Package ‘MachineShop’

August 19, 2021

Type Package

Title Machine Learning Models and Tools

Version 3.0.0

Date 2021-08-19

Author Brian J Smith [aut, cre]

Maintainer Brian J Smith <brian-j-smith@uiowa.edu>

Description Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.

Depends R (>= 3.6.0)

Imports abind, dials (>= 0.0.4), foreach, ggplot2 (>= 3.3.0), kernlab, magrittr, Matrix, methods, nnet, party, polspline, Rcpp, progress, recipes (>= 0.1.4), rlang, rsample (>= 0.1.0), Rsolnp, survival, tibble, utils

Suggests adabag, BART, bartMachine, C50, cluster, doParallel, e1071, earth, elasticnet, gbm, glmnet, gridExtra, Hmisc, kableExtra, kknn, knitr, lars, MASS, mboost, mda, partykit, pls, randomForest, randomForestSRC, ranger, rmarkdown, rms, rpart, testthat, tree, xgboost

LazyData true

License GPL-3
R topics documented:

- MachineShop-package ... 4
- AdaBagModel ... 6
- AdaBoostModel .. 8
- as.MLMModel ... 9
- BARTMachineModel ... 10
- BARTModel ... 11
- BlackBoostModel ... 13
- C50Model .. 15
R topics documented:

calibration .. 17
case_weights ... 18
CForestModel .. 19
combine ... 20
confusion ... 21
CoxModel ... 22
dependence ... 24
diff .. 25
DiscreteVariate ... 26
EarthModel .. 27
expand_model ... 28
expand_modelgrid .. 29
expand_params .. 31
expand_steps ... 32
extract ... 33
FDAModel .. 34
fit ... 35
GAMBoostModel ... 37
GBMModel ... 38
GLMBoostModel ... 39
GLMMModel ... 41
GLMNetModel .. 42
Grid .. 44
ICHomes ... 45
inputs .. 45
KNNModel .. 46
LARSModel .. 47
LDAModel .. 49
lift .. 50
LMMModel ... 51
MDAModel .. 51
metricinfo ... 53
metrics ... 54
MLControl .. 58
MLMetric .. 61
MLModel ... 62
ModeledInput .. 64
ModelFrame ... 66
modelInfo ... 67
models .. 68
NaiveBayesModel ... 70
NNetModel ... 71
ParameterGrid .. 72
performance ... 73
performance_curve .. 75
plot .. 77
PLSModel .. 79
POLRModel ... 80
Description

Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics
are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.

Details

The following set of model fitting, prediction, and performance assessment functions are available for MachineShop models.

Training:

- **fit**
 Model fitting
- **resample**
 Resample estimation of model performance

Tuning Grids:

- **expand_model**
 Model expansion over tuning parameters
- **expand_modelgrid**
 Model tuning grid expansion
- **expand_params**
 Model parameters expansion
- **expand_steps**
 Recipe step parameters expansion

Response Values:

- **response**
 Observed
- **predict**
 Predicted

Performance Assessment:

- **calibration**
 Model calibration
- **confusion**
 Confusion matrix
- **dependence**
 Partial dependence
- **diff**
 Model performance differences
- **lift**
 Lift curves
- **performance_metrics**
 Model performance metrics
- **performance_curve**
 Model performance curves
- **varimp**
 Variable importance

Methods for resample estimation include

- **BootControl**
 Simple bootstrap
- **BootOptimismControl**
 Optimism-corrected bootstrap
- **CVControl**
 Repeated K-fold cross-validation
Graphical and tabular summaries of modeling results can be obtained with

```
plot
print
summary
```

Further information on package features is available with

```
metricinfo  Performance metric information
modelinfo   Model information
settings    Global settings
```

Custom metrics and models can be created with the `MLMetric` and `MLModel` constructors.

Author(s)

Maintainer: Brian J Smith <brian-j-smith@uiowa.edu>

See Also

Useful links:

- https://brian-j-smith.github.io/MachineShop/

AdaBagModel
Bagging with Classification Trees

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classifiers.
Usage

AdaBagModel(
 mfinal = 100,
 minsplit = 20,
 minbucket = round(minsplit/3),
 cp = 0.01,
 maxcompete = 4,
 maxsurrogate = 5,
 usesurrogate = 2,
 xval = 10,
 surrogatetstyle = 0,
 maxdepth = 30
)

Arguments

mfinal number of trees to use.
minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.
minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.
maxsurrogate number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.
surrogatetstyle controls the selection of a best surrogate.
maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: mfinal, maxdepth

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

bagging, fit, resample
Examples

Requires prior installation of suggested package adabag to run

```r
fit(Species ~ ., data = iris, model = AdaBagModel(mfinal = 5))
```

AdaBoostModel
Boosting with Classification Trees

Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms using classification trees as single classifiers.

Usage

```r
AdaBoostModel(
  boos = TRUE,
  mfinal = 100,
  coeflearn = c("Breiman", "Freund", "Zhu"),
  minsplit = 20,
  minbucket = round(minsplit/3),
  cp = 0.01,
  maxcompete = 4,
  maxsurrogate = 5,
  usesurrogate = 2,
  xval = 10,
  surrogatestyle = 0,
  maxdepth = 30
)
```

Arguments

- `boos` if TRUE, then bootstrap samples are drawn from the training set using the observation weights at each iteration. If FALSE, then all observations are used with their weights.
- `mfinal` number of iterations for which boosting is run.
- `coeflearn` learning algorithm.
- `minsplit` minimum number of observations that must exist in a node in order for a split to be attempted.
- `minbucket` minimum number of observations in any terminal node.
- `cp` complexity parameter.
- `maxcompete` number of competitor splits retained in the output.
maxsurrogate number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.
surrogatestyle controls the selection of a best surrogate.
maxdepth maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: mfinal, maxdepth, coeflearn*
* excluded from grids by default
Further model details can be found in the source link below.

Value

MLModel class object.

See Also

boosting, fit, resample

Examples

Requires prior installation of suggested package adabag to run
fit(Species ~ ., data = iris, model = AdaBoostModel(mfinal = 5))
BARTMachineModel

Arguments

- `x` model fit result.
- ... arguments passed to other methods.

Value

MLModel class object.

BARTMachineModel

Bayesian Additive Regression Trees Model

Description

Builds a BART model for regression or classification.

Usage

```r
BARTMachineModel(
  num_trees = 50,
  num_burn = 250,
  num_iter = 1000,
  alpha = 0.95,
  beta = 2,
  k = 2,
  q = 0.9,
  nu = 3,
  mh_prob_steps = c(2.5, 2.5, 4)/9,
  verbose = FALSE,
  ...
)
```

Arguments

- `num_trees` number of trees to be grown in the sum-of-trees model.
- `num_burn` number of MCMC samples to be discarded as "burn-in".
- `num_iter` number of MCMC samples to draw from the posterior distribution.
- `alpha, beta` base and power hyperparameters in tree prior for whether a node is nonterminal or not.
- `k` regression prior probability that \(E(Y|X) \) is contained in the interval \((y_{min}, y_{max}) \), based on a normal distribution.
- `q` quantile of the prior on the error variance at which the data-based estimate is placed.
- `nu` regression degrees of freedom for the inverse \(\sigma^2 \) prior.
- `mh_prob_steps` vector of prior probabilities for proposing changes to the tree structures: (GROW, PRUNE, CHANGE).
- `verbose` logical indicating whether to print progress information about the algorithm.
- ... additional arguments to `bartMachine`.
Details

Response Types: binary factor, numeric

Automatic Tuning of Grid Parameters: alpha, beta, k, nu

Further model details can be found in the source link below.

In calls to varimp for BARTMachineModel, argument metric may be specified as "splits" (default) for the proportion of time each predictor is chosen for a splitting rule or as "trees" for the proportion of times each predictor appears in a tree. Argument num_replicates is also available to control the number of BART replicates used in estimating the inclusion proportions [default: 5]. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

bartMachine.fit, resample

Examples

Requires prior installation of suggested package bartMachine to run

```r
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = BARTMachineModel)
varimp(model_fit, metric = "splits", num_replicates = 20, scale = FALSE)
```

BARTModel

Bayesian Additive Regression Trees Model

Description

Flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes.

Usage

BARTModel(

 K = NULL,
 sparse = FALSE,
 theta = 0,
 omega = 1,
 a = 0.5,
 b = 1,
 rho = NULL,
)
augment = FALSE,
xinfo = NULL,
usequants = FALSE,
sigest = NA,
sigdf = 3,
sigquant = 0.9,
lambda = NA,
k = 2,
power = 2,
base = 0.95,
tau.num = NULL,
offset = NULL,
ntree = NULL,
numcut = 100,
ndpost = 1000,
nskip = NULL,
keepevery = NULL,
printevery = 1000
)

Arguments

K if provided, then coarsen the times of survival responses per the quantiles $1/K, 2/K, ..., K/K$ to reduce computational burden.
sparse logical indicating whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform; see Linero 2016.
theta, omega theta and omega parameters; zero means random.
a, b sparse parameters for Beta(a, b) prior: $0.5 < a <= 1$ where lower values induce more sparsity and typically $b = 1$.
rho sparse parameter: typically $rho = p$ where p is the number of covariates under consideration.
augment whether data augmentation is to be performed in sparse variable selection.
xinfo optional matrix whose rows are the covariates and columns their cutpoints.
usequants whether covariate cutpoints are defined by uniform quantiles or generated uniformly.
sigest normal error variance prior for numeric response variables.
sigdf degrees of freedom for error variance prior.
sigquant quantile at which a rough estimate of the error standard deviation is placed.
lambda scale of the prior error variance.
k number of standard deviations $f(x)$ is away from +/-3 for categorical response variables.
power, base power and base parameters for tree prior.
tau.num numerator in the tau definition, i.e., $tau = tau.num / (k * sqrt(ntree))$.
offset override for the default offset of $F^{-1}(mean(y))$ in the multivariate response probability $P(y[j] = 1|x) = F(f(x)[j] + offset[j])$.
BlackBoostModel

Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-learners.

Usage

BlackBoostModel(
 family = NULL,
 mstop = 100,
 nu = 0.1,
 risk = c("inbag", "oobag", "none"),
 stopintern = FALSE,
 ntree, numcut, ndpost, nskip, keepevery, printevery
)

Details

Response Types: factor, numeric, Surv

Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.

