Lo (aylo@wisc.edu), Tyler Pratt (tyler.pratt@yale.edu), Kosuke Imai (imai@harvard.edu)
Examples

library(NetMix)
Load datasets
data("lazega_dyadic")
data("lazega_monadic")
Estimate model with 2 groups
lazega_mmsbm <- mmsbm(SocializeWith ~ Coworkers,
 ~ School + Practice + Status,
 senderID = "Lawyer1",
 receiverID = "Lawyer2",
 nodeID = "Lawyer",
 data.dyad = lazega_dyadic,
 data.monad = lazega_monadic,
 n.blocks = 2,
 mmsbm.control = list(seed = 123,
 se_sim = 2)) # Usually requires more samples.

vcov(lazega_mmsbm, "MonadCoef")
Index

*Topic datasets
 lazega_dyadic, 12
 lazega_monadic, 13

*Topic package
 NetMix-package, 2
 .bar.legend (approxB), 4
 .cbind.fill (approxB), 4
 .e.pi (approxB), 4
 .findPerm (approxB), 4
 .mpower (approxB), 4
 .pi.hat (approxB), 4
 .transf (approxB), 4
 .transf_muvar (approxB), 4
 alphaLB (approxB), 4
 approxB, 4
 auxfuns (approxB), 4
 coef.mmsbm, 6
 covFX, 7
 getZ (approxB), 4
 gof, 9
 head.mmsbm, 11
 lazega_dyadic, 12
 lazega_monadic, 13
 mmsbm, 14, 18
 mmsbm_fit, 17
 NetMix (NetMix-package), 2
 NetMix-package, 2
 plot.mmsbm, 19
 predict.mmsbm, 20
 simulate.mmsbm, 9, 21
 summary.mmsbm, 23
 vcov.mmsbm, 24