Package ‘MendelianRandomization’

April 16, 2021

Type Package
Title Mendelian Randomization Package
Version 0.5.1
Date 2021-04-16
Author Olena Yavorska <olena.yavorska@ludwig.ox.ac.uk>
James Staley <james.staley@bristol.ac.uk>
Maintainer Stephen Burgess <sb452@medschl.cam.ac.uk>
Description Encodes several methods for performing Mendelian randomization
analyses with summarized data. Summarized data on genetic associations with the
exposure and with the outcome can be obtained from large consortia. These data
can be used for obtaining causal estimates using instrumental variable methods.
License GPL-2 | GPL-3
Depends R (>= 3.0.1), methods
Imports knitr, rmarkdown, plotly (>= 3.6.0), ggplot2 (>= 1.0.1),
robustbase (>= 0.92-6), Matrix (>= 1.2), iterpc (>= 0.3),
quantreg (>= 5.01), rjson, glmnet
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-16 11:10:02 UTC

R topics documented:
calcium .. 2
Egger-class ... 3
extract.pheno.csv 5
IVW-class .. 8
ldlc ... 9
MaxLik-class ... 10
MRAAll-class ... 11
Data on effect of calcium on fasting glucose (correlated variants)

Description

Two sets of example data are included in the package: one illustrating uncorrelated variants, and the other correlated variants. These are the data on correlated variants.
Usage

- calcium
- calciumse
- fastgluc
- fastglucose
- calc.rho

Format

An object of class numeric of length 6.

Details

The variables calcium and fastgluc are the genetic associations with calcium and fasting glucose for 6 genetic variants reported by Burgess et al (2015). The respective standard errors of the associations are given as calciumse and fastglucose. The matrix of correlations between the genetic variants is given as calc.rho.

These data can be used to test out the various functions in the package.

References

Description

An object containing the estimate produced using the MR-Egger method as well as various statistics.

The MR-Egger model uses a random-effects model; a fixed-effect model does not make sense as pleiotropy leads to heterogeneity between the causal estimates targeted by the genetic variants. The (multiplicative) random-effects model allows over-dispersion in the regression model. Under-dispersion is not permitted (in case of under-dispersion, the residual standard error is set to 1).
Slots

- **Model** Model always takes the value `random`, as only random-effects analyses are permitted.
- **Exposure** The name of the exposure variable.
- **Outcome** The name of the outcome variable.
- **Correlation** The matrix of correlations between genetic variants.
- **Robust** Whether robust regression was used in the regression model relating the genetic associations with the outcome and those with the exposure.
- **Penalized** Whether weights in the regression model were penalized for variants with heterogeneous causal estimates.
- **Estimate** The causal point estimate from the MR-Egger method.
- **StdError.Est** The standard error associated with `Estimate`.
- **Pvalue.Est** P-value associated with the causal estimate from the Wald method.
- **CILower.Est** The lower bound of the confidence interval for `Estimate` based on `StdError.Est`.
- **CIUpper.Est** The upper bound of the confidence interval for `Estimate` based on `StdError.Est`.
- **Intercept** The intercept estimate from the MR-Egger method. Under the InSIDE assumption, the intercept represents the average pleiotropic effect (average direct effect on the outcome) of a genetic variant. If the intercept differs from zero, this is evidence that the genetic variants are not all valid instruments; specifically, there is directional pleiotropy.
- **StdError.Int** The standard error associated with `Intercept`.
- **Pvalue.Int** P-value associated with the intercept from the Wald method.
- **CILower.Int** The lower bound of the confidence interval for `Intercept` based on `StdError.Int`.
- **CIUpper.Int** The upper bound of the confidence interval for `Estimate` based on `StdError.Int`.
- **Alpha** The significance level used in constructing the confidence interval (default is 0.05).
- **SNPs** The number of SNPs that were used in the calculation.
- **Causal.pval** P-value associated with the causal estimate.
- **Pleio.pval** P-value associated with the intercept (p-value for the MR-Egger intercept test of directional pleiotropy).
- **RSE** The estimated residual standard error from the regression model.
- **Heter.Stat** Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that the MR-Egger regression model describes the associations with the outcome with no excess heterogeneity.
- **I.sq** A measure of heterogeneity between the genetic associations with the exposure (see Bowden JIE 2016: "Assessing the suitability of summary data for Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic."). Low values of `I.sq` relate both to large differences in precision between MR-Egger and IVW estimates, and to more weak instrument bias (in a two-sample setting, this is attenuation of MR-Egger estimate towards the null).
Description

The function `extract.pheno.csv` extracts summarized data on associations with named exposure and outcome variables from a .csv file provided by PhenoScanner.

Usage

```r
extract.pheno.csv(
  exposure,
  pmidE,
  ancestryE,
  outcome,
  pmidO,
  ancestryO,
  file,
  rsq.proxy = 1,
  snps = "all"
)
```

Arguments

- **exposure**: The name of the exposure variable.
- **pmidE**: The PubMed ID (PMID) of the publication in which the genetic association estimates with the exposure were originally reported. Some variables are reported in multiple consortia (for example, associations with coronary artery disease by CARDIoGRAM in 2011 [PMID:21378990], by CARDIoGRAMplusC4D in 2013, and again by CARDIoGRAMplusC4D in 2015 [PMID:26343387]). Equally, some publications reported associations on multiple variables (for example, CARDIoGRAMplusC4D in 2015 [PMID:26343387] reported associations with coronary artery disease and with myocardial infarction). By providing the variable name and the PubMed ID, the set of associations is (almost) uniquely identified.
- **ancestryE**: The ancestry of individuals in which estimates were obtained. A small number of studies reported genetic association estimates for a single variable in a single publication for multiple ethnicities (for example, associations with log(eGFR creatinine) from CKD-Gen in 2016 [PMID:26831199] were reported for both Europeans and Africans). The combination of exposure name, PubMed ID, and ancestry uniquely defines the set of associations. Providing the ancestry also reminds analysts of the additional complication of conducting Mendelian randomization when associations with the exposure and with the outcome are in individuals of different ancestry. Most association estimates are obtained in "European" or "Mixed" populations, although some are obtained in "African", "Asian", or "Hispanic" populations.

- **outcome**: The name of the outcome variable.
- **pmidO**: The PubMed ID (PMID) of the publication in which the genetic association estimates with the outcome were originally reported. Some variables are reported in multiple consortia (for example, associations with coronary artery disease by CARDIoGRAM in 2011 [PMID:21378990], by CARDIoGRAMplusC4D in 2013, and again by CARDIoGRAMplusC4D in 2015 [PMID:26343387]). Equally, some publications reported associations on multiple variables (for example, CARDIoGRAMplusC4D in 2015 [PMID:26343387] reported associations with coronary artery disease and with myocardial infarction). By providing the variable name and the PubMed ID, the set of associations is (almost) uniquely identified.
- **ancestryO**: The ancestry of individuals in which estimates were obtained. A small number of studies reported genetic association estimates for a single variable in a single publication for multiple ethnicities (for example, associations with log(eGFR creatinine) from CKD-Gen in 2016 [PMID:26831199] were reported for both Europeans and Africans). The combination of exposure name, PubMed ID, and ancestry uniquely defines the set of associations. Providing the ancestry also reminds analysts of the additional complication of conducting Mendelian randomization when associations with the exposure and with the outcome are in individuals of different ancestry. Most association estimates are obtained in "European" or "Mixed" populations, although some are obtained in "African", "Asian", or "Hispanic" populations.

- **file**: The path to the .csv file.
- **rsq.proxy**: The proxy for standardization. Defaults to 1.
- **snps**: The number of SNPs. Defaults to "all".
outcome
pmidO
ancestryO
file
rsq.proxy
snps

The name of the outcome variable.
The PubMed ID of the publication in which the genetic association estimates with the outcome were originally reported.
The ancestry of individuals in which genetic association estimates with the outcome were obtained.
The file path where the PhenoScanner .csv file can be found.
A proxy variant is a genetic variant in close correlation (high linkage disequilibrium) with the named variant. If PhenoScanner is run with proxies included, then proxies can be included in the analysis. In the second example below, with log(eGFR creatinine) as the exposure and Tanner stage as the outcome, the association of variant rs12785878 with the outcome is not reported. Instead, rs4944958 is used as a proxy for rs12785878. The association of rs4944958 with the outcome is used in the resulting \texttt{MRInput} object. The correlation between the two variants is reported as $R^2 = 1.000$. A message will always appear when a proxy variant is included in an analysis in place of the primary variant. The value of \texttt{rsq.proxy} is used as a threshold in the analysis; a variant is only included in the analysis if the value of R^2 equals or exceeds this threshold. The default option is \texttt{rsq.proxy = 1}, meaning that only perfect proxies are used in the analysis.
The names (rsIDs) of the genetic variants to be included in the analysis. The default option is "all", indicating that all the genetic variants in the .csv file with beta-coefficients and standard errors for their associations with the risk factor and with the outcome should be used in the analysis. Otherwise, only variants whose names are included in the vector of character strings provided as \texttt{snps} will be included in the analysis.

Details

Note that this function was written for a previous version of PhenoScanner. It has not been updated, as it has been overtaken by the \texttt{pheno_input} function that queries PhenoScanner directly from R.

The PhenoScanner bioinformatic tool (\url{http://phenoscanner.medschl.cam.ac.uk/}) is a curated database of publicly available results from large-scale genetic association studies. Queries can be made for individual genetic variants (SNPs and small indels), or for multiple variants in a single batch query. One of the output files is a .csv file containing all associations of variables with each of the SNPs. For commonly genotyped variants, associations with up to 200 variables may be reported. These association estimates and their standard errors can be used in Mendelian randomization analyses.

The plan is to enable PhenoScanner to be queried directly from the MendelianRandomization package. However, this functionality is currently unavailable.

The \texttt{extract.pheno.csv} function takes the output from the web version of PhenoScanner, and converts this into an \texttt{MRInput} object. PhenoScanner is still under development. This function is designed for output from PhenoScanner version 1.1 (Little Miss Sunshine).

Value

The output of the \texttt{extract.pheno.csv} function is an \texttt{MRInput} object that can be used directly in any of the estimation functions (such as \texttt{mr_ivw}) or in the plotting function \texttt{mr_plot}. The output
extract.pheno.csv contains:

bx The genetic associations with the exposure.
bxse The corresponding standard errors.
by The genetic associations with the outcome.
byse The corresponding standard errors.
correlation The matrix of genetic correlations. Currently, this is set to the empty matrix (matrix()), meaning that only uncorrelated variants can be used in the extract.pheno.csv function.
exposure A character string giving the name of the exposure as provided in the PhenoScanner database.
outcome A character string giving the name of the outcome as provided in the PhenoScanner database.

References

Examples

path.noproxy <- system.file("extdata", "vitD_snps_PhenoScanner.csv", package = "MendelianRandomization")
path.proxies <- system.file("extdata", "vitD_snps_PhenoScanner_proxies.csv", package = "MendelianRandomization")
these two files from PhenoScanner are provided
as part of the MendelianRandomization package

extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Tanner stage", pmidO = 24770850, ancestryO = "European",
file = path.noproxy)

extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Tanner stage", pmidO = 24770850, ancestryO = "European",
rsq.proxy = 0.6, file = path.proxies)

extract.pheno.csv(
exposure = "log(eGFR creatinine)", pmidE = 26831199, ancestryE = "European",
outcome = "Asthma", pmidO = 20860503, ancestryO = "European",
rsq.proxy = 0.6, file = path.proxies)
Description

An object containing the estimate produced using the inverse-variance weighted (IVW) method as well as various statistics.

Slots

Model The model used for estimation: random-effects ("random") or fixed-effect ("fixed"). The default option ("default") is to use a fixed-effect model when there are three or fewer genetic variants, and a random-effects model when there are four or more. The (multiplicative) random-effects model allows for heterogeneity between the causal estimates targeted by the genetic variants by allowing over-dispersion in the regression model. Under-dispersion is not permitted (in case of under-dispersion, the residual standard error is set to 1, as in a fixed-effect analysis).

Exposure The name of the exposure variable.

Outcome The name of the outcome variable.

Correlation The matrix of correlations between genetic variants.