See Also

gbart, mbart, surv.bart, fit, resample

Examples

Requires prior installation of suggested package BART to run

fit(sale_amount ~ ., data = ICHomes, model = BARTModel)
trace = FALSE, teststat = c("quadratic", "maximum"), testtype = c("Teststatistic", "Univariate", "Bonferroni", "MonteCarlo"), mincriterion = 0, msplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE, ... }

Arguments

family: optional Family object. Set automatically according to the class type of the response variable.
mstop: number of initial boosting iterations.
nu: step size or shrinkage parameter between 0 and 1.
risk: method to use in computing the empirical risk for each boosting iteration.
stopintern: logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
trace: logical indicating whether status information is printed during the fitting process.
teststat: type of the test statistic to be applied for variable selection.
testtype: how to compute the distribution of the test statistic.
mincriterion: value of the test statistic or 1 - p-value that must be exceeded in order to implement a split.
mminsplit: minimum sum of weights in a node in order to be considered for splitting.
minbucket: minimum sum of weights in a terminal node.
maxdepth: maximum depth of the tree.
saveinfo: logical indicating whether to store information about variable selection in info slot of each partynode.
...

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: mstop, maxdepth

Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.
C50Model

See Also
blackboost, Family, ctree_control, fit, resample

Examples

Requires prior installation of suggested packages mboost and partykit to run
data(Pima.tr, package = "MASS")
fit(type ~ ., data = Pima.tr, model = BlackBoostModel)

C50Model

C5.0 Decision Trees and Rule-Based Model

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm.

Usage

C50Model(
 trials = 1,
 rules = FALSE,
 subset = TRUE,
 bands = 0,
 winnow = FALSE,
 noGlobalPruning = FALSE,
 CF = 0.25,
 minCases = 2,
 fuzzyThreshold = FALSE,
 sample = 0,
 earlyStopping = TRUE
)

Arguments

trials integer number of boosting iterations.
rules logical indicating whether to decompose the tree into a rule-based model.
subset logical indicating whether the model should evaluate groups of discrete predictors for splits.
bands integer between 2 and 1000 specifying a number of bands into which to group rules ordered by their affect on the error rate.
winnow logical indicating use of predictor winnowing (i.e. feature selection).
noGlobalPruning
 logical indicating a final, global pruning step to simplify the tree.

CF
 number in (0, 1) for the confidence factor.

minCases
 integer for the smallest number of samples that must be put in at least two of the
 splits.

fuzzyThreshold
 logical indicating whether to evaluate possible advanced splits of the data.

sample
 value between (0, 0.999) that specifies the random proportion of data to use in
 training the model.

earlyStopping
 logical indicating whether the internal method for stopping boosting should be
 used.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: trials, rules, winnow

Latter arguments are passed to `C5.0Control`. Further model details can be found in the source link below.

In calls to `varimp` for `C50Model`, argument metric may be specified as "usage" (default) for the percentage of training set samples that fall into all terminal nodes after the split of each predictor or as "splits" for the percentage of splits associated with each predictor. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

`C5.0, fit, resample`

Examples

```r
## Requires prior installation of suggested package C50 to run

model_fit <- fit(Species ~ ., data = iris, model = C50Model)
varimp(model_fit, metric = "splits", scale = FALSE)
```
calibration

Model Calibration

Description

Calculate calibration estimates from observed and predicted responses.

Usage

```r
calibration(
  x,
  y = NULL,
  weights = NULL,
  breaks = 10,
  span = 0.75,
  distr = NULL,
  na.rm = TRUE,
  ...
)
```

Arguments

- **x** observed responses or resample result containing observed and predicted responses.
- **y** predicted responses if not contained in x.
- **weights** numeric vector of non-negative case weights for the observed x responses [default: equal weights].
- **breaks** value defining the response variable bins within which to calculate observed mean values. May be specified as a number of bins, a vector of breakpoints, or NULL to fit smooth curves with splines for predicted survival probabilities and with loess for others.
- **span** numeric parameter controlling the degree of loess smoothing.
- **distr** character string specifying a distribution with which to estimate the observed survival mean. Possible values are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull". Defaults to the distribution that was used in predicting mean survival times.
- **na.rm** logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- **...** arguments passed to other methods.

Value

Calibration class object that inherits from `data.frame`.
Requires prior installation of suggested package gbm to run

```r
library(survival)

control <- CVControl() # set_predict(times = c(90, 180, 360))
res <- resample(Surv(time, status) ~ ., data = veteran, model = GBMModel,
control = control)

cal <- calibration(res)
plot(cal)
```

Description

Extract the case weights from an object.

Usage

```r
case_weights(object, newdata = NULL)
```

Arguments

- `object`: model fit result, ModelFrame, or recipe.
- `newdata`: dataset from which to extract the weights if given; otherwise, `object` is used.

The dataset should be given as a ModelFrame or as a data frame if `object` contains a ModelFrame or a recipe, respectively.

Examples

```r
## Training and test sets
inds <- sample(nrow(ICHomes), nrow(ICHomes) * 2 / 3)
trainset <- ICHomes[ind,]
testset <- ICHomes[-inds,]

## ModelFrame case weights
trainmf <- ModelFrame(sale_amount ~ . - built, data = trainset, weights = built)
testmf <- ModelFrame(formula(trainmf), data = testset, weights = built)
mf_fit <- fit(trainmf, model = GLMModel)
rmse(response(mf_fit, testmf), predict(mf_fit, testmf),
      case_weights(mf_fit, testmf))
```
Recipe case weights

```r
library(recipes)
rec <- recipe(sale_amount ~ ., data = trainset) %>%
  role_case(weight = built, replace = TRUE)
rec_fit <- fit(rec, model = GLMModel)
rmse(response(rec_fit, testset), predict(rec_fit, testset),
  case_weights(rec_fit, testset))
```

CForestModel

Conditional Random Forest Model

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

Usage

```r
CForestModel(
  teststat = c("quad", "max"),
  testtype = c("Univariate", "Teststatistic", "Bonferroni", "MonteCarlo"),
  mincriterion = 0,
  ntree = 500,
  mtry = 5,
  replace = TRUE,
  fraction = 0.632
)
```

Arguments

- `teststat` character specifying the type of the test statistic to be applied.
- `testtype` character specifying how to compute the distribution of the test statistic.
- `mincriterion` value of the test statistic that must be exceeded in order to implement a split.
- `ntree` number of trees to grow in a forest.
- `mtry` number of input variables randomly sampled as candidates at each node for random forest like algorithms.
- `replace` logical indicating whether sampling of observations is done with or without replacement.
- `fraction` fraction of number of observations to draw without replacement (only relevant if replace = FALSE).
Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: mtry

Supplied arguments are passed to cforest_control. Further model details can be found in the source link below.

Value

MLModel class object.

See Also

cforest, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = CForestModel)

combine

Combine MachineShop Objects

Description

Combine one or more MachineShop objects of the same class.

Usage

S3 method for class 'Calibration'
c(...)

S3 method for class 'ConfusionList'
c(...)

S3 method for class 'ConfusionMatrix'
c(...)

S3 method for class 'LiftCurve'
c(...)

S3 method for class 'ListOf'
c(...)

S3 method for class 'PerformanceCurve'
c(...)

S3 method for class 'Resamples'
confusion

\[
\begin{align*}
\text{c(...)}
\end{align*}
\]

S4 method for signature 'SurvMatrix,SurvMatrix'

\[
e_1 + e_2
\]

Arguments

\[
...\quad \text{named or unnamed calibration, confusion, lift, performance curve, summary, or resample results. Curves must have been generated with the same performance metrics and resamples with the same resampling control.}
\]

\[
e_1, e_2\quad \text{objects.}
\]

Value

Object of the same class as the arguments.

Description

Calculate confusion matrices of predicted and observed responses.

Usage

\[
\text{confusion}(x, \quad y = \text{NULL}, \quad \text{weights} = \text{NULL}, \quad \text{cutoff} = \text{MachineShop::settings("cutoff")}, \quad \text{na.rm} = \text{TRUE}, \quad ...)
\]

\[
\text{ConfusionMatrix(data = NA, ordered = FALSE)}
\]

Arguments

\[
x\quad \text{factor of observed responses or resample result containing observed and predicted responses.}
\]

\[
y\quad \text{predicted responses if not contained in } x.
\]

\[
\text{weights}\quad \text{numeric vector of non-negative case weights for the observed } x \text{ responses [default: equal weights].}
\]
cutoff

numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified. If NULL, then binary responses are summed directly over predicted class probabilities, whereas a default cutoff of 0.5 is used for survival probabilities. Class probability summations and survival will appear as decimal numbers that can be interpreted as expected counts.

na.rm

logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

... arguments passed to other methods.

data

square matrix, or object that can be converted to one, of cross-classified predicted and observed values in the rows and columns, respectively.

ordered

logical indicating whether the confusion matrix row and columns should be regarded as ordered.

Value

The return value is a ConfusionMatrix class object that inherits from table if x and y responses are specified or a ConfusionList object that inherits from list if x is a Resamples object.

See Also

c, plot, summary

Examples

Requires prior installation of suggested package gbm to run
res <- resample(Species ~ ., data = iris, model = GBMModel)
(conf <- confusion(res))
plot(conf)

CoxModel

Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata, multiple events per subject, and other extensions are incorporated using the counting process formulation of Andersen and Gill.
Usage

CoxModel(ties = c("efron", "breslow", "exact"), ...)

CoxStepAICModel(
 ties = c("efron", "breslow", "exact"),
 ...,
 direction = c("both", "backward", "forward"),
 scope = NULL,
 k = 2,
 trace = FALSE,
 steps = 1000
)

Arguments

ties character string specifying the method for tie handling.
...
arguments passed to coxph.control.
direction mode of stepwise search, can be one of "both" (default), "backward", or "forward".
scope defines the range of models examined in the stepwise search. This should be a list containing components upper and lower, both formulae.
k multiple of the number of degrees of freedom used for the penalty. Only \(k = 2 \) gives the genuine AIC; \(k = . \log(\text{nobs}) \) is sometimes referred to as BIC or SBC.
trace if positive, information is printed during the running of stepAIC. Larger values may give more information on the fitting process.
steps maximum number of steps to be considered.

Details

Response Types: Surv

Default values for the NULL arguments and further model details can be found in the source link below.

In calls to varimp for CoxModel and CoxStepAICModel, numeric argument base may be specified for the (negative) logarithmic transformation of p-values [default: \(\exp(1) \)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE.

