N2R: Fast and Scalable Approximate k-Nearest Neighbor Search Methods using 'N2' Library

Implements methods to perform fast approximate K-nearest neighbor search on input matrix. Algorithm based on the 'N2' implementation of an approximate nearest neighbor search using hierarchical Navigable Small World (NSW) graphs. The original algorithm is described in "Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs", Y. Malkov and D. Yashunin, <doi:10.1109/TPAMI.2018.2889473>, <arXiv:1603.09320>.

Version: 0.1.1
Depends: Matrix
Imports: Rcpp (≥ 1.0.4)
LinkingTo: Rcpp, RcppSpdlog, RcppEigen
Suggests: testthat
Published: 2020-12-14
Author: Peter Kharchenko [aut], Viktor Petukhov [aut], Dirk Eddelbuettel [ctb], Evan Biederstedt [cre, aut]
Maintainer: Evan Biederstedt <evan.biederstedt at gmail.com>
BugReports: https://github.com/kharchenkolab/N2R/issues
License: Apache License 2.0
Copyright: See the file COPYRIGHTS for various N2R copyright details
N2R copyright details
URL: https://github.com/kharchenkolab/N2R
NeedsCompilation: yes
SystemRequirements: GNU make
Materials: README
CRAN checks: N2R results


Reference manual: N2R.pdf
Package source: N2R_0.1.1.tar.gz
Windows binaries: r-devel: N2R_0.1.1.zip, r-release: N2R_0.1.1.zip, r-oldrel: not available
macOS binaries: r-release: N2R_0.1.1.tgz, r-oldrel: N2R_0.1.1.tgz
Old sources: N2R archive

Reverse dependencies:

Reverse imports: conos, pagoda2


Please use the canonical form https://CRAN.R-project.org/package=N2R to link to this page.