Package ‘NBLDA’

May 28, 2020

Type Package
Title Negative Binomial Linear Discriminant Analysis
Version 1.0.0
Date 2020-05-28
Description We proposed a package for classification task which uses Negative Binomial distribution within Linear Discriminant Analysis (NBLDA). It is basically an extension of ‘PoiClu’ package to Negative Binomial distribution. The classification algorithms are based on the papers Dong et al. (2016, ISSN: 1471-2105) and Witten, DM (2011, ISSN: 1932-6157) for NBLDA and PLDA respectively. Although PLDA is a sparse algorithm and can be used for variable selection, the algorithm proposed by Dong et. al. is not sparse, hence, it uses all variables in the classifier. Here, we extent Dong et. al.’s algorithm to sparse case by shrinking overdispersion towards 0 (Yu et. al., 2013, ISSN: 1367-4803) and offset parameter towards 1 (as proposed by Witten DM, 2011). We support only the classification task with this version. However, the clustering task will be included with the following versions.

Imports methods, stats, graphics
Suggests knitr
Depends ggplot2
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0

NeedsCompilation no
Author Dincer Goksuluk [aut, cre], Gokmen Zararsiz [aut], Selcuk Korkmaz [aut], Ahmet Ergun Karaagaoglu [ths, aut]
Maintainer Dincer Goksuluk <dincergoksuluk@erciyes.edu.tr>
Repository CRAN
Date/Publication 2020-05-28 10:50:13 UTC

R topics documented:

NBLDA-package ... 2
cervical ... 3
test .. 4
FindBestTransform ... 5
generateCountData .. 6
getShrinkedDispersions .. 7
inputs ... 8
nblda-class ... 9
nbldaControl ... 10
nbldaTrained ... 12
nblda_input-class .. 13
nblda_trained-class ... 13
normalization ... 14
NullModel ... 15
plot ... 16
predict ... 18
selectedFeatures ... 19
show ... 20
trainNBLDA ... 21

Index ... 24

NBLDA-package Classifying count data using Poisson/Negative Binomial linear discriminant analysis

Description

This package applies linear discriminant analysis using Poisson (PLDA) and Negative Binomial (NBLDA) distributions for the classification of count data, such as gene expression data from RNA-sequencing. PLDA algorithms has been proposed by Witten (2011) through an R package PoiClaClu which is available at CRAN. Dong et. al. (2016) proposed an extension of PLDA to negative Binomial distribution. However, the algorithm is not provided through an R package. Hence, we develop an R package NBLDA to make the proposed algorithm be available through CRAN. Detailed information about mathematical backgrounds can be found in the references given below.
Author(s)
Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, A. Ergun Karaagaoglu

Maintainers:
Dincer Goksuluk (Correspondence), <dincer.goksuluk@hacettepe.edu.tr>
Gokmen Zararsiz, <gokmenzararsiz@erciyes.edu.tr>
Selcuk Korkmaz, <selcukkorkmaz@hotmail.com>

References

See Also
https://CRAN.R-project.org/package=PoiClaClu

Package: NBLDA
Type: Package
License: GPL (>= 2)

cervical Cervical cancer data

Description
Cervical cancer data measures the expressions of 714 miRNAs of human samples. There are 29 tumor and 29 non-tumor cervical samples and these two groups are treated as two separate classes.

Format
A data frame with 58 observations and 715 variables.

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880020/#supplementary-material-sec

References
Examples

```r
## Not run:
data(cervical)
## End(Not run)
```

control

Accessors for the 'control' slot.

Description

This slot stores control parameters for training NBLDA model.

Usage

```r
## S4 method for signature 'nblda'
control(object)

## S4 method for signature 'nblda_trained'
control(object)
```

Arguments

- **object**: an `nblda` or `nblda_trained` object.