Robust Whether robust regression was used in the regression model relating the genetic associations with the outcome and those with the exposure.

Penalized Whether weights in the regression model were penalized for variants with heterogeneous causal estimates.

Estimate The causal point estimate from the inverse-variance weighted method.

StdError The standard error associated with Estimate.

CILower The lower bound of the confidence interval for Estimate based on StdError.

CIUpper The upper bound of the confidence interval for Estimate based on StdError.

Alpha The significance level used in constructing the confidence interval (default is 0.05).

Pvalue P-value associated with the causal estimate.

SNPs The number of SNPs that were used in the calculation.

RSE The estimated residual standard error from the regression model.

Heter.Stat Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.
Data on lipid effects on coronary artery disease (uncorrelated variants)

Description
Two sets of example data are included in the package: one illustrating uncorrelated variants, and the other correlated variants. These are the data on uncorrelated variants.

The variables ldlc, hdlc, trig, and chdlodds are the genetic associations with (respectively) LDL-cholesterol, HDL-cholesterol, triglycerides, and coronary heart disease (CHD) risk for 28 genetic variants reported by Waterworth et al (2010). The respective standard errors of the associations are given as ldlcse, hdlcse, trigse, and chdloddsse.

These data can be used to test out the various functions in the package.

Usage

ldlc
hdlc
hdlcse
ldlcse
trig
trigse
chdlodds
chdloddsse
lipid_effect
lipid_other
lipid_eaf

Format
An object of class numeric of length 28.
An object of class character of length 28.
An object of class character of length 28.
An object of class numeric of length 28.

References

MaxLik-class

Description
An object containing the estimate produced using the maximum-likelihood method as well as various statistics.

Slots
Model The model used for estimation: fixed-effect ("fixed") or random-effects ("random").
Exposure The name of the exposure variable.
Outcome The name of the outcome variable.
Correlation The matrix of correlations between genetic variants.
Psi The correlations between genetic associations with the exposure and with the outcome.
Estimate The causal point estimate from the inverse-variance weighted method.
StdError The standard error associated with Estimate.
CILower The lower bound of the confidence interval for Estimate based on StdError.
CIUpper The upper bound of the confidence interval for Estimate based on StdError.
Alpha The significance level used in constructing the confidence interval (default is 0.05).
Pvalue P-value associated with the causal estimate.
SNPs The number of SNPs that were used in the calculation.
RSE The estimated residual standard error from the regression model.
Heter.Stat Heterogeneity statistic (likelihood ratio statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.
MRAll-class

MRAll Class

Description

An object containing the estimates produced using the `mr_allmethods` function.

Slots

- **Data** The `mr_input` object that was used as an input to the `mr_allmethods` function. This includes the original data, so that a call to `mr_plot` can plot the original data and the various causal estimates.

- **Values** A data.frame object comprising estimates from the various methods called by the `mr_allmethods` function. The first column gives the names of the methods, then the causal estimates, standard errors, 95% confidence intervals, and p-values.

- **Method** A string indicating whether all methods are implemented ("all", the default option), or just main methods ("main"), or only a subset of methods ("ivw", "egger", or "median").

MRConMix-class

MRConMix Class

Description

An object containing the estimate produced using the contamination mixture method as well as various statistics.

Slots

- **Exposure** The names of the exposure variables.

- **Outcome** The name of the outcome variable.

- **Psi** The value of the standard deviation of the distribution of invalid estimands (default is 1.5 times the standard deviation of the ratio estimates).

- **Estimate** The causal estimate from the contamination mixture method.

- **CIRange** The confidence interval for `Estimate` based on a grid search.

- **CILower** The lower limit of the confidence interval. If the confidence interval contains multiple ranges, then lower limits of all ranges will be reported.

- **CIUpper** The upper limit of the confidence interval. If the confidence interval contains multiple ranges, then upper limits of all ranges will be reported.

- **CIMin** The smallest value used in the search to find the confidence interval.

- **CIMax** The largest value used in the search to find the confidence interval.

- **CIStep** The step size used in the search to find the confidence interval.
The p-value associated with the estimate calculated using the likelihood function and a chi-squared distribution.

Valid The numbers of genetic variants that were considered valid instruments at the causal estimate.

ValidSNPs The names of genetic variants that were considered valid instruments at the causal estimate.

Alpha The significance level used in constructing the confidence interval (default is 0.05).

SNPs The number of SNPs that were used in the calculation.

Description

An object containing the estimate produced using the heterogeneity-penalized model-averaging mode-based estimation method as well as various statistics.

Slots

Exposure The names of the exposure variables.

Outcome The name of the outcome variable.

Prior The value of the prior probability of a genetic variant being a valid instrument (default is 0.5).

Estimate The causal estimate from the heterogeneity-penalized method.

CIrange The confidence interval for Estimate based on a grid search.

CILower The lower limit of the confidence interval. If the confidence interval contains multiple ranges, then lower limits of all ranges will be reported.

CIUpper The upper limit of the confidence interval. If the confidence interval contains multiple ranges, then upper limits of all ranges will be reported.

CIMin The smallest value used in the search to find the confidence interval.

CIMax The largest value used in the search to find the confidence interval.

CIstep The step size used in the search to find the confidence interval.

Alpha The significance level used in constructing the confidence interval (default is 0.05).

SNPs The number of SNPs that were used in the calculation.
MRInput-class

Description

An object containing the four vectors of summary statistics required to calculate Mendelian randomization estimates.

Details

The beta-coefficients are assumed to be estimated for uncorrelated (independent) genetic variants, although a correlation matrix can be specified if the variants are correlated in their distributions. We also assume that the beta-coefficients for associations with the exposure and with the outcome are uncorrelated (corresponding to a two-sample Mendelian randomization analysis), although correlation between associations with the exposure and with the outcome generally have little impact on causal estimates or standard errors. Estimates can either be specified by the user, or extracted from the PhenoScanner tool.

Slots

- **betaX**: A numeric vector of beta-coefficient values for genetic associations with the first variable (often referred to as the exposure, risk factor, or modifiable phenotype).
- **betaY**: A numeric vector of beta-coefficient values for genetic associations with the second variable (often referred to as the outcome). For a disease outcome, the beta coefficients are log odds estimates from logistic regression analyses.
- **betaXse**: The standard errors associated with the beta-coefficients in betaX.
- **betaYse**: The standard errors associated with the beta-coefficients in betaY.
- **correlation**: The matrix of correlations between genetic variants. If this variable is not provided, then we assume that genetic variants are uncorrelated.
- **exposure**: The name of the exposure variable.
- **outcome**: The name of the outcome variable.
- **snps**: The names of the genetic variants (SNPs) included in the analysis. The slots exposure, outcome, and snps are not required, but may be useful for keeping track of various MRInput objects. They are also used by the mr_plot function.
- **effect_allele**: The name of the effect allele for each SNP. The beta-coefficients are the associations with the exposure and outcome per additional copy of the effect allele.
- **other_allele**: The name of the non-effect allele.
- **eaf**: The expected allele frequencies (numeric). The slots effect_allele, other_allele, and eaf are neither required, nor currently used in the MendelianRandomization package. They are included for future compatibility with the MR-Base suite of functions.

See Also

extract.pheno.csv() for a description of how the above values can be extracted from PhenoScanner http://www.phenoscanner.medschl.cam.ac.uk/.
MRMBE-class

Description

An object containing the estimate produced using the mode-based estimation method of Hartwig et al as well as various statistics.

Slots

- **Exposure** The names of the exposure variables.
- **Outcome** The name of the outcome variable.
- **Estimate** The causal estimate from the MR-Lasso method.
- **StdError** The standard error associated with `Estimate`.
- **CILower** The lower bounds of the confidence intervals for `Estimate` based on `StdError`.
- **CIUpper** The upper bounds of the confidence intervals for `Estimate` based on `StdError`.
- **Alpha** The significance level used in constructing the confidence interval (default is 0.05).
- **Pvalue** P-value associated with the causal estimate from the MR-Lasso method.
- **SNPs** The number of SNPs used in the calculation.
- **RegEstimate** The estimate from the regularized regression model used in the MR-Lasso method.
- **RegIntercept** The intercept estimates from the regularized regression model used in the MR-Lasso method. An intercept estimate of zero identifies the corresponding genetic variant as a valid instrument. Genetic variants with non-zero intercept estimates will be excluded from the post-lasso estimator.
- **Valid** The number of genetic variants that have been identified as valid instruments.
- **ValidSNPs** The names of genetic variants that have been identified as valid instruments.
- **Lambda** The value of the tuning parameter used to compute `RegEstimate` (default is to calculate `Lambda` using the heterogeneity stopping rule).
MRMVInput-class

Slots

- **Exposure** The names of the exposure variables.
- **Outcome** The name of the outcome variable.
- **Weighting** Whether the analysis was weighted or unweighted.
- **StdErr** Whether the simple or delta version of the standard errors were used.
- **Phi** The value of the bandwidth factor.
- **Estimate** The causal estimate from the mode-based estimation method.
- **StdError** The standard errors associated with `Estimate`.
- **CILower** The lower bounds of the confidence interval for `Estimate` based on `StdError`.
- **CIUpper** The upper bounds of the confidence interval for `Estimate` based on `StdError`.
- **Alpha** The significance level used in constructing the confidence interval (default is 0.05).
- **Pvalue** P-value associated with the causal estimate.
- **SNPs** The number of SNPs that were used in the calculation.

Description

An object containing the summary statistics required to calculate multivariable Mendelian randomization estimates.

Details

The beta-coefficients are assumed to be estimated for uncorrelated (independent) genetic variants, although a correlation matrix can be specified if the variants are correlated in their distributions. We also assume that the beta-coefficients for associations with the exposure and with the outcome are uncorrelated (corresponding to a two-sample Mendelian randomization analysis), although correlation between associations with the exposure and with the outcome generally have little impact on causal estimates or standard errors.

Slots

- **betaX** A matrix of beta-coefficient values for genetic associations with the risk factor variables. These should be arranged so that column 1 are the beta-coefficients for risk factor 1, and row 1 are the beta-coefficients for genetic variant 1.
- **betaY** A numeric vector of beta-coefficient values for genetic associations with the second variable (often referred to as the outcome). For a disease outcome, the beta coefficients are log odds estimates from logistic regression analyses.
- **betaXse** The matrix of standard errors associated with the beta-coefficients in `betaX`.
- **betaYse** The vector of standard errors associated with the beta-coefficients in `betaY`.
correlation The matrix of correlations between genetic variants. If this variable is not provided, then we assume that genetic variants are uncorrelated.

exposure The names of the exposure variables.

outcome The name of the outcome variable.

snps The names of the genetic variants (SNPs) included in the analysis. The slots exposure, outcome, and snps are not required, but may be useful for keeping track of various MRInput objects. They are also used by the mr_plot function.

effect_allele The name of the effect allele for each SNP. The beta-coefficients are the associations with the exposure and outcome per additional copy of the effect allele.

other_allele The name of the non-effect allele.

eaf The expected allele frequencies (numeric). The slots effect_allele, other_allele, and eaf are neither required, nor currently used in the MendelianRandomization package. They are included for future compatibility with the MR-Base suite of functions.

mr_allmethods

Mendelian randomization estimation using all methods

Description

The function `mr_allmethods` implements Mendelian randomization analyses using summarized data to calculate estimates (as well as standard errors and confidence interval limits) for all the methods included in the package (or alternatively for the group of methods chosen).

Usage

```r
mr_allmethods(object, method = "all", ...)
```

S4 method for signature 'MRInput'
```r
mr_allmethods(object, method = "all", ...)
```

Arguments

- **object**
 - An MRInput object.

- **method**
 - Which estimation method should be included in the calculation. By default, all estimates are computed ("all"), but one can choose to show only the results of median-based, inverse-variance weighted, or MR-Egger methods separately through specifying "median", "ivw", "egger", or "main" (gives main results only, that is simple and weighted median, IVW, and MR-Egger).

- **...**
 - Additional arguments to be passed to other methods.