#' @return MLModel class object.

See Also

coxph, coxph.control, stepAIC, fit, resample
dependence

Examples

library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)

dependence

Partial Dependence

Description

Calculate partial dependence of a response on select predictor variables.

Usage

dependence(
 object,
 data = NULL,
 select = NULL,
 interaction = FALSE,
 n = 10,
 intervals = c("uniform", "quantile"),
 stats = MachineShop::settings("stats.PartialDependence")
)

Arguments

object model fit result.
data data frame containing all predictor variables. If not specified, the training data will be used by default.
select expression indicating predictor variables for which to compute partial dependence (see subset for syntax) [default: all].
interaction logical indicating whether to calculate dependence on the interacted predictors.
n number of predictor values at which to perform calculations.
intervals character string specifying whether the n values are spaced uniformly ("uniform") or according to variable quantiles ("quantile").
stats function, function name, or vector of these with which to compute response variable summary statistics over non-selected predictor variables.

Value

PartialDependence class object that inherits from data.frame.

See Also

plot
Examples

```r
## Requires prior installation of suggested package gbm to run
gbm_fit <- fit(Species ~ ., data = iris, model = GBMModel)
(pd <- dependence(gbm_fit, select = c(Petal.Length, Petal.Width)))
plot(pd)
```

diff

Model Performance Differences

Description

Pairwise model differences in resampled performance metrics.

Usage

```r
## S3 method for class 'MLModel'
diff(x, ...)

## S3 method for class 'Performance'
diff(x, ...)

## S3 method for class 'Resamples'
diff(x, ...)
```

Arguments

- `x`\hspace{1cm}model performance or resample result.
- `...`\hspace{1cm}arguments passed to other methods.

Value

PerformanceDiff class object that inherits from Performance.

See Also

`t.test, plot, summary`

Examples

```r
## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)
```
fo <- Surv(time, status) ~ .
control <- CVControl()

gbm_res1 <- resample(fo, data = veteran, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, data = veteran, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, data = veteran, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
summary(res_diff)
plot(res_diff)

DiscreteVariate Discrete Variate Constructors

Description

Create a variate of binomial counts, discrete numbers, negative binomial counts, or Poisson counts.

Usage

BinomialVariate(x = integer(), size = integer())

DiscreteVariate(x = integer(), min = -Inf, max = Inf)

NegBinomialVariate(x = integer())

PoissonVariate(x = integer())

Arguments

x numeric vector.
size number or numeric vector of binomial trials.
min, max minimum and maximum bounds for discrete numbers.

Value

BinomialVariate object class, DiscreteVariate that inherits from numeric, or NegBinomialVariate
or PoissonVariate that inherit from DiscreteVariate.

See Also

role_binom
Examples

BinomialVariate(rbinom(25, 10, 0.5), size = 10)
PoissonVariate(rpois(25, 10))

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regression Splines" and "Fast MARS".

Usage

EarthModel(
 pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
 trace = 0,
 degree = 1,
 nprune = NULL,
 nfold = 0,
 ncross = 1,
 stratify = TRUE
)

Arguments

pmethod: pruning method.
trace: level of execution information to display.
degree: maximum degree of interaction.
nprune: maximum number of terms (including intercept) in the pruned model.
nfold: number of cross-validation folds.
ncross: number of cross-validations if nfold > 1.
stratify: logical indicating whether to stratify cross-validation samples by the response levels.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: nprune, degree*

* excluded from grids by default

Default values for the NULL arguments and further model details can be found in the source link below.
In calls to `varimp` for `EarthModel`, argument `metric` may be specified as "gcv" (default) for the generalized cross-validation decrease over all subsets that include each predictor, as "rss" for the residual sums of squares decrease, or as "nsubsets" for the number of model subsets that include each predictor. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

`earth`, `fit`, `resample`

Examples

```r
## Requires prior installation of suggested package earth to run
model_fit <- fit(Species ~ ., data = iris, model = EarthModel)
varimp(model_fit, metric = "nsubsets", scale = FALSE)
```

expand_model

Model Expansion Over Tuning Parameters

Description

Expand a model over all combinations of a grid of tuning parameters.

Usage

```r
expand_model(x, ..., random = FALSE)
```

Arguments

- `x`
 model function, function name, or object.
- `...`
 named vectors or factors or a list of these containing the parameter values over which to expand `x`.
- `random`
 number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

list of expanded models.
expand_modelgrid

See Also

SelectedModel

Examples

Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

models <- expand_model(GBMModel, n.trees = c(50, 100),
 interaction.depth = 1:2)

fit(medv ~ ., data = Boston, model = SelectedModel(models))

Expand a model grid of tuning parameter values.

Usage

expand_modelgrid(x, ...)

S3 method for class 'formula'
expand_modelgrid(x, data, model, info = FALSE, ...)

S3 method for class 'matrix'
expand_modelgrid(x, y, model, info = FALSE, ...)

S3 method for class 'ModelFrame'
expand_modelgrid(x, model, info = FALSE, ...)

S3 method for class 'recipe'
expand_modelgrid(x, model, info = FALSE, ...)

S3 method for class 'TunedModel'
expand_modelgrid(x, ..., info = FALSE)

Arguments

x input specifying a relationship between model predictor and response variables. Alternatively, a TunedModel object may be given first followed optionally by an input specification.
... arguments passed to other methods.

data data frame containing observed predictors and outcomes.

model TunedModel object.

info logical indicating whether to return model-defined grid construction information rather than the grid values.

y response variable.

Details

The `expand_modelgrid` function enables manual extraction and viewing of grids created automatically when a `TunedModel` is fit.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not supplied.

See Also

`TunedModel`

Examples

```r
expand_modelgrid(TunedModel(GBMModel, grid = 5))

expand_modelgrid(TunedModel(GLMNetModel, grid = c(alpha = 5, lambda = 10)),
  sale_amount ~ ., data = ICHomes)

gbm_grid <- ParameterGrid(
  n.trees = dials::trees(),
  interaction.depth = dials::tree_depth(),
  size = 5
)
expand_modelgrid(TunedModel(GBMModel, grid = gbm_grid))

rf_grid <- ParameterGrid(
  mtry = dials::mtry(),
  nodesize = dials::max_nodes(),
  size = c(3, 5)
)
expand_modelgrid(TunedModel(RandomForestModel, grid = rf_grid),
  sale_amount ~ ., data = ICHomes)
```
expand_params

Model Parameters Expansion

Description

Create a grid of parameter values from all combinations of supplied inputs.

Usage

```r
expand_params(..., random = FALSE)
```

Arguments

- `...` named vectors or factors or a list of these containing the parameter values over which to create the grid.
- `random` number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

A data frame containing one row for each combination of the supplied inputs.

See Also

`TunedModel`

Examples

```r
## Requires prior installation of suggested package gbm to run
data(Boston, package = "MASS")

grid <- expand_params(
  n.trees = c(50, 100),
  interaction.depth = 1:2
)

fit(medv ~ ., data = Boston, model = TunedModel(GBMModel, grid = grid))
```
expand_steps

Recipe Step Parameters Expansion

Description

Create a grid of parameter values from all combinations of lists supplied for steps of a preprocessing recipe.

Usage

expand_steps(..., random = FALSE)

Arguments

... one or more lists containing parameter values over which to create the grid. For each list an argument name should be given as the id of the recipe step to which it corresponds.

random number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

RecipeGrid class object that inherits from data.frame.

See Also

TunedInput

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
 step_corr(all_numeric(), -all_outcomes(), id = "corr") %>%
 step_pca(all_numeric(), -all_outcomes(), id = "pca")

expand_steps(
 corr = list(threshold = c(0.8, 0.9),
 method = c("pearson", "spearman")),
 pca = list(num_comp = 1:3)
)
Extract Elements of an Object

Description

Operators acting on data structures to extract elements.

Usage

```r
## S3 method for class 'BinomialVariate'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'DiscreteVariate,ANY,missing,missing'
x[i]
```

```r
## S3 method for class 'ModelFrame'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'ModelFrame,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'ModelFrame,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'ModelFrame,missing,missing,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'RecipeGrid,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'Resamples,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'Resamples,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'Resamples,missing,missing,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'SurvMatrix,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'SurvMeans,ANY,missing,missing'
x[i]
```

Arguments

- `x` object from which to extract elements.
i, j, ... indices specifying elements to extract.
drop logical indicating that the result be returned as an object coerced to the lowest dimension possible if TRUE or with the original dimensions and class otherwise.

FDAModel Flexible and Penalized Discriminant Analysis Models

Description
Performs flexible discriminant analysis.

Usage
FDAModel(
 theta = NULL,
 dimension = NULL,
 eps = .Machine$double.eps,
 method = .(mda::polyreg),
 ...
)

PDAModel(lambda = 1, df = NULL, ...)

Arguments
theta optional matrix of class scores, typically with number of columns less than one minus the number of classes.
dimension dimension of the discriminant subspace, less than the number of classes, to use for prediction.
eps numeric threshold for small singular values for excluding discriminant variables.
method regression function used in optimal scaling. The default of linear regression is provided by polyreg from the mda package. For penalized discriminant analysis, gen.ridge is appropriate. Other possibilities are mars for multivariate adaptive regression splines and bruto for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
... additional arguments to method for FDAModel and to FDAModel for PDAModel.
lambda shrinkage penalty coefficient.
df alternative specification of lambda in terms of equivalent degrees of freedom.

Details
Response Types: factor
Automatic Tuning of Grid Parameters • FDAModel: nprune, degree*
• PDAModel: lambda

 * excluded from grids by default

 The `predict` function for this model additionally accepts the following argument.

 `prior` prior class membership probabilities for prediction data if different from the training set.

 Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.

See Also

`fda`, `predict.fda`, `fit`, `resample`

Examples

```r
## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = FDAModel)

## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = PDAModel)
```

Description

Fit a model to estimate its parameters from a data set.

Usage

```r
fit(x, ...)
```

```r
## S3 method for class 'formula'
fit(x, data, model, ...)
```

```r
## S3 method for class 'matrix'
fit(x, y, model, ...)
```
S3 method for class 'ModelFrame'

```r
fit(x, model, 
```

S3 method for class 'recipe'

```r
fit(x, model, 
```

S3 method for class 'MLModel'

```r
fit(x, 
```

S3 method for class 'MLModelFunction'

```r
fit(x, 
```

Arguments

- **x**: input specifying a relationship between model predictor and response variables. Alternatively, a model function or object may be given first followed by the input specification.
- **...**: arguments passed to other methods.
- **data**: data frame containing observed predictors and outcomes.
- **model**: model function, function name, or object; ignored and can be omitted when fitting modeled inputs.
- **y**: response variable.