See Also

- `trainNBLDA`

Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8, allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)
fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10, metric = "accuracy", train.control = ctrl)
control(fit)
```
Find the Power Transformation Parameter.

Description

Use this function to find a constant value of alpha to be used for transforming count data. The power transformation parameter alpha, which approximately fits transformed data to Poisson log linear model, is selected using a grid search within the interval [0, 1].

Usage

\[
\text{FindBestTransform}(x, \text{grid.length} = 50)
\]

Arguments

- **x**: a n-by-p data frame or matrix of count data. Samples should be in the rows.
- **grid.length**: how many distinct points of alpha should be searched within the interval [0, 1]? Default is 50.

Value

the value of alpha to be use within power transformation.

Note

This function is copied from PoiClaClu package and modified to control the total number of grid search.

Author(s)

Dincer Goksuluk

Examples

```
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
                           allZero.rm = FALSE, tag.samples = TRUE)

x <- counts$x
FindBestTransform(x)
```
generateCountData
Generate Count Data

Description

This function can be used to generate counts, e.g. RNA-Seq sequencing data, for both classification and clustering purposes.

Usage

```r
generateCountData(n, p, K, param, sdsignal = 1, DE = 0.3, allZero.rm = TRUE,  
tag.samples = FALSE)
```

Arguments

- `n` number of samples.
- `p` number of variables/features.
- `K` number of classes.
- `param` overdispersion parameter. This parameter is matched with the argument `size` in `rnbinom` function. Hence, Negative Binomial distribution approximates to Poisson distribution as `param` increases.
- `sdsignal` a nonzero numeric value. As `sdsignal` increases, the observed counts greatly differ among `K` classes.
- `DE` a numeric value within the interval [0, 1]. This is the proportion of total number of variables that is significantly different among `K` classes. The remaining part is assumed to be having no contribution to discrimination function.
- `allZero.rm` a logical. If TRUE, columns having all zero cells are dropped.
- `tag.samples` a logical. If TRUE, rownames are automatically generated. A tag for each sample such as "S1", "S2", etc.

Value

- `x, xte` count data matrix for training and test set.
- `y, yte` class labels for training and test set.
- `truesf, truesfte` true size factors for training and test set. See Witten (2011) for more information on estimating size factors.

Author(s)

Dincer Goksuluk
getShrinkedDispersions

Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8, allZero.rm = FALSE, tag.samples = TRUE)
head(counts$x)
```

getShrinkedDispersions

Estimate Shrinked Overdispersions

Description

Use this function to shrink initial estimates of overdispersions towards a target value.

Usage

```r
getShrinkedDispersions(obs, shrinkTarget = NULL, delta = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obs</td>
<td>a numeric vector. Initial dispersion estimates for each feature.</td>
</tr>
<tr>
<td>shrinkTarget</td>
<td>a numeric value. Initial dispersion estimates are shrinked towards this value. If NULL, target value is estimated from initial dispersion estimates. See notes.</td>
</tr>
<tr>
<td>delta</td>
<td>a numeric value. This is the weight that is used for shrinkage algorithm. If 0, no shrinkage is performed on initial values. If equals 1, initial values are forced to shrinked to target value. If NULL, weight are automatically estimated from initial dispersion estimates.</td>
</tr>
</tbody>
</table>

Value

a list with elements of initial and adjusted (shrinked) dispersion estimates, shrinkage target and weight that is used to shrink towards target value. See related paper for detailed information on shrinkage algorithm (Yu et al., 2013).

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>initial estimates for dispersions estimated from method-of-momnents.</td>
</tr>
<tr>
<td>adj</td>
<td>shrinked dispersion estimates.</td>
</tr>
<tr>
<td>cmp</td>
<td>mean and variance of initial estimates.</td>
</tr>
<tr>
<td>delta</td>
<td>a weight used for shrinkage estimates. See Yu et al. (2013) for details.</td>
</tr>
<tr>
<td>target</td>
<td>shrinkage target for initial dispersion estimates.</td>
</tr>
</tbody>
</table>

Note

This function is modified using source code from `getAdjustDisp`.
Author(s)

Dincer Goksuluk

References

See Also

getT, getAdjustDisp

Examples

```r
set.seed(2128)
initial <- runif(10, 0, 4)

getShrinkedDispersions(initial, 0) # shrink towards 0.
getShrinkedDispersions(initial, 0, delta = 1) # force to shrink 0.
```

inputs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This slot stores the input data for trained model.</td>
</tr>
</tbody>
</table>

Arguments

- `object`: an nblda object.

See Also

trainNBlda
Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8, allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10, metric = "accuracy", train.control = ctrl)

inputs(fit)
```

Description

This object is the main class for NBLDA package. It stores inputs, results and call info for the trained model.

Details

Objects can be created by calls of the form `new("nblda",...)`. This type of objects is created as a result of `trainNBLDA` function of NBLDA package. It is then used in `predict` function for predicting class labels of new samples.