Details

See `mr_median`, `mr_egger`, and `mr_ivw` for details of how each of the methods is implemented.
Value

An object of type `MRAll` with the following slots:

- **Data**: The MRInput object used to calculate the various values.
- **Values**: A data.frame containing the various estimates.
- **Method**: The choice of methods estimated (default is "all").

References

See `mr_median`, `mr_egger`, and `mr_ivw`.

Examples

```r
mr_allmethods(mr_input(bx = ldlc, bxse = ldlcse, 
by = chdlodds, byse = chdloddsse), method="main", iterations = 100)
# iterations is set to 100 to reduce runtime for the mr_median method,
# at least 10000 iterations are recommended in practice
```

mr_conmix

Contamination mixture method

Description

Contamination mixture method for robust and efficient estimation under the 'plurality valid' assumption.

Usage

```r
mr_conmix(object, psi = 0, CIMin = NA, CIMax = NA, CIStep = 0.01, alpha = 0.05)
```

```r
## S4 method for signature 'MRInput'

mr_conmix(object, psi = 0, CIMin = NA, CIMax = NA, CIStep = 0.01, alpha = 0.05)
```

Arguments

- **object**: An MRInput object.
- **psi**: The value of the standard deviation of the distribution of invalid estimands (default value is 0, corresponding to 1.5 times the standard deviation of the ratio estimates).
- **CIMin**: The smallest value to use in the search to find the confidence interval. The default value is NA, which means that the method uses the smallest value of the lower bound of the 95% confidence interval for the variant-specific ratio estimates as the smallest value.
CIMax

The largest value to use in the search to find the confidence interval. The default value is NA, which means that the method uses the greatest value of the upper bound of the 95% confidence interval for the variant-specific ratio estimates as the largest value.

CIStep

The step size to use in the search to find the confidence interval (default is 0.01). The confidence interval is determined by a grid search algorithm. Using the default settings, we calculate the likelihood at all values from -1 to +1 increasing in units of 0.01. If this range is too large or the step size is too small, then the method will take a long time to run.

alpha

The significance level used to calculate the confidence interval. The default value is 0.05.

Details

The contamination mixture method is implemented by constructing a likelihood function based on the variant-specific causal estimates. If a genetic variant is a valid instrument, then its causal estimate will be normally distributed about the true value of the causal effect. If a genetic variant is not a valid instrument, then its causal estimate will be normally distributed about some other value. We assume that the values estimated by invalid instruments are normally distributed about zero with a large standard deviation. This enables a likelihood function to be specified that is a product of two-component mixture distributions, with one mixture distribution for each variant. The computational time for maximizing this likelihood directly is exponential in the number of genetic variants. We use a profile likelihood approach to reduce the computational complexity to be linear in the number of variants.

We consider different values of the causal effect in turn. For each value, we calculate the contribution to the likelihood for each genetic variant as a valid instrument and as an invalid instrument. If the contribution to the likelihood as a valid instrument is greater, then we take the variant’s contribution as a valid instrument; if less, then its contribution is taken as an invalid instrument. This gives us the configuration of valid and invalid instruments that maximizes the likelihood for the given value of the causal effect. This is a profile likelihood, a one-dimensional function of the causal effect. The point estimate is then taken as the value of the causal effect that maximizes the profile likelihood.

Confidence intervals are evaluated by calculating the log-likelihood function, and finding all points within a given vertical distance of the maximum of the log-likelihood function (which is the causal estimate). As such, if the log-likelihood function is multimodal, then the confidence interval may include multiple disjoint ranges. This may indicate the presence of multiple causal mechanisms by which the exposure may influence the outcome with different magnitudes of causal effect. As the confidence interval is determined by a grid search, care must be taken when choosing the minimum (CIMin) and maximum (CIMax) values in the search, as well as the step size (CIStep). The default values will not be suitable for all applications.

Value

The output from the function is an MRConMix object containing:

Exposure

A character string giving the name given to the exposure.

Outcome

A character string giving the name given to the outcome.
The value of the standard deviation parameter.
The value of the causal estimate.
The range of values in the confidence interval based on a grid search between the minimum and maximum values for the causal effect provided.
The lower limit of the confidence interval. If the confidence interval contains multiple ranges, then lower limits of all ranges will be reported.
The upper limit of the confidence interval. If the confidence interval contains multiple ranges, then upper limits of all ranges will be reported.
The smallest value used in the search to find the confidence interval.
The largest value used in the search to find the confidence interval.
The step size used in the search to find the confidence interval.
The p-value associated with the estimate calculated using the likelihood function and a chi-squared distribution.
The numbers of genetic variants that were considered valid instruments at the causal estimate.
The names of genetic variants that were considered valid instruments at the causal estimate.
The significance level used when calculating the confidence intervals.
The number of genetic variants (SNPs) included in the analysis.

References

Examples
```r
mr_conmix(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), psi = 3, CIMin = -1, CIMax = 5, CIStep = 0.01)
```

Description
The `mr_egger` function implements the MR-Egger method introduced by Bowden et al (2015). This method provides: 1) a test of the for directional pleiotropy (the MR-Egger intercept test), 2) a test for a causal effect, and 3) an estimate of the causal effect. If the intercept term differs from zero, then the genetic variants are not all valid instrumental variables and the standard (inverse-variance weighted) estimate is biased. If the InSIDE (Instrument Strength Independent of Direct Effect) assumption holds, then the MR-Egger slope parameter provides a test for a causal effect, and a consistent estimate of the causal effect even if the intercept differs from zero.
Usage

mr_egger(
 object,
 robust = FALSE,
 penalized = FALSE,
 correl = FALSE,
 distribution = "normal",
 alpha = 0.05,
 ...
)

S4 method for signature 'MRInput'

mr_egger(
 object,
 robust = FALSE,
 penalized = FALSE,
 correl = FALSE,
 distribution = "normal",
 alpha = 0.05,
 ...
)

Arguments

object An MRInput object.
robust Indicates whether robust regression using the lmrob() function from the package robustbase should be used in the method.
penalized Indicates whether a penalty should be applied to the weights to downweight the contribution of genetic variants with outlying ratio estimates to the analysis.
correl If the genetic variants are correlated, then this correlation can be accounted for. The matrix of correlations between must be provided: the elements of this matrix are the correlations between the individual variants (diagonal elements are 1). If a correlation is specified, then the values of "robust" and "penalized" are taken as FALSE.
distribution The type of distribution used to calculate the confidence intervals, can be "normal" (the default option) or "t-dist". If the distribution is "t-dist", then a t-distribution is used in case of over-dispersion. In case of under-dispersion, the confidence interval is the wider of that using the estimated residual standard error and a t-distribution, or that using a residual standard error of 1 and a normal distribution. This ensures that under-dispersion is not "doubly penalized" by setting the residual standard error to 1 and using a t-distribution, and also that the random-effects analysis is no more precise than a fixed-effect analysis would be.
alpha The significance level used to calculate the confidence interval. The default value is 0.05.
... Additional arguments to be passed to the regression method.
Details

The causal estimate is obtained by regression of the associations with the outcome on the associations with the risk factor, with weights being the inverse-variances of the associations with the outcome. The intercept is estimated (in contrast with the inverse-variance weighted method, where the intercept is set to zero).

As part of the analysis, the genetic variants are orientated so that all of the associations with the risk factor are positive (and signs of associations with the outcome are changed to keep the orientation consistent if required). Re-orientation of the genetic variants is performed automatically as part of the function.

The MR-Egger model uses a random-effects model ("random"); a fixed-effect model does not make sense as pleiotropy leads to heterogeneity between the causal estimates targeted by the genetic variants. The (multiplicative) random-effects model allows over-dispersion in the regression model. Under-dispersion is not permitted (in case of under-dispersion, the residual standard error is set to 1).

Value

The output of the function is an Egger object containing:

- **Model**: A character string giving the type of model used ("random").
- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Correlation**: The matrix of genetic correlations.
- **Robust**: TRUE if robust estimate has been calculated, FALSE otherwise.
- **Penalized**: TRUE if weights have been penalized, FALSE otherwise.
- **Estimate**: The value of the causal estimate (slope coefficient).
- **StdError.Est**: Standard error of the causal estimate.
- **Pvalue.Est**: The p-value associated with the estimate (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in distribution).
- **CILower.Est**: The lower bound of the causal estimate based on the estimated standard error and the significance level provided.
- **CIUpper.Est**: The upper bound of the causal estimate based on the estimated standard error and the significance level provided.
- **Intercept**: The value of the intercept estimate.
- **StdError.Int**: Standard error of the intercept estimate.
- **Pvalue.Int**: The p-value associated with the intercept.
- **CILower.Int**: The lower bound of the intercept based on the estimated standard error and the significance level provided.
- **CIUpper.Int**: The upper bound of the intercept based on the estimated standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals (same as alpha above).
SNPs The number of genetic variants (SNPs) included in the analysis.

Causal.pval The p-value for the MR-Egger causal estimate.

Pleio.pval The p-value for the MR-Egger intercept test (a low p-value suggests either directional pleiotropy or failure of the InSIDE assumption, and indicates that the IVW estimate is biased).

RSE The estimated residual standard error from the regression model.

Heter.Stat Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that the regression model (including an intercept) fits the regression model with no additional variability. Rejection of the null hypothesis is expected if genetic variants are pleiotropic, and doesn’t mean that the MR-Egger analysis or the InSIDE assumption is invalid.

I.sq A measure of heterogeneity between the genetic associations with the exposure (see Bowden IJE 2016). Low values of I.sq relate both to large differences in precision between MR-Egger and IVW estimates, and to more weak instrument bias (in a two-sample setting, this is attenuation of MR-Egger estimate towards the null).

References

Examples

mr_egger(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse))
mr_egger(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), robust = TRUE)
mr_egger(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), penalized = TRUE)
mr_egger(mr_input(calcium, calciumse, fastgluc, fastglucose, corr=calc.rho))
 ## correlated variants

mr_forest Draw a forest plot of causal estimates
mr_forest

Description

The `mr_forest` function draws a forest plot of causal estimates. The default option plots the variant-specific causal estimates (by/bx) and the estimate from the `mr_ivw` function using default settings (assuming variants are uncorrelated, random-effects for 4+ variants). Options allow users to plot estimates from a variety of different methods.

Usage

```r
mr_forest(
  object,
  alpha = 0.05,
  snp_estimates = TRUE,
  methods = "ivw",
  ordered = FALSE
)
```

S4 method for signature 'MRInput'

```r
mr_forest(
  object,
  alpha = 0.05,
  snp_estimates = TRUE,
  methods = "ivw",
  ordered = FALSE
)
```

Arguments

- **object**: An `MRInput` object.
- **alpha**: The significance level used to calculate the confidence intervals. The default value is 0.05, corresponding to 95% confidence intervals.
- **snp_estimates**: Whether to plot the variant-specific estimates. Defaults to TRUE.
- **methods**: Takes a string of computation methods used to calculate estimates. Defaults to "ivw". Options are: "median" (simple median estimate), "wmedian" (weighted median estimate), "egger" (MR-Egger estimate), "mbe" (mode-based estimate), "conmix" (contamination mixture estimate), and "maxlik" (maximum likelihood estimate).
- **ordered**: Determines by whether to arrange the variant-specific estimates in ascending order. Defaults to FALSE.

Details

As the function produces a `ggplot` object, graphical parameters can be changed by adding commands from the `ggplot2` package.

Examples

```r
mr_forest(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
  alpha = 0.01, ordered = TRUE)
```
mr_forest(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
 methods = c("ivw", "wmedian", "egger"), snp_estimates = FALSE)
forest = mr_forest(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse))
how to change x-axis limits
library(ggplot2)
forest2 = forest + coord_cartesian(xlim=c(-5,5))
forest2

mr_funnel

Draw a funnel plot of variant-specific estimates

Description

The `mr_funnel` function draws a funnel plot of variant-specific causal estimates. Estimates (by/bx) are plotted against the precision of the estimates (abs(bx)/byse). Precision is the reciprocal of standard error. A vertical dashed line is plotted at the estimate from the `mr_ivw` function.

Usage

```r
mr_funnel(object, CI = TRUE)
```

```r
## S4 method for signature 'MRInput'
mr_funnel(object, CI = TRUE)
```

Arguments

- **object**: An `MRInput` object.
- **CI**: A logical variable dictating as to whether to plot the confidence interval associated with each point. Default value is `TRUE`.