Details

User-specified case weights may be specified for ModelFrames upon creation with the `weights` argument in its constructor.

Variables in recipe specifications may be designated as case weights with the `role_case` function.

Value

MLModelFit class object.

See Also

`as.MLModel`, `response`, `predict`, `varimp`

Examples

```r
## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)
gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
varimp(gbm_fit)
```
Gradient Boosting with Additive Models

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-learners, e.g., smoothing procedures, are utilized as additive base-learners.

Usage

GAMBoostModel(
 family = NULL,
 baselearner = c("bbs", "bols", "btree", "bss", "bns"),
 dfbase = 4,
 mstop = 100,
 nu = 0.1,
 risk = c("inbag", "oobag", "none"),
 stopintern = FALSE,
 trace = FALSE
)

Arguments

family optional Family object. Set automatically according to the class type of the response variable.
baselearner character specifying the component-wise base learner to be used.
dfbase global degrees of freedom for P-spline base learners ("bbs").
mstop number of initial boosting iterations.
nu step size or shrinkage parameter between 0 and 1.
risk method to use in computing the empirical risk for each boosting iteration.
stopintern logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
trace logical indicating whether status information is printed during the fitting process.

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: mstop

Default values for the NULL arguments and further model details can be found in the source links below.
GBMModel

Value
MLModel class object.

See Also
gamboost, Family, baselearners, fit, resample

Examples

```r
## Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GAMBoostModel)
```

GBMModel

Generalized Boosted Regression Model

Description
Fits generalized boosted regression models.

Usage

```r
GBMModel(
  distribution = NULL,
  n.trees = 100,
  interaction.depth = 1,
  n.minobsinnode = 10,
  shrinkage = 0.1,
  bag.fraction = 0.5
)
```

Arguments

distribution optional character string specifying the name of the distribution to use or list
with a component name specifying the distribution and any additional parameters needed. Set automatically according to the class type of the response variable.

n.trees total number of trees to fit.

interaction.depth maximum depth of variable interactions.

n.minobsinnode minimum number of observations in the trees terminal nodes.

shrinkage shrinkage parameter applied to each tree in the expansion.

bag.fraction fraction of the training set observations randomly selected to propose the next
 tree in the expansion.
Details

Response Types: factor, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: n.trees, interaction.depth, shrinkage*, n.minobsinnode*

* excluded from grids by default

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

gbm, fit, resample

Examples

```r
## Requires prior installation of suggested package gbm to run
fit(Species ~ ., data = iris, model = GBMModel)
```

GLMBoostModel

Gradient Boosting with Linear Models

Description

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are utilized as base-learners.

Usage

```r
GLMBoostModel(
  family = NULL,
  mstop = 100,
  nu = 0.1,
  risk = c("inbag", "oobag", "none"),
  stopintern = FALSE,
  trace = FALSE
)
```
Arguments

- **family**: optional `Family` object. Set automatically according to the class type of the response variable.
- **mstop**: number of initial boosting iterations.
- **nu**: step size or shrinkage parameter between 0 and 1.
- **risk**: method to use in computing the empirical risk for each boosting iteration.
- **stopintern**: logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
- **trace**: logical indicating whether status information is printed during the fitting process.

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: mstop

Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.

See Also

glmboost, Family, fit, resample

Examples

```r
## Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GLMBoostModel)
```
GLMModel

Generalized Linear Model

Description

Fits generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Usage

```r
GLMModel(family = NULL, quasi = FALSE, ...)

GLMStepAICModel(
    family = NULL,
    quasi = FALSE,
    ...,
    direction = c("both", "backward", "forward"),
    scope = NULL,
    k = 2,
    trace = FALSE,
    steps = 1000
)
```

Arguments

- `family`: optional error distribution and link function to be used in the model. Set automatically according to the class type of the response variable.
- `quasi`: logical indicator for over-dispersion of binomial and Poisson families; i.e., dispersion parameters not fixed at one.
- `...`: arguments passed to `glm.control`.
- `direction`: mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- `scope`: defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- `k`: multiple of the number of degrees of freedom used for the penalty. Only \(k = 2 \) gives the genuine AIC; \(k = \cdot (\log(\text{lobs})) \) is sometimes referred to as BIC or SBC.
- `trace`: if positive, information is printed during the running of `stepAIC`. Larger values may give more information on the fitting process.
- `steps`: maximum number of steps to be considered.

Details

GLMModel **Response Types**: BinomialVariate, factor, matrix, NegBinomialVariate, numeric, PoissonVariate
GLMNetModel

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate

Default values for the NULL arguments and further model details can be found in the source link below.

In calls to `varimp` for GLMModel and GLMStepAICModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: \(\exp(1) \)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

MLModel class object.

See Also

`glm, glm.control, stepAIC, fit, resample`

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = GLMModel)
```

GLMNetModel

GLM Lasso or Elasticnet Model

Description

Fit a generalized linear model via penalized maximum likelihood.

Usage

```r
GLMNetModel(
  family = NULL,
  alpha = 1,
  lambda = 0,
  standardize = TRUE,
  intercept = NULL,
  penalty.factor = .(rep(1, nvars)),
  standardize.response = FALSE,
  thresh = 1e-07,
  maxit = 1e+05,
  type.gaussian = .(if (nvars < 500) "covariance" else "naive"),
  type.logistic = c("Newton", "modified.Newton"),
  type.multinomial = c("ungrouped", "grouped")
)
```
GLMNetModel

Arguments

- **family**: optional response type. Set automatically according to the class type of the response variable.
- **alpha**: elasticnet mixing parameter.
- **lambda**: regularization parameter. The default value \(\lambda = 0 \) performs no regularization and should be increased to avoid model fitting issues if the number of predictor variables is greater than the number of observations.
- **standardize**: logical flag for predictor variable standardization, prior to model fitting.
- **intercept**: logical indicating whether to fit intercepts.
- **penalty.factor**: vector of penalty factors to be applied to each coefficient.
- **standardize.response**: logical indicating whether to standardize "mgaussian" response variables.
- **thresh**: convergence threshold for coordinate descent.
- **maxit**: maximum number of passes over the data for all lambda values.
- **type.gaussian**: algorithm type for gaussian models.
- **type.logistic**: algorithm type for logistic models.
- **type.multinomial**: algorithm type for multinomial models.

Details

Response Types: BinomialVariate, factor, matrix, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: lambda, alpha

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

glmnet, fit, resample

Examples

```r
## Requires prior installation of suggested package glmnet to run
fit(sale_amount ~ ., data = ICHomes, model = GLMNetModel(lambda = 0.01))
```
Description

Defines control parameters for a tuning grid.

Usage

Grid(size = 3, random = FALSE)

Arguments

- **size**: single integer or vector of integers whose positions or names match the parameters in a model’s tuning grid and which specify the number of values used to construct the grid.

- **random**: number of unique points to sample at random from the grid defined by `size`. If `size` is a single unnamed integer, then `random = Inf` will include all values of all grid parameters in the constructed grid, whereas `random = FALSE` will include all values of default grid parameters.

Details

Returned `Grid` objects may be supplied to `TunedModel` for automated construction of model tuning grids. These grids can be extracted manually and viewed with the `expand_modelgrid` function.

Value

`Grid` class object.

See Also

- `TunedModel`, `expand_modelgrid`

Examples

TunedModel(GBMModel, grid = Grid(10, random = 5))
ICHomes

ICHomes Iowa City Home Sales Dataset

Description

Characteristics of homes sold in Iowa City, IA from 2005 to 2008 as reported by the county assessor’s office.

Usage

ICHomes

Format

A data frame with 753 observations of 17 variables:

- `sale_amount` sale amount in dollars.
- `sale_year` sale year.
- `sale_month` sale month.
- `built` year in which the home was built.
- `style` home style (Home/Condo).
- `construction` home construction type.
- `base_size` base foundation size in sq ft.
- `add_size` size of additions made to the base foundation in sq ft.
- `garage1_size` attached garage size in sq ft.
- `garage2_size` detached garage size in sq ft.
- `lot_size` total lot size in sq ft.
- `bedrooms` number of bedrooms.
- `basement` presence of a basement (No/Yes).
- `ac` presence of central air conditioning (No/Yes).
- `attic` presence of a finished attic (No/Yes).
- `lon,lat` home longitude/latitude coordinates.

inputs

Model Inputs

Description

Model inputs are the predictor and response variables whose relationship is determined by a model fit. Input specifications supported by MachineShop are summarized in the table below.
Response variable types in the input specifications are defined by the user with the functions and recipe roles:

Response Functions
- BinomialVariate
- DiscreteVariate
- factor
- matrix
- NegBinomialVariate
- numeric
- ordered
- PoissonVariate
- Surv

Recipe Roles
- role_binom
- role_surv

Inputs may be combined, selected, or tuned with the following meta-input functions.

- ModeledInput: Input with a prespecified model
- SelectedInput: Input selection from a candidate set
- TunedInput: Input tuning over a parameter grid

See Also
- fit
- resample

KNNModel

Weighted k-Nearest Neighbor Model

Description

Fit a k-nearest neighbor model for which the k nearest training set vectors (according to Minkowski distance) are found for each row of the test set, and prediction is done via the maximum of summed kernel densities.

Usage

```r
KNNModel(
  k = 7,
)```
LARSModel

```r
distance = 2,
scale = TRUE,
kernel = c("optimal", "biweight", "cos", "epanechnikov", "gaussian", "inv", "rank",
 "rectangular", "triangular", "triweight")
```

**Arguments**

- `k` - number of neighbors considered.
- `distance` - Minkowski distance parameter.
- `scale` - logical indicating whether to scale predictors to have equal standard deviations.
- `kernel` - kernel to use.

**Details**

- **Response Types:** factor, numeric, ordinal
- **Automatic Tuning of Grid Parameters:** `k`, `distance*`, `kernel*`
  - `*` excluded from grids by default

Further model details can be found in the source link below.

**Value**

MLModel class object.