Slots

- `input`: an `nblda_input` object including the count matrix (or data.frame) and class labels.
- `result`: an `nblda_trained` object with elements from cross-validated and final models.
- `call`: a call expression.

Author(s)

Dincer Goksuluk

See Also

`nblda_trained`, `nblda_input`
nbldaControl

Control parameters for trained NBLDA model.

Description

Define control parameters to be used within trainNBLDA function.

Usage

nbldaControl(folds = 5, repeats = 2, foldIdx = NULL, rhos = NULL,
 beta = 1, prior = NULL, transform = FALSE, alpha = NULL, truephi = NULL,
 target = 0, phi.epsilon = 0.15, normalize.target = FALSE, delta = NULL,
 multicore = FALSE, ...)

Arguments

folds A positive integer. The number of folds for k-fold model validation.
repeats A positive integer. This is the number of repeats for k-fold model validation. If NULL, 0 or negative, it is set to 1.
foldIdx a list with indices of hold-out samples for each fold. It should be a list where folds are nested within repeats. If NULL, folds and repeats are used to define hold-out samples.
rhos A vector of tuning parameters that control the amount of soft thresholding performed. If NULL, it is automatically generated within trainNBLDA using tuneLength, i.e. the length of grid search. See details.
beta A smoothing term. A Gamma(beta,beta) prior is used to fit the Poisson model. Recommendation is to just leave it at 1, the default value. See Witten (2011) and Dong et. al. (2016) for details.
prior A vector of length equal to the number of classes indicating the prior class probabilities. If NULL, all classes are assumed to be equally distributed.
transform a logical. If TRUE, count data is transformed using power transformation. If alpha is not specified the power transformation parameter is automatically calculated using goodness-of-fit test. See Witten (2011) for details.
alpha a numeric value within [0, 1] to be used for power transformation.
truephi a vector of length equal to the number of variables representing the true overdispersion parameters for each variable. If a single value is given, it is replicated for all variables. If a vector of length unequal to the number of variables is given, the first element of this vector is used and replicated for all variables. If NULL, estimated overdispersions are used in the classifier. See details.
target a value for the shrinkage target of dispersion estimates. If target is NULL, then a value that is small and minimizes the average squared difference is automatically used as the target value. See getT for details.
phi.epsilon a positive value for controlling the number of features whose dispersions are shrunk towards 0. See details.
normalize.target

a logical. If TRUE and target is NULL, the target value is estimated using normalized dispersion estimates. See `getT` for details.

delta

a weight within the interval [0, 1] that is used while shrinking dispersions towards 0. When \(\text{delta} = 0 \), initial dispersion estimates are forced to be shrunk to 1. Similarly, if \(\text{delta} = 0 \), no shrinkage is performed on initial estimates.

multicore

a logical. If a parallel backend is loaded and available, the function runs in parallel CPUs.

... further arguments passed to `trainNBLDA`.

Details

`rhos` is used to control the level of sparsity, i.e., the number of variables (or features) used in classifier. If a variable has no contribution to discrimination function, it should be removed from the model. By setting `rhos` within the interval [0, Inf], it is possible control the amount of variables that is removed from the model. As the upper bound of `rhos` decreases towards 0, fewer variables are removed. If `rhos` = 0, all variables are included in classifier.

`truephi` controls how Poisson model differs from Negative Binomial model. If overdispersion is zero, Negative Binomial model converges to Poisson model. Hence, the results from `trainNBLDA` is identical to PLDA results from `Classify` when `truephi` = 0.

`phi.epsilon` is a value used to shrink estimated overdispersions towards 0. Poisson model assumes that there is no overdispersion in the observed counts. However, this is not a valid assumption in highly overdispersed count data. NBLDA performs a shrinkage on estimated overdispersions. Although the amount of shrinkage is dependent on several parameters such as `delta`, `target` and `truephi`, some of the shrinked overdispersions might be very close to 0. By defining a threshold value for shrinked overdispersions, it is possible to shrink very small overdispersions towards 0. If estimated overdispersion is below `phi.epsilon`, it is shrunk to 0. If `phi.epsilon` = NULL, threshold value is set to 0. Hence, all the variables with very small overdispersion are included in the NBLDA model.

Value

a list with all the control elements.