Details

As the function produces a `ggplot` object, graphical parameters can be changed by adding commands from the `ggplot2` package.

Examples

```r
mr_funnel(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse))
```
Description

Heterogeneity-penalized model-averaging method for efficient modal-based estimation.

Usage

```r
mr_hetpen(
  object,
  prior = 0.5,
  CIMin = -1,
  CIMax = 1,
  CIStep = 0.001,
  alpha = 0.05
)
```

S4 method for signature 'MRInput'
mr_hetpen(
 object,
 prior = 0.5,
 CIMin = -1,
 CIMax = 1,
 CIStep = 0.001,
 alpha = 0.05
)

Arguments

- **object**: An MRInput object.
- **prior**: The prior probability of a genetic variant being a valid instrument (default is 0.5).
- **CIMin**: The smallest value to use in the search to find the confidence interval (default is -1).
- **CIMax**: The largest value to use in the search to find the confidence interval (default is 1).
- **CIStep**: The step size to use in the search to find the confidence interval (default is 0.001).
- **alpha**: The significance level used to calculate the confidence interval. The default value is 0.05.
Details

This method was developed as a more efficient version of the mode-based estimation method of Hartwig et al. It proceeds by evaluating weights for all subsets of genetic variants (excluding the null set and singletons). Subsets receive greater weight if they include more variants, but are severely downweighted if the variants in the subset have heterogeneous causal estimates. As such, the method will identify the subset with the largest number (by weight) of variants having similar causal estimates.

Confidence intervals are evaluated by calculating a log-likelihood function, and finding all points within a given vertical distance of the maximum of the log-likelihood function (which is the causal estimate). As such, if the log-likelihood function is multimodal, then the confidence interval may include multiple disjoint ranges. This may indicate the presence of multiple causal mechanisms by which the exposure may influence the outcome with different magnitudes of causal effect. As the confidence interval is determined by a grid search, care must be taken when choosing the minimum (CIMin) and maximum (CIMax) values in the search, as well as the step size (CIStep). The default values will not be suitable for all applications.

The method should give consistent estimates as the sample size increases if a weighted plurality of the genetic variants are valid instruments. This means that the largest group of variants with the same causal estimate in the asymptotic limit are the valid instruments.

The current implementation of the method evaluates a weight and an estimate for each of the subsets of genetic variants. This means that the method complexity doubles for each additional genetic variant included in the analysis. Currently, the method provides a warning message when used with 25+ variants, and fails to run with 30+.

Value

The output from the function is an MRHetPen object containing:

- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Prior**: The value of the bandwidth factor.
- **Estimate**: The value of the causal estimate.
- **CIRange**: The range of values in the confidence interval based on a grid search between the minimum and maximum values for the causal effect provided.
- **CILower**: The lower limit of the confidence interval. If the confidence interval contains multiple ranges, then lower limits of all ranges will be reported.
- **CIUpper**: The upper limit of the confidence interval. If the confidence interval contains multiple ranges, then upper limits of all ranges will be reported.
- **CIMin**: The smallest value used in the search to find the confidence interval.
- **CIMax**: The largest value used in the search to find the confidence interval.
- **CIStep**: The step size used in the search to find the confidence interval.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
References

Examples

```r
mr hete(mr_input(bx = ldlc[1:10], bxse = ldlcse[1:10], by = chdlodds[1:10],
            byse = chdloddsse[1:10]), CIMin = -1, CIMax = 5, CIStep = 0.01)
```

Description

The `mr_input` function is required for inputting and formatting data for use in any of the estimation functions provided in this package. The MRInput class outputted by the function can also be viewed graphically using the `mr_plot` function.

Usage

```r
mr_input(
  bx = 0,
  bxse = 0,
  by = 0,
  byse = 0,
  correlation = matrix(),
  exposure = "exposure",
  outcome = "outcome",
  snps = "snp",
  effect_allele = NA,
  other_allele = NA,
  eaf = NA
)
```

Arguments

- **bx** A numeric vector of beta-coefficient values for genetic associations with the first variable (often referred to as the exposure, risk factor, or modifiable phenotype).
- **bxse** The standard errors associated with the beta-coefficients bx.
- **by** A numeric vector of beta-coefficient values for genetic associations with the second variable (often referred to as the outcome). For a disease outcome, the beta coefficients are log odds estimates from logistic regression analyses.
- **byse** The standard errors associated with the beta-coefficients in by.
correlation The matrix of correlations between genetic variants. If this variable is not provided, then we assume that genetic variants are uncorrelated.

exposure The name of the exposure variable.

outcome The name of the outcome variable.

snps The names of the genetic variants (SNPs) included in the analysis. The inputs exposure, outcome, and snps are not required, but may be useful for keeping track of various MRInput objects. They are also used by the mr_plot function.

effect_allele The name of the effect allele for each SNP. The beta-coefficients are the associations with the exposure and outcome per additional copy of the effect allele.

other_allele The name of the non-effect allele.

eaf The expected allele frequencies (numeric). The slots effect_allele, other_allele, and eaf are neither required, nor currently used in the MendelianRandomization package. They are included for future compatibility with the MR-Base suite of functions.

Details

The beta-coefficients are assumed to be estimated for uncorrelated (independent) genetic variants, although a correlation matrix can be specified if the variants are correlated in their distributions. We also assume that the beta-coefficients for associations with the exposure and with the outcome are uncorrelated (corresponding to a two-sample Mendelian randomization analysis), although correlation between associations with the exposure and with the outcome generally have little impact on causal estimates or standard errors.

If the four variables are not all the same length, then an error message will be reported. The analyses will still try to run, but the output may be misleading. However, in some analyses (for example, the standard IVW and MR-Egger methods), the values of bxse are not used in the analysis, and can therefore safely be omitted (provided that the other variables are correctly labelled).

Value

An MRInput object containing:

betaX The genetic associations with the exposure.

betaXse The corresponding standard errors.

betaY The genetic associations with the outcome.

betaYse The corresponding standard errors.

correlation The matrix of genetic correlations.

exposure A character string giving the name given to the exposure.

outcome A character string giving the name given to the outcome.

snps A vector of character strings with the names of the genetic variants.

effect_allele A vector of character strings with the names of the effect alleles.

other_allele A vector of character strings with the names of the non-effect alleles.

eaf A numeric vector with the effect allele frequencies.
See Also

evaluate.pheno.csv() for a description of how an MRInput object can be extracted from PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/).

mr_ivw
Inverse-variance weighted method

Description

The `mr_ivw` function implements the inverse-variance method, informally known as the "Toby Johnson" method. With a single genetic variant, this is simply the ratio method.

Usage

```r
mr_ivw(
  object,
  model = "default",
  robust = FALSE,
  penalized = FALSE,
  weights = "simple",
  psi = 0,
  correl = FALSE,
  distribution = "normal",
  alpha = 0.05,
  ...
)
```

```
# S4 method for signature 'MRInput'
mr_ivw(
  object,
  model = "default",
  robust = FALSE,
  penalized = FALSE,
  weights = "simple",
  psi = 0,
  correl = FALSE,
  distribution = "normal",
  alpha = 0.05,
  ...
)
```

Arguments

- **object**: An MRInput object.
What type of model should be used: "default", "random" or "fixed". The random-effects model ("random") is a multiplicative random-effects model, allowing overdispersion in the weighted linear regression (the residual standard error is not fixed to be 1, but is not allowed to take values below 1). The fixed-effect model ("fixed") sets the residual standard error to be 1. The "default" setting is to use a fixed-effect model with 3 genetic variants or fewer, and otherwise to use a random-effects model.

Indicates whether robust regression using the lmrob() function from the package robustbase should be used in the method rather than standard linear regression (lm).

Indicates whether a penalty should be applied to the weights to downweight the contribution of genetic variants with outlying ratio estimates to the analysis.

Which weights to use in the weighted regression. If "simple" (the default option), then the IVW estimate is equivalent to meta-analysing the ratio estimates from each variant using inverse-variance weights based on the simplest expression of the variance for the ratio estimate (first-order term from the delta expansion - standard error of the association with the outcome divided by the association with the exposure). If "delta", then the variance expression is the second-order term from the delta expansion. The second-order term incorporates uncertainty in the genetic association with the exposure – this uncertainty is ignored using the simple weighting.

The correlation between the genetic associations with the exposure and the association with the outcome for each variant resulting from sample overlap. The default value is 0, corresponding to a strict two-sample Mendelian randomization analysis (no overlap). If there is complete overlap between the samples, then the correlation should be set to the observational correlation between the exposure and the outcome. This correlation is only used in the calculation of standard errors if the option weights is set to "delta".

If the genetic variants are correlated, then this correlation can be accounted for. The matrix of correlations between must be provided in the MRInput object: the elements of this matrix are the correlations between the individual variants (diagonal elements are 1). If a correlation matrix is specified in the MRInput object, then correl is set to TRUE. If correl is set to TRUE, then the values of robust and penalized are taken as FALSE, and weights is set to "simple".

The type of distribution used to calculate the confidence intervals. Options are "normal" (default) or "t-dist".

The significance level used to calculate the confidence interval. The default value is 0.05.

Additional arguments to be passed to the regression method.

Details

With multiple uncorrelated genetic variants, this estimate can be thought of as: 1) the inverse-variance weighted combination of the ratio estimates from a meta-analysis; 2) the ratio estimate from combining the genetic variants into a weighted score and then using this score as an instrumental variable (the same estimate is obtained from the two-stage least squares method using individual-level data); 3) the coefficient from weighted linear regression of the associations with the outcome.
on the associations with the risk factor fixing the intercept to zero and using the inverse-variance weights.

Here, we implement the method using weighted linear regression. If the variants are correlated, the method is implemented using generalized weighted linear regression; this is hard coded using matrix algebra.

The causal estimate is obtained by regression of the associations with the outcome on the associations with the risk factor, with the intercept set to zero and weights being the inverse-variances of the associations with the outcome.

With a single genetic variant, the estimate is the ratio of coefficients betaY/betaX and the standard error is the first term of the delta method approximation betaYse/betaX.

Value

The output from the function is an IVW object containing:

- **Model**: A character string giving the type of model used ("fixed", "random", or "default").
- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Correlation**: The matrix of genetic correlations.
- **Robust**: TRUE if robust regression has been used to calculate the estimate, FALSE otherwise.
- **Penalized**: TRUE if weights have been penalized, FALSE otherwise.
- **Estimate**: The value of the causal estimate.
- **StdError**: Standard error of the causal estimate.
- **CILower**: The lower bound of the causal estimate based on the estimated standard error and the significance level provided.
- **CIUpper**: The upper bound of the causal estimate based on the estimated standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-value associated with the estimate (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in distribution).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
- **RSE**: The estimated residual standard error from the regression model.
- **Heter.Stat**: Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.

References

Examples

```r
mr_ivw(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse))
mr_ivw(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), robust = TRUE)
mr_ivw(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), penalized = TRUE)
mr_ivw(mr_input(calcium, calciumse, fastgluc, fastglucose, corr=calc.rho))
## correlated variants
```

mr_lasso

Description

The `mr_lasso` function performs the MR-Lasso method, which applies lasso-type penalization to the direct effects of genetic variants on the outcome. The causal estimate is described as a post-lasso estimate, and is obtained by performing the IVW method using only those genetic variants that are identified as valid by the lasso procedure.

Usage

```r
mr_lasso(object, distribution = "normal", alpha = 0.05, lambda = numeric(0))
```

```r
## S4 method for signature 'MRInput'
mr_lasso(object, distribution = "normal", alpha = 0.05, lambda = numeric(0))
```

Arguments

- **object**: An `MRInput` object.
- **distribution**: The type of distribution used to calculate the confidence intervals. Options are "normal" (default) or "t-dist".
alpha

The significance level used to calculate the confidence intervals. The default value is 0.05.

lambda

The value of the tuning parameter used by the lasso procedure which controls the level of sparsity. If not specified, the tuning parameter will be calculated by the heterogeneity stopping rule.