**See Also**

- `kknn`, `fit`, `resample`

**Examples**

```r
Requires prior installation of suggested package kknn to run
fit(Species ~ ., data = iris, model = KNNModel)
```

---

**LARSModel**

*Least Angle Regression, Lasso and Infinitesimal Forward Stagewise Models*

**Description**

Fit variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero to the least squares fit.
LARSModel

Usage

LARSModel(
  type = c("lasso", "lar", "forward.stagewise", "stepwise"),
  trace = FALSE,
  normalize = TRUE,
  intercept = TRUE,
  step = NULL,
  use.Gram = TRUE
)

Arguments

type model type.
trace logical indicating whether status information is printed during the fitting process.
normalize whether to standardize each variable to have unit L2 norm.
intercept whether to include an intercept in the model.
step algorithm step number to use for prediction. May be a decimal number indicating a fractional distance between steps. If specified, the maximum number of algorithm steps will be ceiling(step); otherwise, step will be set equal to the source package default maximum [default: max.steps].
use.Gram whether to precompute the Gram matrix.

Details

Response Types: numeric

Automatic Tuning of Grid Parameters: step

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

lars, fit, resample

Examples

## Requires prior installation of suggested package lars to run

fit(sale_amount ~ ., data = ICHomes, model = LARSModel)
Description

Performs linear discriminant analysis.

Usage

LDAModel(
    prior = NULL,
    tol = 1e-04,
    method = c("moment", "mle", "mve", "t"),
    nu = 5,
    dimen = NULL,
    use = c("plug-in", "debiased", "predictive")
)

Arguments

- **prior**: prior probabilities of class membership if specified or the class proportions in the training set otherwise.
- **tol**: tolerance for the determination of singular matrices.
- **method**: type of mean and variance estimator.
- **nu**: degrees of freedom for method = "t".
- **dimen**: dimension of the space to use for prediction.
- **use**: type of parameter estimation to use for prediction.

Details

**Response Types**: factor

**Automatic Tuning of Grid Parameters**: dimen

The `predict` function for this model additionally accepts the following argument.

- **prior**: prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.

See Also

`lda, predict.lda, fit, resample`
Examples

```r
fit(Species ~ ., data = iris, model = LDAModel)
```

---

**Description**

Calculate lift curves from observed and predicted responses.

**Usage**

```r
lift(x, y = NULL, weights = NULL, na.rm = TRUE, ...)
```

**Arguments**

- `x`: observed responses or resample result containing observed and predicted responses.
- `y`: predicted responses if not contained in `x`.
- `weights`: numeric vector of non-negative case weights for the observed `x` responses [default: equal weights].
- `na.rm`: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- `...`: arguments passed to other methods.

**Value**

LiftCurve class object that inherits from PerformanceCurve.

**See Also**

c, plot, summary

**Examples**

```r
Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")

res <- resample(type ~ ., data = Pima.tr, model = GBMModel)
lf <- lift(res)
plot(lf)
```
**LMMModel**

**Linear Models**

**Description**

Fits linear models.

**Usage**

LMMModel()

**Details**

**Response Types:** factor, matrix, numeric

Further model details can be found in the source link below.

In calls to `varimp` for LModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: `exp(1)`]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

**Value**

MLMModel class object.

**See Also**

`lm, fit, resample`

**Examples**

```r
fit(sale_amount ~ ., data = ICHomes, model = LMMModel)
```

---

**MDAModel**

*Mixture Discriminant Analysis Model*

**Description**

Performs mixture discriminant analysis.
Usage

```r
MDAModel(
 subclasses = 3,
 sub.df = NULL,
 tot.df = NULL,
 dimension = sum(subclasses) - 1,
 eps = .Machine$double.eps,
 iter = 5,
 method = mda::polyreg,
 trace = FALSE,
 ...
)
```

Arguments

- **subclasses**: numeric value or vector of subclasses per class.
- **sub.df**: effective degrees of freedom of the centroids per class if subclass centroid shrinkage is performed.
- **tot.df**: specification of the total degrees of freedom as an alternative to sub.df.
- **dimension**: dimension of the discriminant subspace to use for prediction.
- **eps**: numeric threshold for automatically truncating the dimension.
- **iter**: limit on the total number of iterations.
- **method**: regression function used in optimal scaling. The default of linear regression is provided by `polyreg` from the `mda` package. For penalized mixture discriminant models, `gen.ridge` is appropriate. Other possibilities are `mars` for multivariate adaptive regression splines and `bruto` for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
- **trace**: logical indicating whether iteration information is printed.
- **...**: additional arguments to `mda.start` and `method`.

Details

**Response Types**: factor

**Automatic Tuning of Grid Parameters**: subclasses

The `predict` function for this model additionally accepts the following argument.

- **prior**: prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links below.

Value

MLModel class object.
**metricinfo**

See Also

`mda`, `predict.mda`, `fit`, `resample`

Examples

```r
Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = MDAModel)
```

---

**metricinfo**

*Display Performance Metric Information*

Description

Display information about metrics provided by the **MachineShop** package.

Usage

```r
metricinfo(...)
```

Arguments

```r
...
```

metric functions or function names; observed responses; observed and predicted responses; confusion or resample results for which to display information. If none are specified, information is returned on all available metrics by default.

Value

List of named metric elements each containing the following components:

- **label** character descriptor for the metric.
- **maximize** logical indicating whether higher values of the metric correspond to better predictive performance.
- **arguments** closure with the argument names and corresponding default values of the metric function.
- **response_types** data frame of the observed and predicted response variable types supported by the metric.
Examples

## All metrics
metricinfo()

## Metrics by observed and predicted response types
names(metricinfo(factor(0)))
names(metricinfo(factor(0), factor(0)))
names(metricinfo(factor(0), matrix(0)))
names(metricinfo(factor(0), numeric(0)))

## Metric-specific information
metricinfo(auc)

metrics	Performance Metrics

Description

Compute measures of agreement between observed and predicted responses.

Usage

accuracy(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)

auc(
  observed,
  predicted = NULL,
  weights = NULL,
  metrics = c(MachineShop::tpr, MachineShop::fpr),
  stat = MachineShop::settings("stat.Curve"),
  ...
)

brier(observed, predicted = NULL, weights = NULL, ...)

cindex(observed, predicted = NULL, weights = NULL, ...)

cross_entropy(observed, predicted = NULL, weights = NULL, ...)

f_score(
metrics

observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
beta = 1,
...
)

fnr(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

fpr(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

kappa2(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

npv(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

ppv(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)
pr_auc(observed, predicted = NULL, weights = NULL, ...)

precision(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)

recall(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)

roc_auc(observed, predicted = NULL, weights = NULL, ...)

roc_index(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  f = function(sensitivity, specificity) (sensitivity + specificity)/2,
  ...
)

rpp(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)

sensitivity(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)

specificity(
  observed,
  predicted = NULL,
metrics

weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

tnr(
  observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

tpr(
  observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

weighted_kappa2(observed, predicted = NULL, weights = NULL, power = 1, ...)
gini(observed, predicted = NULL, weights = NULL, ...)
mae(observed, predicted = NULL, weights = NULL, ...)
mse(observed, predicted = NULL, weights = NULL, ...)
msle(observed, predicted = NULL, weights = NULL, ...)
r2(observed, predicted = NULL, weights = NULL, distr = NULL, ...)
rmse(observed, predicted = NULL, weights = NULL, ...)
rmsle(observed, predicted = NULL, weights = NULL, ...)

Arguments

observed observed responses; or confusion, performance curve, or resample result containing observed and predicted responses.
predicted predicted responses if not contained in observed.
weights numeric vector of non-negative case weights for the observed responses [default: equal weights].
cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.
... arguments passed to or from other methods.
MLControl

metrics list of two performance metrics for the calculation [default: ROC metrics].
stat function or character string naming a function to compute a summary statistic
at each cutoff value of resampled metrics in performance curves, or NULL for
resample-specific metrics.
beta relative importance of recall to precision in the calculation of f_score [default: F1 score].
f function to calculate a desired sensitivity-specificity tradeoff.
power power to which positional distances of off-diagonals from the main diagonal in
confusion matrices are raised to calculate weighted_kappa2.
distr character string specifying a distribution with which to estimate the observed
survival mean in the total sum of square component of r2. Possible values
are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme",
"gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh",
"t", or "weibull". Defaults to the distribution that was used in predicting mean
survival times.

See Also
metricinfo, performance

MLControl Resampling Controls

Description
Structures to define and control sampling methods for estimation of model predictive performance
in the MachineShop package.

Usage
BootControl(
  samples = 25,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1),
  ...
)

BootOptimismControl(
  samples = 25,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1),
  ...
)

CVControl(
  folds = 10,
MLControl

repeats = 1,
weights = TRUE,
seed = sample(.Machine$integer.max, 1),
...
)

CVOptimismControl(
  folds = 10,
  repeats = 1,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1),
  ...
)

OOBControl(
  samples = 25,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1),
  ...
)

SplitControl(
  prop = 2/3,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1),
  ...
)

TrainControl(weights = TRUE, seed = sample(.Machine$integer.max, 1), ...)

Arguments

samples number of bootstrap samples.
weights logical indicating whether to return case weights in resampled output for the
calculation of performance metrics.
seed integer to set the seed at the start of resampling.
... arguments passed to other methods.
folds number of cross-validation folds (K).
repeats number of repeats of the K-fold partitioning.
prop proportion of cases to include in the training set (0 < prop < 1).

Details

BootControl constructs an MLControl object for simple bootstrap resampling in which models are
fit with bootstrap resampled training sets and used to predict the full data set (Efron and Tibshirani
1993).

CVControl constructs an MLControl object for repeated K-fold cross-validation (Kohavi 1995). In this procedure, the full data set is repeatedly partitioned into K-folds. Within a partitioning, prediction is performed on each of the K folds with models fit on all remaining folds.

CVOptimismControl constructs an MLControl object for optimism-corrected cross-validation resampling (Davison and Hinkley 1997, eq. 6.48).

OOBControl constructs an MLControl object for out-of-bootstrap resampling in which models are fit with bootstrap resampled training sets and used to predict the unsampled cases.

SplitControl constructs an MLControl object for splitting data into a separate training and test set (Hastie et al. 2009).

TrainControl constructs an MLControl object for training and performance evaluation to be performed on the same training set (Efron 1986).

Value

Object that inherits from the MLControl class.