Author(s)

Dincer Goksuluk

References

See Also

getT, getAdjustDisp

Examples

nbldaControl() # return default control parameters.

nbldaTrained Accessors for the 'crossValidated' slot.

Description

This slot stores the results for cross-validated model, e.g tuning results, optimum model parameters etc.

Usage

S4 method for signature 'nblda'
nbldaTrained(object)

S4 method for signature 'nblda_trained'
nbldaTrained(object)

Arguments

object

an nblda or nblda_trained object.

See Also

trainNBLDA

Examples

set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10,
metric = "accuracy", train.control = ctrl)
nbldaTrained(fit)
nblda_input-class
nblda_input object

Description
This object is the subclass for NBLDA package. It stores input objects, i.e. count data and class labels.

Slots

- **x**: a data.frame or matrix. Count data input for NBLDA classifier.
- **y**: a vector of length equal to number of rows of x. This is the class labels of each subject. Should be either a numeric vector or factor.

Author(s)
Dincer Goksuluk

nblda_trained-class
nblda_trained object

Description
This object is the subclass for NBLDA package. It stores cross-validated results and the final model.

Slots

- **crossValidated**: a list. Returns the results from cross-validation.
- **finalModel**: a list with elements from final model using optimum model parameters from cross-validated model.
- **control**: a list with controlling parameters for fitting NBLDA classifier.

Author(s)
Dincer Goksuluk
normalization

Accessors for the 'type' slot.

Description

This slot stores the name of normalization method. Normalization is defined using type argument in `trainNBLDA` function.

Usage

```r
## S4 method for signature 'nblda'
normalization(object)

## S4 method for signature 'nblda_trained'
normalization(object)
```

Arguments

- `object`: an `nblda` or `nblda_trained` object.

See Also

`trainNBLDA`

Examples

```r
generateCountData
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
  allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)
fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10,
  metric = "accuracy", train.control = ctrl)

normalization(fit)
```
NullModel

Calculate Normalized Counts and Related Training Parameters.

Description

Fit training set to NBLDA model and estimate normalized counts. The related model parameters which are used while normalizing training sets are also returned in order to normalize test sets using training set parameters.

Usage

NullModel(x, type = c("mle", "deseq", "quantile", "none", "tmm"))

NullModelTest(null.out, xte = NULL)

Arguments

x
a n-by-p data frame or matrix of count data. Samples should be in the rows.
type
normalization methods. See control for details.
null.out
an object returned from NullModel.
xte
a n-by-p count matrix or data frame of test set. These counts are normalized using training set parameters.

Value

a list with normalized counts and training set parameters used for normalizing raw counts.

Note

These functions are copied from PoiClaClu package and modified here to make "tmm" and "none" methods available.

Author(s)

Dincer Goksuluk

Examples

set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
allZero.rm = FALSE, tag.samples = TRUE)
x <- counts$x
taxe <- counts$xtex.te

x.out <- NullModel(x, "mle")
x.out$n ## Normalized counts using "mle" method
taxe.out <- NullModelTest(x.out, xte)
xts.out$n # Normalized counts for test set using train set parameters.

plot

Plot Method for the nblda and nblda_trained Classes

Description

This function is used to generate model performance plots using ggplot2 functions.

Usage

```r
## S3 method for class 'nblda'
plot(
  x,
  y,
  ..., 
  theme = c("nblda", "default"),
  metric = c("accuracy", "error", "sparsity"),
  return = c("plot", "aes")
)

## S3 method for class 'nblda_trained'
plot(
  x,
  y,
  ..., 
  theme = c("nblda", "default"),
  metric = c("accuracy", "error", "sparsity"),
  return = c("plot", "aes")
)

## S4 method for signature 'nblda'
plot(
  x,
  y,
  ..., 
  theme = c("nblda", "default"),
  metric = c("accuracy", "error", "sparsity"),
  return = c("plot", "aes")
)

## S4 method for signature 'nblda_trained'
plot(
  x,
  y,
  ..., 
```
theme = c("nblda", "default"),
metric = c("accuracy", "error", "sparsity"),
return = c("plot", "aes")
)

Arguments

x
a nblda object returned from trainNBLDA or nblda_trained object returned from nbldaTrained.

y
same as x and not required to be defined. If x is missing or NULL, nblda or nblda_trained object is imported from y.