Details

MR-Lasso extends the IVW model to include an intercept term for each genetic variant. These intercept terms represent associations between the genetic variants and the outcome which bypass the risk factor. The causal effect estimates are estimated by weighted linear regression where the intercept terms are subject to lasso-type penalization. The lasso penalization will tend to shrink the intercept terms corresponding to the valid instruments to zero.

The lasso penalty relies on a tuning parameter which controls the level of sparsity. The default is to use a heterogeneity stopping rule, but a fixed value may be specified.

As part of the analysis, the genetic variants are orientated so that all of the associations with the risk factor are positive (and signs of associations with the outcome are changed to keep the orientation consistent if required). Re-orientation of the genetic variants is performed automatically as part of the function.

The MR-Lasso method is performed in two steps. First, a regularized regression model is fitted, and some genetic variants are identified as valid instruments. Second, the causal effect is estimated using standard IVW with only the valid genetic variants. The post-lasso method will be performed as long as at least two genetic variants are identified as valid instruments. The default heterogeneity stopping rule will always return at least two genetic variants as valid instruments. The main estimate given by the method is the post-lasso estimate. However, parameter estimates from the regularized regression model used to identify invalid variants are also provided for completeness.

If a substantial proportion of genetic variants are removed from the analysis, the MR-Lasso method may give a false impression of confidence in the causal estimate due to homogeneity of the variant-specific causal estimates amongst the remaining variants. However, it is not reasonable to claim that there is strong evidence for a causal effect after a large number of variants with heterogeneous estimates have been removed from the analysis.

Value

The output from the function is an \texttt{MRLasso} object containing:

- \texttt{Exposure}: A character vector with the names given to the exposure.
- \texttt{Outcome}: A character string with the names given to the outcome.
- \texttt{Estimate}: The causal estimate from the MR-Lasso method. This is the post-lasso estimate.
- \texttt{StdError}: The standard error of the causal estimate from the MR-Lasso method.
- \texttt{CILower}: The lower bound of the confidence interval for the causal estimate based on the estimated standard error and the significance level provided.
- \texttt{CIUpper}: The upper bound of the confidence interval for the causal estimate based on the estimated standard error and the significance level provided.
- \texttt{Alpha}: The significance level used when calculating the confidence intervals.
Pvalue The p-value associated with the causal estimate using a normal or t-distribution (as specified in distribution).

SNPs The number of genetic variants (SNPs) included in the analysis.

RegEstimate The estimate from the regularized regression model used in the MR-Lasso method.

RegIntercept The intercept estimates from the regularized regression model used in the MR-Lasso method.

Valid The number of genetic variants that have been identified as valid instruments.

ValidSNPs The names of genetic variants that have been identified as valid instruments.

Lambda The value of the tuning parameter used to compute RegEstimate.

References

Examples

mr_lasso(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse))

mr_loo Leave-one-out estimates

Description

The mr_loo function draws a forest plot of causal estimates from the mr_ivw function using default settings (assuming variants are uncorrelated, random-effects for 4+ variants) omitting each variant in turn. So the estimate labelled snp_1 includes all variants except the labelled variant, and so on. The mr_ivw estimate including all variants ("IVW estimate") is also provided for reference.

Usage

mr_loo(object, alpha = 0.05)

S4 method for signature 'MRInput'
mr_loo(object, alpha = 0.05)

Arguments

object An MRInput object.

alpha The significance level used to calculate the confidence intervals. The default value is 0.05, corresponding to 95% confidence intervals.

Details

As the function produces a ggplot object, graphical parameters can be changed by adding commands from the ggplot2 package.
mr_maxlik

Examples

```
mr_loo(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
       alpha = 0.01)
```

Description

The `mr_maxlik` function implements the maximum-likelihood method introduced by Burgess et al (2013).

Usage

```
mr_maxlik(
  object,
  model = "default",
  correl = FALSE,
  psi = 0,
  distribution = "normal",
  alpha = 0.05,
  ...
)
```

```
## S4 method for signature 'MRInput'
mr_maxlik(
  object,
  model = "default",
  correl = FALSE,
  psi = 0,
  distribution = "normal",
  alpha = 0.05,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An MRInput object.</td>
</tr>
<tr>
<td>model</td>
<td>What type of model should be used: "default", "random" or "fixed". The method naturally estimates a fixed-effect model, assuming that the same causal effect is estimated by each of the genetic variants. However, if there is heterogeneity in the causal estimates of the different variants, then confidence intervals under a fixed-effect model will be overly narrow. The random-effects model adds additional uncertainty by multiplying the standard error by the square-root of the likelihood ratio heterogeneity statistic divided by the number of genetic</td>
</tr>
</tbody>
</table>
variants less one (unless this quantity is less than 1, in which case no modification to the standard error is made). This parallels the residual standard error in a regression model (the Cochran Q heterogeneity test statistic is equal to the square of the RSE multiplied by the number of genetic variants less one). The default setting (“default”) is to use a fixed-effect model with 3 genetic variants or fewer, and otherwise to use a random-effects model.

correl

If the genetic variants are correlated, then this correlation can be accounted for. The matrix of correlations between must be provided in the MRInput object: the elements of this matrix are the correlations between the individual variants (diagonal elements are 1).

psi

The correlation between the association with the exposure and the association with the outcome for each variant resulting from sample overlap.

distribution

The type of distribution used to calculate the confidence intervals, can be "normal" (the default option) or "t-dist".

alpha

The significance level used to calculate the confidence interval. The default value is 0.05.

... Additional arguments to be passed to the optimization method.

Details

A likelihood function is defined by assuming that the summarized data for each genetic variant are normally distributed. A bivariate normal distribution is assumed for the associations of each genetic variant with the exposure and with the outcome. The mean of the association with the exposure is taken as the mean association with the exposure multiplied by the causal effect parameter.

Thus, if there are K genetic variants, then K+1 parameters are estimated by the method: one for each gene–exposure association, plus the causal parameter. If the number of genetic variants is large, then maximization of this function may be an issue. If the maximum likelihood estimate substantially differs from the inverse-variance weighted estimate, this may indicate that convergence has not occurred in the optimization algorithm.

The variance-covariance matrices for the bivariate normal distributions are obtained from the standard error estimates provided. The correlation psi between genetic associations with the exposure and with the outcome due to sample overlap can be specified; its default value is zero.

Two features why this method may be preferred over the inverse-variance weighted method are the incorporation in the model of uncertainty in the genetic associations with the exposure, and of correlation between the genetic association estimates with exposure and outcome for each variant. The method is implemented both for uncorrelated and correlated genetic variants. It can also be used for a single genetic variant.

The original version of the maximum-likelihood method assumed that all genetic variants identify the same causal estimate: a fixed-effect model. The causal estimate may be overly precise if the fixed-effect model is incorrect and there is substantial heterogeneity in the causal estimates from the different variants. The random-effects analysis implemented here is an ad hoc solution to the problem of heterogeneity, but one that should result in reasonable confidence intervals that incorporate this heterogeneity.

Value

The output from the function is an MaxLik object containing:
mr_maxlik

- **Model**: A character string giving the type of model used ("fixed", "random", or "default").
- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Correlation**: The matrix of genetic correlations.
- **Psi**: The correlation between genetic associations with the exposure and with the outcome.
- **Estimate**: The value of the causal estimate.
- **StdError**: Standard error of the causal estimate.
- **CILower**: The lower bound of the causal estimate based on the estimated standard error and the significance level provided.
- **CIUpper**: The upper bound of the causal estimate based on the estimated standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-value associated with the estimate (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in distribution).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
- **RSE**: The estimated residual standard error from the regression model (always equal to 1, as a fixed-effect model is required).
- **Heter.Stat**: Heterogeneity statistic (likelihood ratio statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.

References

Examples

```r
mr_maxlik(mr_input(bx = ldlc[1:10], bxse = ldlcse[1:10],
              by = chdlodds[1:10], byse = chdloddsse[1:10]))
mr_maxlik(mr_input(bx = ldlc[1:10], bxse = ldlcse[1:10],
              by = chdlodds[1:10], byse = chdloddsse[1:10], psi=0.2)
mr_maxlik(mr_input(calcium, calciumse, fastgluc, fastglucose, corr=calc.rho))
## correlated variants
```
mr_mbe

Mode-based method of Hartwig

Description

The *mr_mbe* function implements the mode-based method introduced by Hartwig, Bowden and Davey Smith (2017).

Usage

```r
mr_mbe(
  object,
  weighting = "weighted",
  stderr = "simple",
  phi = 1,
  seed = 314159265,
  iterations = 10000,
  distribution = "normal",
  alpha = 0.05
)
```

S4 method for signature 'MRInput'

```r
mr_mbe(
  object,
  weighting = "weighted",
  stderr = "delta",
  phi = 1,
  seed = 314159265,
  iterations = 10000,
  distribution = "normal",
  alpha = 0.05
)
```

Arguments

- **object**: An MRInput object.
- **weighting**: Whether the analysis should be "weighted" (the default option) or "unweighted".
- **stderr**: Whether standard error estimates should be i) "simple" - calculated as the first-order term from the delta expansion - standard error of the association with the outcome divided by the association with the exposure), or ii) "delta" - calculated as the second-order term from the delta expansion (the default option). The second-order term incorporates uncertainty in the genetic association with the exposure – this uncertainty is ignored using the simple weighting. The "simple" option is referred to by Hartwig et al as "assuming NOME", and the "delta" option as "not assuming NOME".
phi

The choice of bandwidth in the kernel-smoothly density method. A value of 1 (the default value) represents the bandwidth value selected by the modified Silverman’s bandwidth rule, as recommended by Hartwig et al. A value of 0.5 represents half that value, and so on.

seed

The random seed to use when generating the bootstrap samples used to calculate the confidence intervals (for reproducibility). The default value is 314159265. If set to NA, the random seed will not be set (for example, if the function is used as part of a larger simulation).

iterations

Number of iterations to use in the bootstrap procedure.

distribution

The type of distribution used to calculate the confidence intervals, can be "normal" (the default option) or "t-dist".

alpha

The significance level used to calculate the confidence interval. The default value is 0.05.

Details

The mode-based estimation (MBE) method takes the variant-specific ratio estimates from each genetic variant in turn, and calculates the modal estimate. This is implemented by constructing a kernel-smoothed density out of the ratio estimates, and taking the maximum value as the modal estimate. The standard error is calculated by a bootstrap procedure, and confidence intervals based on the estimate having a normal distribution.

The method should give consistent estimates as the sample size increases if a plurality (or weighted plurality) of the genetic variants are valid instruments. This means that the largest group of variants with the same causal estimate in the asymptotic limit are the valid instruments.

Value

The output from the function is an `MrMBE` object containing:

- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Weighting**: A character string "weighted" or "unweighted".
- **StdErr**: A character string "simple" or "delta".
- **Phi**: The value of the bandwidth factor.
- **Estimate**: The value of the causal estimate.
- **StdError**: Standard error of the causal estimate.
- **CILower**: The lower bound of the causal estimate based on the estimated standard error and the significance level provided.
- **CIUpper**: The upper bound of the causal estimate based on the estimated standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-value associated with the estimate (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in `distribution`).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
mr_median

References

Examples

mr_mbe(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse), iterations=100)
mr_mbe(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
 phi=0.5, iterations=100)
mr_mbe(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
 weighting="weighted", stderror="delta", iterations=100)
iterations set to 100 to reduce computational time,
more iterations are recommended in practice

Description

The mr_median function implements the weighted median (default) or simple median method introduced by Bowden et al (2016) to calculate the median of the ratio instrumental variable estimates evaluated using each genetic variant individually.

Usage

mr_median(
 object,
 weighting = "weighted",
 distribution = "normal",
 alpha = 0.05,
 iterations = 10000,
 seed = 314159265
)

S4 method for signature 'MRInput'
mr_median(
 object,
 weighting = "weighted",
 distribution = "normal",
 alpha = 0.05,
 iterations = 10000,
 seed = 314159265
)
Arguments

object
The type of weighting applied. The default option is to calculate the weighted median ("weighted"); other options are "simple" and "penalized".

weighting
An MRInput object.

distribution
The type of distribution to use to calculate the 95% confidence intervals, can be "normal" or "t-dist".

alpha
The significance level used to calculate the confidence intervals. The default value is 0.05.

iterations
The number of bootstrap samples to generate when calculating the estimated standard error. The default value is 10000.

seed
The random seed to use when generating the bootstrap samples (for reproducibility). The default value is 314159265. If set to NA, the random seed will not be set (for example, if the function is used as part of a larger simulation).

Details

The median-based methods have greater robustness to individual genetic variants with strongly outlying causal estimates compared with the inverse-variance weighted and MR-Egger methods. Formally, the simple median method gives a consistent estimate of the causal effect when at least 50% of the genetic variants are valid instrumental variables (for the weighted median method, when 50% of the weight comes from valid instrumental variables).

When the weighting is "simple", the estimate is obtained by calculating the ratio causal estimates from each genetic variant theta = betaY/betaX, and finding the median estimate.

When the weighting is "weighted", the estimate is obtained by:

1. Calculating the ratio causal estimates and ordering the genetic variants according to the magnitude of their estimates, i.e.
 \[\theta_1 < \theta_2 < \ldots < \theta_J \]

2. Calculate normalized inverse-variance weights for each genetic variant \(w_1, w_2, \ldots, w_J \), as:
 \[w_j = \frac{\beta^2_{X_j}}{se(\beta_{Y_j})^2 / \sum_{i=1}^{J} \beta^2_{X_i} / se(\beta_{Y_i})^2} \]

3. Find k such that
 \[s_k = \sum_{i=1}^{k} w_i < 0.5 \]
 and
 \[s_{k+1} = \sum_{i=1}^{k+1} w_i > 0.5 \]

4. Calculate the weighted median estimate by extrapolation as:
 \[\theta_{WM} = \theta_k + (\theta_{k+1} - \theta_k) \times \frac{0.5 - s_k}{s_{k+1} - s_k} \]
The simple median estimate is the same as the weighted median estimate when all the weights are equal. Standard errors for both the simple and weighted median methods are calculated through bootstrapping.

When the weighting is "penalized", the weighted method is used, but the contribution of genetic variants with outlying (heterogeneous) ratio estimates to the analysis is downweighted.

Value

The output from the function is a WeightedMedian object containing:

- **Type**: The type of weights used: "weighted", "simple", or "penalized".
- **Exposure**: A character string giving the name given to the exposure.
- **Outcome**: A character string giving the name given to the outcome.
- **Estimate**: The value of the causal estimate.
- **StdError**: Standard error of the causal estimate calculated using bootstrapping.
- **CIUpper**: The upper bound for the causal estimate based on the estimated bootstrapped standard error and the significance level provided.
- **CILower**: The lower bound for the causal estimate based on the estimated bootstrapped standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-value associated with the estimate (calculated using \(\text{Estimate}/\text{StdError} \) as per a Wald test) using a normal or t-distribution (as specified in `distribution`).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.

References

Examples