References


See Also

set_monitor, set_predict, set_strata, resample, SelectedInput, SelectedModel, TunedInput, TunedModel
Examples

```r
Bootstrapping with 100 samples
BootControl(samples = 100)

Optimism-corrected bootstrapping with 100 samples
BootOptimismControl(samples = 100)

Cross-validation with 5 repeats of 10 folds
CVControl(folds = 10, repeats = 5)

Optimism-corrected cross-validation with 5 repeats of 10 folds
CVOptimismControl(folds = 10, repeats = 5)

Out-of-bootstrap validation with 100 samples
OOBControl(samples = 100)

Split sample validation with 2/3 training and 1/3 testing
SplitControl(prop = 2/3)

Training set evaluation
TrainControl()
```

---

**MLMetric**

### MLMetric Class Constructor

Create a performance metric for use with the MachineShop package.

#### Usage

```r
MLMetric(object, name = "MLMetric", label = name, maximize = TRUE)

MLMetric(object) <- value
```

#### Arguments

- **object**: function to compute the metric, defined to accept observed and predicted as the first two arguments and with an ellipsis (…) to accommodate others.
- **name**: character name of the object to which the metric is assigned.
- **label**: optional character descriptor for the model.
- **maximize**: logical indicating whether higher values of the metric correspond to better predictive performance.
- **value**: list of arguments to pass to the MLMetric constructor.
Value

MLMetric class object.

See Also

metrics

Examples

```r
f2_score <- function(observed, predicted, ...) {
 f_score(observed, predicted, beta = 2, ...)
}

MLMetric(f2_score) <- list(name = "f2_score",
 label = "F Score (beta = 2)",
 maximize = TRUE)
```

---

### MLModel

#### MLModel Class Constructor

**Description**

Create a model for use with the MachineShop package.

**Usage**

```r
MLModel(
 name = "MLModel",
 label = name,
 packages = character(),
 response_types = character(),
 weights = FALSE,
 predictor_encoding = c(NA, "model.frame", "model.matrix"),
 params = list(),
 gridinfo = tibble::tibble(param = character(), get_values = list(), default = logical()),
 fit = function(formula, data, weights, ...) stop("no fit function"),
 predict = function(object, newdata, times, ...) stop("no predict function"),
 varimp = function(object, ...) NULL,
 ...
)
```
**Arguments**

- **name**: character name of the object to which the model is assigned.
- **label**: optional character descriptor for the model.
- **packages**: character vector of package names upon which the model depends. Each name may be optionally followed by a comment in parentheses specifying a version requirement. The comment should contain a comparison operator, whitespace and a valid version number, e.g. "xgboost (>= 1.3.0)".
- **response_types**: character vector of response variable types to which the model can be fit. Supported types are "binary", = "BinomialVariate", "DiscreteVariate", "factor", "matrix", "NegBinomialVariate", "numeric", "ordered", "PoissonVariate", and "Surv".
- **weights**: logical value or vector of the same length as `response_types` indicating whether case weights are supported for the responses.
- **predictor_encoding**: character string indicating whether the model is fit with predictor variables encoded as a "model.frame", a "model.matrix", or unspecified (default).
- **params**: list of user-specified model parameters to be passed to the `fit` function.
- **gridinfo**: tibble of information for construction of tuning grids consisting of a character column `param` with the names of parameters in the grid, a list column `get_values` with functions to generate grid points for the corresponding parameters, and an optional logical column `default` indicating which parameters to include by default in regular grids. Values functions may optionally include arguments `n` and `data` for the number of grid points to generate and a `ModelFrame` of the model fit data and formula, respectively; and must include an ellipsis (...).
- **fit**: model fitting function whose arguments are a formula, a `ModelFrame` named `data`, case weights, and an ellipsis.
- **predict**: model prediction function whose arguments are the object returned by `fit`, a `ModelFrame` named `newdata` of predictor variables, optional vector of times at which to predict survival, and an ellipsis.
- **varimp**: variable importance function whose arguments are the object returned by `fit`, optional arguments passed from calls to `varimp`, and an ellipsis.
- **...**: arguments passed from other methods.

**Details**

If supplied, the `grid` function should return a list whose elements are named after and contain values of parameters to include in a tuning grid to be constructed automatically by the package.

Argument `data` in the `fit` function may be converted to a data frame with the `as.data.frame` function as needed. The function should return the object resulting from the model fit.

Values returned by the `predict` functions should be formatted according to the response variable types below.

- **factor**: vector or column matrix of probabilities for the second level of binary factors or a matrix whose columns contain the probabilities for factors with more than two levels.
**matrix** matrix of predicted responses.
**numeric** vector or column matrix of predicted responses.

**Surv** matrix whose columns contain survival probabilities at `times` if supplied or a vector of predicted survival means otherwise.

The `varimp` function should return a vector of importance values named after the predictor variables or a matrix or data frame whose rows are named after the predictors.

**Value**

MLModel class object.

**See Also**

`models`, `fit`, `resample`

**Examples**

```r
Logistic regression model
LogisticModel <- MLModel(
 name = "LogisticModel",
 response_types = "binary",
 weights = TRUE,
 fit = function(formula, data, weights, ...) {
 glm(formula, data = data, weights = weights, family = binomial, ...)
 },
 predict = function(object, newdata, ...) {
 predict(object, newdata = newdata, type = "response")
 },
 varimp = function(object, ...) {
 pchisq(coef(object)^2 / diag(vcov(object)), 1)
 }
)

data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = LogisticModel)
summary(res)
```

---

**ModeledInput**

**ModeledInput Classes**

**Description**

Class for storing a model input and specification pair for **MachineShop** model fitting.
Usage

ModeledInput(x, ...)

## S3 method for class 'formula'
ModeledInput(x, data, model, ...)

## S3 method for class 'matrix'
ModeledInput(x, y, model, ...)

## S3 method for class 'ModelFrame'
ModeledInput(x, model, ...)

## S3 method for class 'recipe'
ModeledInput(x, model, ...)

## S3 method for class 'MLModel'
ModeledInput(x, ...)

## S3 method for class 'MLModelFunction'
ModeledInput(x, ...)

Arguments

x input specifying a relationship between model predictor and response variables. Alternatively, a model function or object may be given first followed by the input specification.

... arguments passed to other methods.

data data frame or an object that can be converted to one.

model model function, function name, or object.

y response variable.

Value

ModeledFrame or ModeledRecipe class object that inherits from ModelFrame or recipe.

See Also

fit, resample, SelectedInput

Examples

## Modeled model frame
mod_mf <- ModeledInput(sale_amount ~ ., data = ICHomes, model = GLMModel)
fit(mod_mf)

## Modeled recipe
library(recipes)
ModelFrame

```
rec <- recipe(sale_amount ~ ., data = ICHomes)
mod_rec <- ModeledInput(rec, model = GLMMModel)
fit(mod_rec)
```

---

**ModelFrame Class**

**Description**

Class for storing data, formulas, and other attributes for **MachineShop** model fitting.

**Usage**

```
ModelFrame(x, ...)
```

```r
S3 method for class 'formula'
ModelFrame(x, data, na.rm = TRUE, weights = NULL, strata = NULL, ...)
```

```r
S3 method for class 'matrix'
ModelFrame(
 x,
 y = NULL,
 na.rm = TRUE,
 offsets = NULL,
 weights = NULL,
 strata = NULL,
 ...
)
```

**Arguments**

- **x**
  - model **formula** or **matrix** of predictor variables. In the case of a formula, arguments weights and strata are evaluated as expressions, whose objects are searched for first in the accompanying data environment and, if not found there, next in the calling environment.
  - ... arguments passed to other methods.
- **data**
  - **data frame** or an object that can be converted to one.
- **na.rm**
  - logical indicating whether to remove cases with NA values for any of the model variables.
- **weights**
  - numeric vector of non-negative case weights for the y response variable [default: equal weights].
- **strata**
  - vector of values to use in conducting stratified resample estimation of model performance [default: none].
- **y**
  - response variable.
- **offsets**
  - numeric vector, matrix, or data frame of values to be added with a fixed coefficient of 1 to linear predictors in compatible regression models.
Display Model Information

Description

Display information about models supplied by the MachineShop package.

Usage

modelinfo(...)

Arguments

... model functions, function names, or objects; observed responses for which to display information. If none are specified, information is returned on all available models by default.

Value

List of named model elements each containing the following components:

- **label**: character descriptor for the model.
- **packages**: character vector of source packages required to use the model. These need only be installed with the install.packages function or by equivalent means; but need not be loaded with, for example, the library function.
- **response_types**: character vector of response variable types supported by the model.
- **weights**: logical value or vector of the same length as response_types indicating whether case weights are supported for the responses.

Examples

## Requires prior installation of suggested package gbm to run

```r
mf <- ModelFrame(ncases / (ncases + ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, weights = ncases + ncontrols)
gbm_fit <- fit(mf, model = GBMModel)
varimp(gbm_fit)
```
arguments closure with the argument names and corresponding default values of the model function.

grid logical indicating whether automatic generation of tuning parameter grids is implemented for the model.

varimp logical indicating whether variable importance is defined for the model.

Examples

```r
All models
modelinfo()
```

```r
Models by response types
names(modelinfo(factor(0)))
names(modelinfo(factor(0), numeric(0)))
```

```r
Model-specific information
modelinfo(GBMModel)
```

---

**models**  

**Models**

---

**Description**

Model constructor functions supplied by MachineShop are summarized in the table below according to the types of response variables with which each can be used.

<table>
<thead>
<tr>
<th>Function</th>
<th>Categorical</th>
<th>Continuous</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBagModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdaBoostModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARTModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>BARTMachineModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>BlackBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>C50Model</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CForestModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>CoxModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>CoxStepAICModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>EarthModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>FDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GBMModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMModel</td>
<td>f</td>
<td>m,n</td>
<td></td>
</tr>
<tr>
<td>GLMStepAICModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>GLMNetModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>KNNModel</td>
<td>f,o</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>LARSMODEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Name</td>
<td>Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMModel</td>
<td>f m,n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaiveBayesModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNetModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLSModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLRModel</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RandomForestModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RangerModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFSRCModel</td>
<td>f m,n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFSRCFastModel</td>
<td>f m,n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPartModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SurvRegModel</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SurvRegStepAICModel</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMANOVAModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMBesselModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMLaplaceModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMLinearModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMPolyModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMRadialModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWSplineModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVMtanhModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TreeModel</td>
<td>f n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGBModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGBDARTModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGBoostLinearModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGBoostTreeModel</td>
<td>f n S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Categorical: b = binary, f = factor, o = ordered  
Continuous: m = matrix, n = numeric  
Survival: S = Surv

Models may be combined, tuned, or selected with the following meta-model functions.