... further arguments to be passed to plotting function ggplot.

theme pre-defined plot themes. It can be defined outside plot function using ggplot’s library. See examples.

metric which metric should be used in y-axis?

return should complete plot or a ggplot object from ggplot be returned? One may select "aes" in order to add plot layers to returned ggplot aesthetics. See examples.

Value
A list of class ggplot.

Author(s)
Dincer Goksuluk

See Also
ggplot

Examples

set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8, allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10, metric = "accuracy", train.control = ctrl)

plot(fit)

Use pre-defined theme
plot(fit, theme = "nblda")

Externally defining plot theme
plot(fit, theme = "default") + theme_dark(base_size = 14)
Return empty ggplot object and add layers.
plot(fit, theme = "nblda", return = "aes") +
 geom_point() + geom_line(linetype = 2)

predict
Extract predictions from NBLDA model

Description

This function predicts the class labels of test data for a given model.

Usage

```r
## S3 method for class 'nblda'
predict(object, test.data, return = c("predictions", "everything"), ...)

## S4 method for signature 'nblda'
predict(object, test.data, return = c("predictions", "everything"), ...)
```

Arguments

- **object**: a `nblda` object returned from `trainNBLDA`.
- **test.data**: a data frame or matrix whose class labels to be predicted.
- **return**: what should be returned? Predicted class labels or everything?
- **...**: further arguments to be passed to or from methods.

Value

It is possible to return only predicted class labels or a list with elements which are used within prediction process. These arguments are as follows:

- **xte**: count data for test set.
- **nste**: normalized count data for test set.
- **ds**: estimates of offset parameter for each variable. See notes.
- **discriminant**: discriminant scores of each subject.
- **prior**: prior probabilities for each class.
- **ytest**: predicted class labels for test set.
- **alpha**: power transformation parameter. If no transformation is requested, it returns NULL.
- **type**: normalization method.
- **dispersions**: dispersion estimates of each variable.
Note
d_kj is simply used to re-parameterize the Negative Binomial mean as \(s_i g_j d_{kj}\) where \(s_i\) is the size factor for subject \(i\), \(g_j\) is the total count of variable \(j\) and \(d_{kj}\) is the offset parameter for variable \(j\) at class \(k\).

Author(s)
Dincer Goksuluk

Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
                           allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10,
                  metric = "accuracy", train.control = ctrl)
predict(fit, xte)
```

selectedFeatures

Accessors for the 'selectedFeatures' slot.

Description

This slot, if not NULL, stores the selected features/variables for sparse model.

Usage

```r
## S4 method for signature 'nblda'
selectedFeatures(object)

## S4 method for signature 'nblda_trained'
selectedFeatures(object)
```

Arguments

- **object**
 - an nblda or nblda_trained object.
Value

a list of selected features info including the followings:

- **idx**: column indices of selected features/variables
- **names**: column names of selected features/variables if input data have pre-defined column names.

Note

If `return.selected.features = FALSE` within `nbdacControl` or all features/variables are selected and used in discrimination function, `idx` and `names` are returned NULL.

See Also

- `trainNBLDA`, `nblda`, `nblda_trained`

Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 50, K = 2, param = 1, sdsignal = 0.5, DE = 0.6,
                           allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2, return.selected.features = TRUE,
                      transform = TRUE, phi.epsilon = 0.10)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10,
                   metric = "accuracy", train.control = ctrl)

selectedFeatures(fit)
```

Description

Pretty print the objects in S4 classes on R console.

Usage

```r
## S3 method for class 'nblda'
show(object)

## S4 method for signature 'nblda'
show(object)
```
trainNBLDA

S3 method for class 'nblda_trained'
show(object)

S4 method for signature 'nblda_trained'
show(object)

S3 method for class 'nblda_input'
show(object)

S4 method for signature 'nblda_input'
show(object)

Arguments

object an object of class nblda, nblda_trained and nblda_input to be printed.

Author(s)

Dincer Goksuluk

Examples

set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8,
 allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)
fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10,
 metric = "accuracy", train.control = ctrl)

show(fit)
show(inputs(fit))
show(nbldaTrained(fit))

trainNBLDA Train Model over Different Tuning Parameters

Description

This function fits Negative Binomial classifier using various model parameters and finds the best model parameter using the resampling based performance measures.