```r
mr_median(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
          weighting = "weighted", iterations = 100)
# iterations is set to 100 to reduce runtime for the mr_median method,
# 10000 iterations are recommended in practice
mr_median(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
          weighting = "simple", iterations = 100)
mr_median(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
          weighting = "penalized", iterations = 100)
```
The `mr_mvegger` function performs multivariable Mendelian randomization via the MR-Egger method. This is implemented by multivariable weighted linear regression.

Usage

```r
mr_mvegger(
  object,
  orientate = 1,
  correl = FALSE,
  distribution = "normal",
  alpha = 0.05
)
```

Arguments

- **object**: An `MRMVInput` object.
- **orientate**: The risk factor that genetic associations are orientated to. The univariable and multivariable versions of MR-Egger are both sensitive to the choice of parameterization of the genetic associations - which allele the associations are orientated with respect to (in other words, which allele is the effect allele). For univariable MR-Egger, this is resolved by setting the genetic associations with the exposure all to be positive. In multivariable MR-Egger, we have to choose which of the exposures to orientate the genetic associations to. The default option is 1, meaning that genetic associations with the first exposure are set to be positive.
- **correl**: If the genetic variants are correlated, then this correlation can be accounted for. The matrix of correlations between must be provided in the `MRInput` object: the elements of this matrix are the correlations between the individual variants (diagonal elements are 1). If a correlation matrix is specified in the `MRInput` object, then `correl` is set to `TRUE`.
- **distribution**: The type of distribution used to calculate the confidence intervals. Options are "normal" (default) or "t-dist".
alpha The significance level used to calculate the confidence interval. The default value is 0.05.

Details

Multivariable MR-Egger is an extension of the MR-Egger method to deal with genetic variants that are associated with multiple risk factors.

We implement the method using multivariable weighted linear regression. If the variants are correlated, the method is implemented using generalized weighted linear regression; this is hard coded using matrix algebra.

The causal estimate is obtained by regression of the associations with the outcome on the associations with the risk factors, with the intercept estimated and weights being the inverse-variances of the associations with the outcome.

Value

The output from the function is an MVEgger object containing:

- **Model**: A character string giving the type of model used ("random").
- **Orientate**: The number corresponding to the risk factor that the genetic associations are orientated to.
- **Exposure**: A character vector with the names given to the exposure.
- **Outcome**: A character string with the names given to the outcome.
- **Correlation**: The matrix of genetic correlations.
- **Estimate**: A vector of the causal estimates (slope coefficient).
- **StdError.Est**: Standard errors of the causal estimates.
- **Pvalue.Est**: The p-values associated with the estimates using a normal or t-distribution (as specified in distribution).
- **CILower.Est**: The lower bound of the causal estimates based on the estimated standard error and the significance level provided.
- **CIUpper.Est**: The upper bound of the causal estimates based on the estimated standard error and the significance level provided.
- **Intercept**: The value of the intercept estimate.
- **StdError.Int**: Standard error of the intercept estimate.
- **Pvalue.Int**: The p-value associated with the intercept.
- **CILower.Int**: The lower bound of the intercept based on the estimated standard error and the significance level provided.
- **CIUpper.Int**: The upper bound of the intercept based on the estimated standard error and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-values associated with the estimates (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in distribution).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
mr_mvinput

Inputting and formatting data for use in causal estimation

Description

The mr_mvinput function is required for inputting and formatting data for use in the multivariable Mendelian randomization functions provided in this package.

Usage

mr_mvinput(
 bx = matrix(),
 bxse = matrix(),
 by = 0,
 byse = 0,
 correlation = matrix(),
 exposure = "exposure",
 outcome = "outcome",
 snps = "snp",
 effect_allele = NA,
 other_allele = NA,
 eaf = NA
)

Arguments

bx A matrix of beta-coefficient values for genetic associations with the risk factor variables. These should be arranged so that column 1 are the beta-coefficients for risk factor 1, and row 1 are the beta-coefficients for genetic variant 1.

bxse The matrix of standard errors associated with the beta-coefficients bx.

RSE The estimated residual standard error from the regression model.

Heter.Stat Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.

References

Examples

mr_mvegger(mr_mvinput(bx = cbind(ldlc, hdlc, trig), bxse = cbind(ldlcse, hdlcse, trigse),
 by = chdlodds, byse = chdloddsse), orientate = 1)
by A numeric vector of beta-coefficient values for genetic associations with the second variable (often referred to as the outcome). For a disease outcome, the beta coefficients are log odds estimates from logistic regression analyses.

byse The vector standard errors associated with the beta-coefficients in by.

correlation The matrix of correlations between genetic variants. If this variable is not provided, then we assume that genetic variants are uncorrelated.

exposure The names of the exposure variables.

outcome The name of the outcome variable.

snps The names of the genetic variants (SNPs) included in the analysis. The inputs exposure, outcome, and snps are not required, but may be useful for keeping track of various MRInput objects. They are also used by the mr_plot function.

effect_allele The name of the effect allele for each SNP. The beta-coefficients are the associations with the exposure and outcome per additional copy of the effect allele.

other_allele The name of the non-effect allele.

eaf The expected allele frequencies (numeric). The slots effect_allele, other_allele, and eaf are neither required, nor currently used in the MendelianRandomization package. They are included for future compatibility with the MR-Base suite of functions.

Details

The beta-coefficients are assumed to be estimated for uncorrelated (independent) genetic variants, although a correlation matrix can be specified if the variants are correlated in their distributions. We also assume that the beta-coefficients for associations with the exposure and with the outcome are uncorrelated (corresponding to a two-sample Mendelian randomization analysis), although correlation between associations with the exposure and with the outcome generally have little impact on causal estimates or standard errors.

If the variables are not all the same length, then an error message will be reported. The analyses will still try to run, but the output may be misleading. However, in some analyses (for example, the standard IVW and MR-Egger methods), the values of bxse are not used in the analysis, and can therefore safely be omitted (provided that the other variables are correctly labelled).

Value

An MRMVInput object containing:

betaX The genetic associations with the exposures.

betaXse The corresponding standard errors.

betaY The genetic associations with the outcome.

betaYse The corresponding standard errors.

correlation The matrix of genetic correlations.

exposure Character strings with the names given to the exposures.

outcome A character string giving the name given to the outcome.

snps A vector of character strings with the names of the genetic variants.
effect_allele A vector of character strings with the names of the effect alleles.
other_allele A vector of character strings with the names of the non-effect alleles.
eaf A numeric vector with the effect allele frequencies.

Description

The mr_mvivw function performs multivariable Mendelian randomization via the inverse-variance method. This is implemented by multivariable weighted linear regression.

Usage

mr_mvivw(
 object,
 model = "default",
 robust = FALSE,
 correl = FALSE,
 distribution = "normal",
 alpha = 0.05,
 ...
)

S4 method for signature 'MRMVInput'
mr_mvivw(
 object,
 model = "default",
 robust = FALSE,
 correl = FALSE,
 distribution = "normal",
 alpha = 0.05,
 ...
)

Arguments

object An MRMVInput object.
model What type of model should be used: "default", "random" or "fixed". The random-effects model ("random") is a multiplicative random-effects model, allowing overdispersion in the weighted linear regression (the residual standard error is not fixed to be 1, but is not allowed to take values below 1). The fixed-effect model ("fixed") sets the residual standard error to be 1. The "default" setting is to use a fixed-effect model with 3 genetic variants or fewer, and otherwise to use a random-effects model.
robust Indicates whether robust regression using the `lmrob()` function from the package `robustbase` should be used in the method rather than standard linear regression (lm).

correl If the genetic variants are correlated, then this correlation can be accounted for. The matrix of correlations between must be provided in the `MRMVInput` object: the elements of this matrix are the correlations between the individual variants (diagonal elements are 1). If a correlation matrix is specified in the `MRMVInput` object, then `correl` is set to `TRUE`.

distribution The type of distribution used to calculate the confidence intervals. Options are "normal" (default) or "t-dist".

alpha The significance level used to calculate the confidence interval. The default value is 0.05.

... Additional arguments to be passed to the regression method.

Details

Multivariable Mendelian randomization is an extension of Mendelian randomization to deal with genetic variants that are associated with multiple risk factors. Two scenarios are envisioned for its use: 1) risk factors that are biologically related, such as lipid fractions; and 2) risk factors where there is potentially a network of causal effects (mediation) from one risk factor to another. In both cases, under the extended assumptions of multivariable Mendelian randomization, coefficients represent the direct causal effects of each risk factor in turn with the other risk factors being fixed.

We implement the method using multivariable weighted linear regression. If the variants are correlated, the method is implemented using generalized weighted linear regression; this is hard coded using matrix algebra.

The causal estimate is obtained by regression of the associations with the outcome on the associations with the risk factors, with the intercept set to zero and weights being the inverse-variances of the associations with the outcome.

Value

The output from the function is an `MVIVW` object containing:

- **Model**: A character string giving the type of model used ("fixed", "random", or "default").
- **Exposure**: A character vector with the names given to the exposure.
- **Outcome**: A character string with the names given to the outcome.
- **Robust**: `TRUE` if robust regression has been used to calculate the estimate, `FALSE` otherwise.
- **Correlation**: The matrix of genetic correlations.
- **Estimate**: A vector of causal estimates.
- **StdError**: A vector of standard errors of the causal estimates.
- **CILower**: The lower bounds of the causal estimates based on the estimated standard errors and the significance level provided.
- **CIUpper**: The upper bounds of the causal estimates based on the estimated standard errors and the significance level provided.
Alpha
The significance level used when calculating the confidence intervals.

Pvalue
The p-values associated with the estimates (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in `distribution`).

SNPs
The number of genetic variants (SNPs) included in the analysis.

RSE
The estimated residual standard error from the regression model.

Heter.Stat
Heterogeneity statistic (Cochran's Q statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.

References

Examples