- **StackedModel**: Stacked regression
- **SuperModel**: Super learner
- **SelectedModel**: Model selection from a candidate set
- **TunedModel**: Model tuning over a parameter grid

**See Also**

- `modelinfo`, `fit`, `resample`
NaiveBayesModel

Naive Bayes Classifier Model

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent predictor variables using Bayes rule.

Usage

NaiveBayesModel(laplace = 0)

Arguments

laplace	positive numeric controlling Laplace smoothing.

Details

Response Types: factor

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

naiveBayes, fit, resample

Examples

## Requires prior installation of suggested package e1071 to run

fit(Species ~ ., data = iris, model = NaiveBayesModel)
**NNetModel**

**Neural Network Model**

**Description**

Fit single-hidden-layer neural network, possibly with skip-layer connections.

**Usage**

```r
NNetModel(
 size = 1,
 linout = NULL,
 entropy = NULL,
 softmax = NULL,
 censored = FALSE,
 skip = FALSE,
 rang = 0.7,
 decay = 0,
 maxit = 100,
 trace = FALSE,
 MaxNWts = 1000,
 abstol = 1e-04,
 reltol = 1e-08
)
```

**Arguments**

- `size`: number of units in the hidden layer.
- `linout`: switch for linear output units. Set automatically according to the class type of the response variable [numeric: TRUE, other: FALSE].
- `entropy`: switch for entropy (= maximum conditional likelihood) fitting.
- `softmax`: switch for softmax (log-linear model) and maximum conditional likelihood fitting.
- `censored`: a variant on softmax, in which non-zero targets mean possible classes.
- `skip`: switch to add skip-layer connections from input to output.
- `rang`: Initial random weights on [-rang, rang].
- `decay`: parameter for weight decay.
- `maxit`: maximum number of iterations.
- `trace`: switch for tracing optimization.
- `MaxNWts`: maximum allowable number of weights.
- `abstol`: stop if the fit criterion falls below abstol, indicating an essentially perfect fit.
- `reltol`: stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1 - reltol.
Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: size, decay

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

nnet, fit, resample

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = NNetModel)
```

ParameterGrid

### Tuning Parameters Grid

Description

Defines a tuning grid from a set of parameters.

Usage

```r
ParameterGrid(...);
```

## S3 method for class 'param'
ParameterGrid(..., size = 3, random = FALSE)

## S3 method for class 'list'
ParameterGrid(x, size = 3, random = FALSE, ...)

## S3 method for class 'parameters'
ParameterGrid(x, size = 3, random = FALSE, ...)

Arguments

... named param objects as defined in the dials package.

size single integer or vector of integers whose positions or names match the given parameters and which specify the number of values used to construct the grid.

random number of unique points to sample at random from the grid defined by size, or FALSE for all points.

x list of named param objects or a parameters object.
**Value**

ParameterGrid class object that inherits from parameters and Grid.

**See Also**

TunedModel

**Examples**

```r
GBMModel tuning parameters
grid <- ParameterGrid(
 n.trees = dials::trees(),
 interaction.depth = dials::tree_depth(),
 random = 5
)
TunedModel(GBMModel, grid = grid)
```

---

**performance**

**Model Performance Metrics**

**Description**

Compute measures of model performance.

**Usage**

```r
performance(x, ...)
```

```
S3 method for class 'BinomialVariate'
performance(
 x,
 y,
 weights = NULL,
 metrics = MachineShop::settings("metrics.numeric"),
 na.rm = TRUE,
 ...
)
```

```
S3 method for class 'factor'
performance(
 x,
 y,
 weights = NULL,
 metrics = MachineShop::settings("metrics.factor"),
 cutoff = MachineShop::settings("cutoff"),
 na.rm = TRUE,
)```
Arguments

\textit{x} \hspace{1cm} \textbf{observed responses}; or \texttt{confusion} or \texttt{resample} result containing observed and predicted responses.

... \hspace{1cm} arguments passed from the \texttt{Resamples} method to the response type-specific
methods or from the method for ConfusionList to ConfusionMatrix. Elliptical arguments in the response type-specific methods are passed to metrics supplied as a single MLMetric function and are ignored otherwise.

\(y \) predicted responses if not contained in \(x \).

weights numeric vector of non-negative case weights for the observed \(x \) responses [default: equal weights].

metrics metric function, function name, or vector of these with which to calculate performance.

na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.

See Also

plot, summary

Examples

```r
## Requires prior installation of suggested package gbm to run
res <- resample(Species ~ ., data = iris, model = GBMModel)
(perf <- performance(res))
summary(perf)
plot(perf)

## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

obs <- response(gbm_fit, newdata = veteran)
pred <- predict(gbm_fit, newdata = veteran, type = "prob")
performance(obs, pred)
```

performance_curve

Model Performance Curves

Description

Calculate curves for the analysis of tradeoffs between metrics for assessing performance in classifying binary outcomes over the range of possible cutoff probabilities. Available curves include receiver operating characteristic (ROC) and precision recall.
Usage

performance_curve(x, ...)

Default S3 method:
performance_curve(
 x,
 y,
 weights = NULL,
 metrics = c(MachineShop::tpr, MachineShop::fpr),
 na.rm = TRUE,
 ...
)

S3 method for class 'Resamples'
performance_curve(
 x,
 metrics = c(MachineShop::tpr, MachineShop::fpr),
 na.rm = TRUE,
 ...
)

Arguments

x observed responses or resample result containing observed and predicted responses.
...
arguments passed to other methods.
y predicted responses if not contained in x.
weights numeric vector of non-negative case weights for the observed x responses [default: equal weights].
metrics list of two performance metrics for the analysis [default: ROC metrics]. Precision recall curves can be obtained with c(precision,recall).
na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

Value

PerformanceCurve class object that inherits from data.frame.

See Also

auc, c.plot, summary

Examples

Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")
```r
res <- resample(type ~ ., data = Pima.tr, model = GBMModel)

## ROC curve
roc <- performance_curve(res)
plot(roc)
auc(roc)
```

Model Performance Plots

Description

Plot measures of model performance and predictor variable importance.

Usage

```r
## S3 method for class 'Calibration'
plot(x, type = c("line", "point"), se = FALSE, ...)

## S3 method for class 'ConfusionList'
plot(x, ...)

## S3 method for class 'ConfusionMatrix'
plot(x, ...)

## S3 method for class 'LiftCurve'
plot(
  x,
  find = NULL,
  diagonal = TRUE,
  stat = MachineShop::settings("stat.Curve"),
  ...
)

## S3 method for class 'MLModel'
plot(
  x,
  metrics = NULL,
  stat = MachineShop::settings("stat.Trained"),
  type = c("boxplot", "density", "errorbar", "line", "violin"),
  ...
)

## S3 method for class 'PartialDependence'
plot(x, stats = NULL, ...)
```
S3 method for class 'Performance'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.Resamples"),
 type = c("boxplot", "density", "errorbar", "violin"),
 ...)

S3 method for class 'PerformanceCurve'
plot(
 x,
 type = c("tradeoffs", "cutoffs"),
 diagonal = FALSE,
 stat = MachineShop::settings("stat.Curve"),
 ...)

S3 method for class 'Resamples'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.Resamples"),
 type = c("boxplot", "density", "errorbar", "violin"),
 ...)

S3 method for class 'VarImp'
plot(x, n = NULL, ...)

Arguments

- **x**: calibration, confusion, lift, trained model fit, partial dependence, performance, performance curve, resample, or variable importance result.
- **type**: type of plot to construct.
- **se**: logical indicating whether to include standard error bars.
- **find**: numeric true positive rate at which to display reference lines identifying the corresponding rates of positive predictions.
- **diagonal**: logical indicating whether to include a diagonal reference line.
- **stat**: function or character string naming a function to compute a summary statistic on resampled metrics for trained MLModel line plots and Resamples model ordering. For LiftCurve and PerformanceCurve classes, plots are of resampled metrics aggregated by the statistic if given or of resample-specific metrics if NULL.
- **metrics**: vector of numeric indexes or character names of performance metrics to plot.
PLSMModel

Partial Least Squares Model

Description

Function to perform partial least squares regression.

Usage

PLSMModel(ncomp = 1, scale = FALSE)

Arguments

ncomp
number of components to include in the model.

scale
logical indicating whether to scale the predictors by the sample standard deviation.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: ncomp

Further model details can be found in the source link below.
Value

MLModel class object.

See Also

cmvpr, fit, resample

Examples

Requires prior installation of suggested package pls to run

fit(sale_amount ~ ., data = ICHomes, model = PLSModel)

POLRModel

Ordered Logistic or Probit Regression Model

Description

Fit a logistic or probit regression model to an ordered factor response.

Usage

POLRModel(method = c("logistic", "probit", "loglog", "cloglog", "cauchit"))

Arguments

* method logistic or probit or (complementary) log-log or cauchit (corresponding to a Cauchy latent variable).

Details

Response Types: ordered

Further model details can be found in the source link below.

In calls to `varimp` for `POLRModel`, numeric argument base may be specified for the (negative) logarithmic transformation of p-values [default: `exp(1)`]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

MLModel class object.

See Also

cmvpr, fit, resample
Examples

```r
data(Boston, package = "MASS")

df <- within(Boston,
  medv <- cut(medv,
    breaks = c(0, 10, 15, 20, 25, 50),
    ordered = TRUE))

fit(medv ~ ., data = df, model = POLRModel)
```

predict

Model Prediction

Predict outcomes with a fitted model.

Usage

```r
## S3 method for class 'MLModelFit'
predict(
  object,
  newdata = NULL,
  times = NULL,
  type = c("response", "prob"),
  cutoff = MachineShop::settings("cutoff"),
  distr = NULL,
  method = NULL,
  ...
)
```

Arguments

- **object**
 - model fit result.
- **newdata**
 - optional data frame with which to obtain predictions. If not specified, the training data will be used by default.
- **times**
 - numeric vector of follow-up times at which to predict survival events/probabilities or NULL for predicted survival means.
- **type**
 - specifies prediction on the original outcome scale ("response") or on a probability distribution scale ("prob").
- **cutoff**
 - numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.
- **distr**
 - character string specifying distributional approximations to estimated survival curves. Possible values are "empirical", "exponential", "rayleigh", or "weibull"; with defaults of "empirical" for predicted survival events/probabilities and "weibull" for predicted survival means.
method character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).