Usage

trainNBLDA(x, y, type = c("mle", "deseq", "quantile", "tmm"),
tuneLength = 10, metric = c("accuracy", "error"), train.control = nbldaControl(), ...)
trainNBLDA

Arguments

x a n-by-p data frame or matrix. Samples should be in the rows and variables in the columns. Used to train the classifier.

y a vector of length n. Each element corresponds to a class label of a sample. Integer and/or factor types are allowed.

type a character string indicating the type of normalization method within the NBLDA model. See details.

tuneLength a positive integer. This is the total number of levels to be used while tuning the model parameter(s).

metric which criteria should be used while determining the best parameter? overall accuracy or average number of misclassified samples?

train.control a list with control parameters to be used in NBLDA model. See nbldaControl for details.

Details

NBLDA is proposed to classify count data from any field, e.g. economics, social sciences, genomics, etc. In RNA-Seq studies, for example, normalization is used to adjust between-sample differences for downstream analysis. type is used to define normalization method. Available options are "mle", "deseq", "quantile" and "tmm". Since "deseq", "quantile" and "tmm" methods are originally proposed as robust methods to be used in RNA-Sequencing studies, one should carefully define normalization types. In greater details, "deseq" estimates the size factors by dividing each sample by the geometric means of the transcript counts (Anders and Huber, 2010). "tmm" trims the lower and upper side of the data by log fold changes to minimize the log-fold changes between the samples and by absolute intensity (Robinson and Oshlack, 2010). "quantile" is quantile normalization approach of Bullard et al (2010). "mle" (less robust) divides total counts of each sample to the grand total counts (Witten, 2010). See related papers for mathematical backgrounds.

Value

an nblda object with following slots:

input an nblda_input object including the raw count data and response variable. See nblda_input for details.

result an nblda_trained object including the results from cross-validated and final models. See nblda_trained for details.

call a call expression.

Author(s)

Dincer Goksuluk
trainNBLDA

References

Examples

```r
set.seed(2128)
counts <- generateCountData(n = 20, p = 10, K = 2, param = 1, sdsignal = 0.5, DE = 0.8, allZero.rm = FALSE, tag.samples = TRUE)
x <- t(counts$x + 1)
y <- counts$y
xte <- t(counts$xte + 1)
ctrl <- nbldaControl(folds = 2, repeats = 2)

fit <- trainNBLDA(x = x, y = y, type = "mle", tuneLength = 10, metric = "accuracy", train.control = ctrl)

fit

nbldaTrained(fit) # Cross-validated model summary.
```
Index

*Topic cervical
 cervical, 3
*Topic data
 cervical, 3
*Topic package
 NBLDA-package, 2

 cervical, 3
 Classify, 11
 control, 4, 15
 control, nblda-method (control), 4
 control, nblda_trained-method (control), 4

 FindBestTransform, 5

 generateCountData, 6
 getAdjustDisp, 7, 8, 12
 getShrinkedDispensions, 7
 getT, 8, 10–12
 ggplot, 17
 ggplot2, 16

 inputs, 8
 inputs, nblda-method (inputs), 8

 nblda, 20
 nblda-class, 9
 NBLDA-package, 2
 nblda_input, 9, 22
 nblda_input-class, 13
 nblda_trained, 9, 20, 22
 nblda_trained-class, 13
 nbldaControl, 10, 20, 22
 nbldaTrained, 12, 17
 nbldaTrained, nblda-method (nbldaTrained), 12
 nbldaTrained, nblda_trained-method (nbldaTrained), 12
 normalization, 14

 normalization, nblda-method (normalization), 14
 normalization, nblda_trained-method (normalization), 14
 NullModel, 15, 15
 NullModelTest (NullModel), 15

 plot, 16
 plot, nblda-method (plot), 16
 plot, nblda_trained-method (plot), 16
 plot, nblda (plot), 16
 plot, nblda_trained (plot), 16
 predict, 18
 predict, nblda-method (predict), 18
 predict, nblda (predict), 18

 rbinom, 6

 selectedFeatures, 19
 selectedFeatures, nblda-method (selectedFeatures), 19
 selectedFeatures, nblda_trained-method (selectedFeatures), 19

 show, 20
 show, nblda-method (show), 20
 show, nblda_input-method (show), 20
 show, nblda_trained-method (show), 20
 show, nblda (show), 20
 show, nblda_input (show), 20
 show, nblda_trained (show), 20

 trainNBLDA, 4, 8, 10–12, 14, 17, 18, 20, 21