```r
mr_mviw(mr_mvinp(bx = cbind(ldlc, hdlc, trig), bxse = cbind(ldlcse, hdlcse, trigse),
by = chdlodds, byse = chdloddsse))
```

mr_mvllasso

Multivariable MR-Lasso method

Description

The `mr_mvllasso` function performs the multivariable MR-Lasso method, which applies lasso-type penalization to the direct effects of genetic variants on the outcome. The causal estimates are described as post-lasso estimates, and are obtained by performing the multivariable IVW method using only those genetic variants that are identified as valid by the lasso procedure.

Usage

```r
mr_mvllasso(
  object,
  orientate = 1,
  distribution = "normal",
  alpha = 0.05,
)```
lambda = numeric(0)
)

## S4 method for signature 'MRMVInput'
mr_mvlasso(
  object,
  orientate = 1,
  distribution = "normal",
  alpha = 0.05,
  lambda = numeric(0)
)

Arguments

object
  An MRMVInput object.
orientate
  The risk factor that genetic associations are orientated to. The default option
  is 1, meaning that genetic associations with the first risk factor are set to be
  positive.
distribution
  The type of distribution used to calculate the confidence intervals. Options are
  "normal" (default) or "t-dist".
alpha
  The significance level used to calculate the confidence intervals. The default
  value is 0.05.
lambda
  The value of the tuning parameter used by the lasso procedure which controls
  the level of sparsity. If not specified, the tuning parameter will be calculated by
  the heterogeneity stopping rule.

Details

Multivariable MR-Lasso extends the multivariable IVW model to include an intercept term for each
 genetic variant. These intercept terms represent associations between the genetic variants and the
 outcome which bypass the risk factors. The regularized regression model is estimated by multi-
 variable weighted linear regression where the intercept terms are subject to lasso-type penalization.
 The lasso penalty will tend to shrink the intercept terms corresponding to the valid instruments
to zero.

The lasso penalty relies on a tuning parameter which controls the level of sparsity. The default is to
 use a heterogeneity stopping rule, but a fixed value may be specified.

As part of the analysis, the genetic variants are orientated so that all of the associations with one of
 the risk factors are positive (the first risk factor is used by default). Re-orientation of the genetic
 variants is performed automatically as part of the function.

The MR-Lasso method is performed in two steps. First, a regularized regression model is fitted,
 and some genetic variants are identified as valid instruments. Second, causal effects are estimated
 using standard multivariable IVW with only the valid genetic variants. The post-lasso method will
 be performed as long as the number of genetic variants identified as valid instruments is greater than
 the number of risk factors. The default heterogeneity stopping rule will always return more genetic
 variants as valid instruments than risk factors for identification. The main estimates given by the
 method are the post-lasso estimates. However, parameter estimates from the regularized regression
 model used to identify invalid variants are also provided for completeness.
If a substantial proportion of genetic variants are removed from the analysis, the multivariable MR-Lasso method may give a false impression of confidence in the causal estimate due to homogeneity of the variant-specific causal estimates amongst the remaining variants. However, it is not reasonable to claim that there is strong evidence for a causal effect after a large number of variants with heterogeneous estimates have been removed from the analysis.

**Value**

The output from the function is an `MVLasso` object containing:

- **Exposure**: A character vector with the names given to the exposure.
- **Outcome**: A character vector with the names given to the outcome.
- **Estimate**: A vector of causal estimates from the multivariable MR-Lasso method. These are the post-lasso estimates.
- **StdError**: A vector of standard errors of the causal estimates from the multivariable MR-Lasso method.
- **CILower**: The lower bounds of the confidence intervals for the causal estimates based on the estimated standard errors and the significance level provided.
- **CIUpper**: The upper bounds of the confidence intervals for the causal estimates based on the estimated standard errors and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-values associated with the (post-lasso) causal estimates using a normal or t-distribution (as specified in `distribution`).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.
- **RegEstimate**: The estimates from the regularized regression model used in the multivariable MR-Lasso method.
- **RegIntercept**: The intercept estimates from the regularized regression model used in the multivariable MR-Lasso method.
- **Valid**: The number of genetic variants that have been identified as valid instruments.
- **ValidSNPs**: The names of genetic variants that have been identified as valid instruments.
- **Lambda**: The value of the tuning parameter used to compute `RegEstimate`.

**References**


**Examples**

```r
mr_mvlasso(mr_mvinput(bx = cbind(ldlc, hdlc, trig), bxse = cbind(ldlcse, hdlcse, trigse),
 by = chdlodds, byse = chdloddsse))
```
Description

The `mr_mvmedian` function performs multivariable Mendelian randomization via the median method. This is implemented by multivariable weighted quantile regression, with the quantile set to 0.5 (the median).

Usage

```r
mr_mvmedian(
 object,
 distribution = "normal",
 alpha = 0.05,
 iterations = 10000,
 seed = 314159265
)
```

## S4 method for signature 'MRMVInput'
```r
mr_mvmedian(
 object,
 distribution = "normal",
 alpha = 0.05,
 iterations = 10000,
 seed = 314159265
)
```

Arguments

- **object**: An `MRMVInput` object.
- **distribution**: The type of distribution used to calculate the confidence intervals. Options are "normal" (default) or "t-dist".
- **alpha**: The significance level used to calculate the confidence intervals. The default value is 0.05.
- **iterations**: The number of bootstrap samples to generate when calculating the estimated standard error. The default value is 10000.
- **seed**: The random seed to use when generating the bootstrap samples (for reproducibility). The default value is 314159265. If set to `NA`, the random seed will not be set (for example, if the function is used as part of a larger simulation).

Details

The multivariable median method is similar to the univariable weighted median method, except that it is implemented using quantile regression. The regression model is multivariable and weighted by the inverse of the variances of the variant-specific estimates. Confidence intervals are calculated by
parametric bootstrap to estimate the standard error of the estimates, and then using quantiles of a normal or t-distribution (depending on the value of distribution).

Value

The output from the function is an MVMedian object containing:

- **Exposure**: A character vector with the names given to the exposure.
- **Outcome**: A character string with the names given to the outcome.
- **Estimate**: A vector of causal estimates.
- **StdError**: A vector of standard errors of the causal estimates.
- **CILower**: The lower bounds of the causal estimates based on the estimated standard errors and the significance level provided.
- **CIUpper**: The upper bounds of the causal estimates based on the estimated standard errors and the significance level provided.
- **Alpha**: The significance level used when calculating the confidence intervals.
- **Pvalue**: The p-values associated with the estimates (calculated as Estimate/StdError as per Wald test) using a normal or t-distribution (as specified in distribution).
- **SNPs**: The number of genetic variants (SNPs) included in the analysis.

Examples

```r
mr_mvmedian(mr_mvinp(bx = cbind(ldlc, hdlc, trig), bxse = cbind(ldlcse, hdlcse, trigse),
by = chdlodds, byse = chdloddsse), iterations = 100)
```

# iterations is set to 100 to reduce runtime for the mr_mvmedian method,
# 10000 iterations are recommended in practice

---

**mr_plot**  
*Draw a scatter plot of the genetic associations and/or causal estimates*

Description

The function `mr_plot` has three functionalities. It can generate a visual representation of MRInput, MRMVInput and MRAll objects.

Usage

```r
mr_plot(
 object,
 error = TRUE,
 line = "ivw",
 orientate = FALSE,
 interactive = TRUE,
 labels = FALSE
)
```
## S4 method for signature 'MRInput'

```r
mr_plot(
 object,
 error = TRUE,
 line = "ivw",
 orientate = FALSE,
 interactive = TRUE,
 labels = FALSE
)
```

## S4 method for signature 'MRAll'

```r
mr_plot(object)
```

## S4 method for signature 'MRMVInput'

```r
mr_plot(
 object,
 error = TRUE,
 line = TRUE,
 orientate = FALSE,
 interactive = TRUE,
 labels = FALSE
)
```

### Arguments

- **object** An MRInput object or an MRMVInput object or an MRAll object.
- **error** When viewing an MRInput or MRMVInput object, one can choose whether to include error bars (default is to include). For an MRMVInput object, the horizontal error bars only take into account uncertainty in the causal estimates.
- **line** When viewing an MRInput object, one can choose whether to include the IVW estimate (line = "ivw") or the MR-Egger estimate (line = "egger"). When viewing an MRMVInput, one can choose whether to include a line through the origin with gradient 1 (line = TRUE) or not.
- **orientate** When viewing an MRInput or MRMVInput object, one can choose whether to orientate all genetic variants so that the associations with the risk factor are all positive. This is recommended particularly when plotting the MR-Egger estimate, although the default setting is FALSE.
- **interactive** When viewing an MRInput or MRMVInput object, one can choose whether to produce an interactive graph using the plotly package, or a static graph using the regular plot command.
- **labels** When viewing an MRInput or MRMVInput object with interactive set to FALSE, setting labels to TRUE means that the name of each genetic variants appears above the corresponding datapoint.
The result is dependent on the type of object passed to `mr_plot`. When the object is an `MRInput` object, the function uses either the `plot` command (if `interactive` is set to `FALSE`) or `plotly` syntax (if `interactive` is set to `TRUE`) to plot the association estimates against each other. When the object is an `MRMVInput` object, functionality is similar except that we plot the estimated associations with the outcome on the y-axis, and fitted values of the associations with the outcome from the inverse-variance weighted method on the x-axis. If `interactive` is set to `FALSE`, then a static graph is produced. By setting `labels` to `TRUE`, the names of the genetic variants appear above the points. This produces a less visually appealing graph, but one where it is easier to identify the individual genetic variants. If `interactive` is set to `TRUE`, then the plot is interactive and the user can hover over the various points to see the name of the associated genetic variant and its association estimates.

When the object is an `MRAll` object, the function generates a `ggplot` to compare the causal estimates proposed by different methods.

### Examples

```r
mr_plot(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
 line="egger", orientate = TRUE)
mr_plot(mr_input(bx = ldlc, bxse = ldlcse, by = chdlodds, byse = chdloddsse),
 line="ivw", interactive=FALSE) # produces a static graph
mr_plot(mr_allmethods(mr_input(bx = ldlc, bxse = ldlcse,
 by = chdlodds, byse = chdloddsse), method="all", iterations = 50))
iterations is set to 50 to reduce runtime for the mr_median method,
10000 iterations are recommended in practice
```

### Description

An object containing the estimates produced using the multivariable MR-Egger method as well as various statistics.

### Slots

- **Model** Model always takes the value `random`, as only random-effects analyses are permitted.
- **Orientate** The number of the risk factor that genetic associations are orientated to. The default value is 1, meaning that genetic associations with the first risk factor are set to be positive.
- **Exposure** The names of the exposure variables.
- **Outcome** The name of the outcome variable.
- **Correlation** The matrix of correlations between genetic variants.
- **Estimate** The causal estimates from the inverse-variance weighted method.
- **StdError.Est** The standard errors associated with `Estimate`.
- **CILower.Est** The lower bounds of the confidence interval for `Estimate` based on `StdError`. 
**MVIVW-class**

**Description**

An object containing the estimates produced using the multivariable inverse-variance weighted (IVW) method as well as various statistics.

**Slots**

- **Model** The model used for estimation: random-effects ("random") or fixed-effect ("fixed"). The default option ("default") is to use a fixed-effect model when there are three or fewer genetic variants, and a random-effects model when there are four or more. The (multiplicative) random-effects model allows for heterogeneity between the causal estimates targeted by the genetic variants by allowing over-dispersion in the regression model. Under-dispersion is not permitted (in case of under-dispersion, the residual standard error is set to 1, as in a fixed-effect analysis).

- **Exposure** The names of the exposure variables.

- **Outcome** The name of the outcome variable.

- **Robust** Whether robust regression was used in the regression model relating the genetic associations with the outcome and those with the exposure.

- **Correlation** The matrix of correlations between genetic variants.

- **Estimate** The causal estimates from the inverse-variance weighted method.

- **StdError** The standard errors associated with Estimate.

- **CILower** The lower bounds of the confidence interval for Estimate based on StdError.
CIUpper  The upper bounds of the confidence interval for Estimate based on StdError.
Alpha  The significance level used in constructing the confidence interval (default is 0.05).
Pvalue  P-value associated with the causal estimate.
SNPs  The number of SNPs that were used in the calculation.
RSE  The estimated residual standard error from the regression model.
Heter.Stat  Heterogeneity statistic (Cochran’s Q statistic) and associated p-value: the null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null is an indication that one or more variants may be pleiotropic.

---

**MVLasso-class**  
**MRMVLasso class**  

**Description**  
An object containing the estimates produced using the multivariable MR-Lasso method as well as various statistics.

**Slots**  
Exposure  The names of the exposure variables.
Outcome  The name of the outcome variable.
Orientate  The number of the risk factor that genetic associations are orientated to. The default value is 1, meaning that genetic associations with the first risk factor are set to be positive.
Estimate  The causal estimates from the multivariable MR-Lasso method.
StdError  The standard errors associated with Estimate.
CIUpper  The upper bounds of the confidence intervals for Estimate based on StdError.
CILower  The lower bounds of the confidence intervals for Estimate based on StdError.
Alpha  The significance level used in constructing the confidence interval (default is 0.05).
Pvalue  P-values associated with the causal estimates from the multivariable MR-Lasso method.
SNPs  The number of SNPs used in the calculation.
RegEstimate  The estimates from the regularized regression model used in the multivariable MR-Lasso method.
RegIntercept  The intercept estimates from the regularized regression model used in the multivariable MR-Lasso method. An intercept estimate of zero identifies the corresponding genetic variant as a valid instrument. Genetic variants with non-zero intercept estimates will be excluded from the MR-Lasso method, which is obtained as a post-lasso estimator.
Valid  The number of genetic variants that have been identified as valid instruments.
ValidSNPs  The names of genetic variants that have been identified as valid instruments.
Lambda  The value of the tuning parameter used to compute RegEstimate (default is to calculate Lambda using the heterogeneity stopping rule).
**MVMedian-class**  
*MRMVMedian class*

**Description**

An object containing the estimates produced using the multivariable median method as well as various statistics.

**Slots**

- **Exposure**  The names of the exposure variables.
- **Outcome**  The name of the outcome variable.
- **Estimate**  The causal estimates from the multivariable median method.
- **StdError**  The standard errors associated with Estimate (obtained from bootstrapping).
- **CILower**  The lower bounds of the confidence intervals for Estimate based on StdError.
- **CIUpper**  The upper bounds of the confidence intervals for Estimate based on StdError.
- **Alpha**  The significance level used in constructing the confidence interval (default is 0.05).
- **Pvalue**  P-values associated with the causal estimates from the Wald method.
- **SNPs**  The number of SNPs that used in the calculation.

**phenoscanner**  
*PhenoScanner*

**Description**

The phenoscanner function queries the PhenoScanner database of genotype-phenotype associations from inside R.

**Usage**

```r
phenoscanner(
 snpquery = NULL,
 genequery = NULL,
 regionquery = NULL,
 catalogue = "GWAS",
 pvalue = 1e-05,
 proxies = "None",
 r2 = 0.8,
 build = 37
)
```
Arguments

- `snpquery`: a vector of SNPs.
- `genequery`: a vector of gene names.
- `regionquery`: a vector of genomic regions.
- `catalogue`: the catalogue to be searched (options: None, GWAS, eQTL, pQTL, mQTL, methQTL).
- `pvalue`: the p-value threshold.
- `proxies`: the proxies database to be searched (options: None, AFR, AMR, EAS, EUR, SAS).
- `r2`: the r2 threshold.
- `build`: the genome build (options: 37, 38).

Value

A list containing a data.frame of association results and a data.frame of SNP/Region/Gene information from PhenoScanner.

Author(s)

PhenoScanner <phenoscanner@gmail.com>

Examples

```r
SNP
res <- phenoscanner(snpquery="rs10840293")
head(res$results)
res$snps

Gene
res <- phenoscanner(genequery="SWAP70")
head(res$results)
res$snps

Region
res <- phenoscanner(regionquery="chr11:9685624-9774538")
head(res$results)
res$regions
```

Description

The function pheno_input extracts summarized data on associations with named exposure and outcome variables from PhenoScanner.
Usage

```
pheno_input(
 snps,
 exposure,
 pmidE,
 ancestryE,
 outcome,
 pmidO,
 ancestryO,
 correl = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>snps</strong></td>
<td>The names (rsid) of the genetic variants to be included in the analysis.</td>
</tr>
<tr>
<td><strong>exposure</strong></td>
<td>The name of the exposure variable.</td>
</tr>
<tr>
<td><strong>pmidE</strong></td>
<td>The PubMed ID (PMID) of the publication in which the genetic association estimates with the exposure were originally reported. Some variables are reported in multiple consortia (for example, associations with coronary artery disease by CARDIoGRAM in 2011 [PMID:21378990], by CARDIoGRAMplusC4D in 2013, and again by CARDIoGRAMplusC4D in 2015 [PMID:26343387]). Equally, some publications reported associations on multiple variables (for example, CARDIoGRAMplusC4D in 2015 [PMID:26343387] reported associations with coronary artery disease and with myocardial infarction). By providing the variable name and the PubMed ID, the set of associations is (almost) uniquely identified.</td>
</tr>
<tr>
<td><strong>ancestryE</strong></td>
<td>The ancestry of individuals in which estimates were obtained. A small number of studies reported genetic association estimates for a single variable in a single publication for multiple ethnicities (for example, associations with log(eGFR creatinine) from CKD-Gen in 2016 [PMID:26831199] were reported for both Europeans and Africans). The combination of exposure name, PubMed ID, and ancestry uniquely defines the set of associations. Providing the ancestry also reminds analysts of the additional complication of conducting Mendelian randomization when associations with the exposure and with the outcome are in individuals of different ancestry. Most association estimates are obtained in &quot;European&quot; or &quot;Mixed&quot; populations, although some are obtained in &quot;African&quot;, &quot;Asian&quot;, or &quot;Hispanic&quot; populations.</td>
</tr>
<tr>
<td><strong>outcome</strong></td>
<td>The name of the outcome variable.</td>
</tr>
<tr>
<td><strong>pmidO</strong></td>
<td>The PubMed ID of the publication in which the genetic association estimates with the outcome were originally reported.</td>
</tr>
<tr>
<td><strong>ancestryO</strong></td>
<td>The ancestry of individuals in which genetic association estimates with the outcome were obtained.</td>
</tr>
<tr>
<td><strong>correl</strong></td>
<td>The correlations between the genetic variants. If this is not specified, then the genetic variants are assumed to be uncorrelated. Note that for the correlations to reference the correct variants, the list of genetic variants needs to be in alphabetical order.</td>
</tr>
</tbody>
</table>
Details

The PhenoScanner bioinformatic tool ([http://phenoscanner.medschl.cam.ac.uk/](http://phenoscanner.medschl.cam.ac.uk/)) is a curated database of publicly available results from large-scale genetic association studies. Queries can be made for individual genetic variants (SNPs and small indels), or for multiple variants in a single batch query. These association estimates and their standard errors can be used in Mendelian randomization analyses.

The phenoscanner command is included in the MendelianRandomization package with permission of James Staley. The function is also available in a standalone package from github: [https://github.com/phenoscanner/phenoscanner](https://github.com/phenoscanner/phenoscanner).

Value

The output of the pheno_input function is an MRInput object that can be used directly in any of the estimation functions (such as mr_ivw) or in the plotting function mr_plot. The output contains:

- \( bx \) The genetic associations with the exposure.
- \( bxse \) The corresponding standard errors.
- \( by \) The genetic associations with the outcome.
- \( byse \) The corresponding standard errors.
- \( correlation \) The matrix of genetic correlations as specified by the user.
- \( exposure \) A character string giving the name of the exposure as provided in the PhenoScanner database.
- \( outcome \) A character string giving the name of the outcome as provided in the PhenoScanner database.
- \( snps \) A vector of character strings with the names of the genetic variants.

References


Examples

# pheno_input(snps=c("rs12916", "rs2479409", "rs217434", "rs1367117"),
# exposure = "Low density lipoprotein", pmidE = "24097068", ancestryE = "European",
# outcome = "Coronary artery disease", pmidO = "26343387", ancestryO = "Mixed")
**WeightedMedian-class**  

**Description**

An object containing the estimate produced using the median-based method as well as various statistics.

**Slots**

- **Type**  The type of median that has been calculated, "simple", "weighted", or "penalized".
- **Exposure**  The name of the exposure variable.
- **Outcome**  The name of the outcome variable.
- **Estimate**  The causal point estimate from the median-based method.
- **StdError**  The standard error associated with Estimate (obtained from bootstrapping).
- **CILower**  The lower bound of the confidence interval for Estimate based on StdError.
- **CIUpper**  The upper bound of the confidence interval for Estimate based on StdError.
- **Alpha**  The significance level used in constructing the confidence interval (default is 0.05).
- **Pvalue**  P-value associated with the causal estimate from the Wald method.
- **SNPs**  The number of SNPs that used in the calculation.
Index

* datasets
  calcium, 2
  ldlc, 9
  calc.rho (calcium), 2
  calcium, 2
  calciumse (calcium), 2
  chdlodds (ldlc), 9
  chdlodssse (ldlc), 9
  Egger-class, 3
  extract.pheno.csv, 5
  fastgluc (calcium), 2
  fastglucose (calcium), 2
  hdlc (ldlc), 9
  hdlcse (ldlc), 9
  IVW-class, 8
  ldlc, 9
  ldlcse (ldlc), 9
  lipid_eaf (ldlc), 9
  lipid_effect (ldlc), 9
  lipid_other (ldlc), 9
  MaxLik-class, 10
  mr_allmethods, 16
  mr_allmethods, MRInput-method (mr_allmethods), 16
  mr_connix, 17
  mr_connix, MRInput-method (mr_connix), 17
  mr_egger, 19
  mr_egger, MRInput-method (mr_egger), 19
  mr_forest, 22
  mr_forest, MRInput-method (mr_forest), 22
  mr_funnel, 24
  mr_funnel, MRInput-method (mr_funnel), 24
  mr_hetpen, 25
  mr_hetpen, MRInput-method (mr_hetpen), 25
  mr_input, 27
  mr_ivw, 29
  mr_ivw, MRInput-method (mr_ivw), 29
  mr_lasso, 32
  mr_lasso, MRInput-method (mr_lasso), 32
  mr_loo, 34
  mr_loo, MRInput-method (mr_loo), 34
  mr_maxlik, 35
  mr_maxlik, MRInput-method (mr_maxlik), 35
  mr_mbe, 38
  mr_mbe, MRInput-method (mr_mbe), 38
  mr_median, 40
  mr_median, MRInput-method (mr_median), 40
  mr_mvegger, 43
  mr_mvegger, MRMVInput-method (mr_mvegger), 43
  mr_mvinput, 45
  mr_mviw, 47
  mr_mviw, MRMVInput-method (mr_mviw), 47
  mr_mvllasso, 49
  mr_mvllasso, MRMVInput-method (mr_mvllasso), 49
  mr_mvmedian, 52
  mr_mvmedian, MRMVInput-method (mr_mvmedian), 52
  mr_plot, 53
  mr_plot, MRAll-method (mr_plot), 53
  mr_plot, MRInput-method (mr_plot), 53
  mrmvforest, 53
  MRAll-class, 11
  MRConMix-class, 11
  MRHetPen-class, 12
  MRInput-class, 13
  MRLaasso-class, 14
  MRMBE-class, 14
  MRMVInput-class, 15
  MVEgger-class, 55
  MVIVW-class, 56
  MVLasso-class, 57
MVMedian-class, 58

pheno_input, 59
phenoscanner, 58

trig(ldlc), 9
trigse(ldlc), 9

WeightedMedian-class, 62