... arguments passed to model-specific prediction functions.

See Also

confusion, performance, metrics

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
predict(gbm_fit, newdata = veteran, times = c(90, 180, 360), type = "prob")

print

Print MachineShop Objects

Description

Print methods for objects defined in the MachineShop package.

Usage

S3 method for class 'BinomialVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'Calibration'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'DiscreteVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'ListOf'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'MLModel'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'ModelFrame'
print(x, n = MachineShop::settings("print_max"), ...)
Arguments

- **x** object to print.
- **n** integer number of models or data frame rows to show.
- **...** arguments passed to other methods.

Description

Performs quadratic discriminant analysis.
QDAModel

Usage

QDAModel(
 prior = NULL,
 method = c("moment", "mle", "mve", "t"),
 nu = 5,
 use = c("plug-in", "predictive", "debiased", "looCV")
)

Arguments

prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.

method type of mean and variance estimator.

nu degrees of freedom for method = "t".

use type of parameter estimation to use for prediction.

Details

Response Types: factor

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

qda, predict.qda, fit, resample

Examples

fit(Species ~ ., data = iris, model = QDAModel)
quote

Quote Operator

Description

Shorthand notation for the quote function. The quote operator simply returns its argument unevaluated and can be applied to any R expression. Useful for calling model constructors with quoted parameter values that are defined in terms of nobs, nvars, or y.

Usage

.(expr)

Arguments

expr any syntactically valid R expression.

Value

The quoted (unevaluated) expression.

See Also

quote

Examples

Stepwise variable selection with BIC
glm_fit <- fit(sale_amount ~ ., ICHomes, GLMStepAICModel(k = .(log(nobs))))
varimp(glm_fit)

RandomForestModel

Random Forest Model

Description

Implementation of Breiman’s random forest algorithm (based on Breiman and Cutler’s original Fortran code) for classification and regression.

Usage

RandomForestModel(
 ntree = 500,
 mtry = .(if (is.factor(y)) floor(sqrt(nvars)) else max(floor(nvars/3), 1)),
 replace = TRUE,
 nodesize = .(if (is.factor(y)) 1 else 5),
 maxnodes = NULL
)
Arguments

ntree number of trees to grow.

mtry number of variables randomly sampled as candidates at each split.

replace should sampling of cases be done with or without replacement?

nodesize minimum size of terminal nodes.

maxnodes maximum number of terminal nodes trees in the forest can have.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: mtry, nodesize*

* excluded from grids by default

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

randomForest, fit, resample

Examples

Requires prior installation of suggested package randomForest to run

fit(sale_amount ~ ., data = ICHomes, model = RandomForestModel)
Usage

RangerModel(
 num.trees = 500,
 mtry = NULL,
 importance = c("impurity", "impurity_corrected", "permutation"),
 min.node.size = NULL,
 replace = TRUE,
 sample.fraction = if (replace) 1 else 0.632,
 splitrule = NULL,
 num.random.splits = 1,
 alpha = 0.5,
 minprop = 0.1,
 split.select.weights = NULL,
 always.split.variables = NULL,
 respect.unordered.factors = NULL,
 scale.permutation.importance = FALSE,
 verbose = FALSE
)

Arguments

num.trees number of trees.
mtry number of variables to possibly split at in each node.
importance variable importance mode.
min.node.size minimum node size.
replace logical indicating whether to sample with replacement.
sample.fraction fraction of observations to sample.
splitrule splitting rule.
num.random.splits number of random splits to consider for each candidate splitting variable in the "extratrees" rule.
alpha significance threshold to allow splitting in the "maxstat" rule.
minprop lower quantile of covariate distribution to be considered for splitting in the "maxstat" rule.
split.select.weights numeric vector with weights between 0 and 1, representing the probability to select variables for splitting.
always.split.variables character vector with variable names to be always selected in addition to the mtry variables tried for splitting.
respect.unordered.factors handling of unordered factor covariates.
scale.permutation.importance scale permutation importance by standard error.
verbose show computation status and estimated runtime.
Recipe Roles

Description

Add to or replace the roles of variables in a preprocessing recipe.

Usage

- `role_binom(recipe, x, size)`
- `role_case(recipe, stratum, weight, replace = FALSE)`
- `role_pred(recipe, offset, replace = FALSE)`
- `role_surv(recipe, time, event)`

Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: mtry, min.node.size*, splitrule*

* excluded from grids by default

Default values for the NULL arguments and further model details can be found in the source link below.

Value

MLModel class object.

See Also

ranger, fit, resample

Examples

```r
## Requires prior installation of suggested package ranger to run
fit(Species ~ ., data = iris, model = RangerModel)
```
Arguments

- **recipe**: existing recipe object.
- **x, size**: number of counts and trials for the specification of a BinomialVariate outcome.
- **stratum**: variable to use in conducting stratified resample estimation of model performance.
- **weight**: numeric variable of case weights for model fitting.
- **replace**: logical indicating whether to replace existing roles.
- **offset**: numeric variable to be added to a linear predictor, such as in a generalized linear model, with known coefficient 1 rather than an estimated coefficient.
- **time, event**: numeric follow up time and 0-1 numeric or logical event indicator for specification of a Surv outcome. If the event indicator is omitted, all cases are assumed to have events.

Value

An updated recipe object.

See Also

- recipe

Examples

```r
library(survival)
library(recipes)

def <- within(veteran, {
  y <- Surv(time, status)
  remove(time, status)
})
rec <- recipe(y ~ ., data = df) %>%
  role_case(stratum = y)

(res <- resample(rec, model = CoxModel))
summary(res)
```

resample
Resample Estimation of Model Performance

Description

Estimation of the predictive performance of a model estimated and evaluated on training and test samples generated from an observed data set.
Usage

resample(x, ...)

S3 method for class 'formula'
resample(x, data, model, control = MachineShop::settings("control"), ...)

S3 method for class 'matrix'
resample(x, y, model, control = MachineShop::settings("control"), ...)

S3 method for class 'ModelFrame'
resample(x, model, control = MachineShop::settings("control"), ...)

S3 method for class 'recipe'
resample(x, model, control = MachineShop::settings("control"), ...)

S3 method for class 'MLModel'
resample(x, ...)

S3 method for class 'MLModelFunction'
resample(x, ...)

Arguments

x input specifying a relationship between model predictor and response variables. Alternatively, a model function or object may be given first followed by the input specification and control value.

... arguments passed to other methods.

data data frame containing observed predictors and outcomes.

model model function, function name, or object; ignored and can be omitted when resampling modeled inputs.

control control function, function name, or object defining the resampling method to be employed.

y response variable.

Details

Stratified resampling is performed automatically for the formula and matrix methods according to the type of response variable. In general, strata are constructed from numeric proportions for BinomialVariate; original values for character, factor, logical, and ordered; first columns of values for matrix; original values for numeric; and numeric times within event statuses for Surv. Numeric values are stratified into quantile bins and categorical values into factor levels defined by MLControl.

Resampling stratification variables may be specified manually for ModelFrames upon creation with the strata argument in their constructor. Resampling of this class is unstratified by default.

Stratification variables may be designated in recipe specifications with the role_case function. Resampling will be unstratified otherwise.
response

Value

Resamples class object.

See Also

c.metrics, performance, plot, summary

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
ccontrol <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary(gbm_res1)
plot(gbm_res1)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
plot(res)

response Extract Response Variable

Description

Extract the response variable from an object.

Usage

response(object, ...)

S3 method for class 'MLModelFit'
response(object, newdata = NULL, ...)

S3 method for class 'ModelFrame'
response(object, newdata = NULL, ...)

S3 method for class 'recipe'
response(object, newdata = NULL, ...)
Arguments

- **object**
 - model fit result, *ModelFrame*, or *recipe*.
- ... arguments passed to other methods.
- **newdata**
 - data frame from which to extract the response variable values if given; otherwise, object is used.

Examples

```r
## Survival response example
library(survival)

mf <- ModelFrame(Surv(time, status) ~ ., data = veteran)
response(mf)
```

RFSRCModel

Fast Random Forest (SRC) Model

Description

Fast OpenMP computing of Breiman’s random forest for a variety of data settings including right-censored survival, regression, and classification.

Usage

```r
RFSRCModel(
  ntree = 1000,
  mtry = NULL,
  nodesize = NULL,
  nodedepth = NULL,
  splitrule = NULL,
  nsplit = 10,
  block.size = NULL,
  samptype = c("swor", "swr"),
  membership = FALSE,
  sampsize = if (samptype == "swor") function(x) 0.632 * x else function(x) x,
  nimpute = 1,
  ntime = NULL,
  proximity = c(FALSE, TRUE, "inbag", "oob", "all"),
  distance = c(FALSE, TRUE, "inbag", "oob", "all"),
  forest.wt = c(FALSE, TRUE, "inbag", "oob", "all"),
  xvar.wt = NULL,
  split.wt = NULL,
  var.used = c(FALSE, "all.trees", "by.tree"),
  split.depth = c(FALSE, "all.trees", "by.tree"),
  do.trace = FALSE,
)```
RFSRCFastModel(  ntree = 500,  sampsize = function(x) min(0.632 * x, max(150, x^0.75)),  ntime = 50,  terminal.qualts = FALSE,  ...)
)

Arguments

ntree number of trees.
mtry number of variables randomly selected as candidates for splitting a node.
nodesize forest average number of unique cases in a terminal node.
nodedepth maximum depth to which a tree should be grown.
splitrule splitting rule (see rfsrc).
nsplit non-negative integer value for number of random splits to consider for each candidate splitting variable.
block.size interval number of trees at which to compute the cumulative error rate.
samptype whether bootstrap sampling is with or without replacement.
membership logical indicating whether to return terminal node membership.
sampsize function specifying the bootstrap size.
nimpute number of iterations of the missing data imputation algorithm.
ntime integer number of time points to constrain ensemble calculations for survival outcomes.
proximity whether and how to return proximity of cases as measured by the frequency of sharing the same terminal nodes.
distance whether and how to return distance between cases as measured by the ratio of the sum of edges from each case to the root node.
forest.wt whether and how to return the forest weight matrix.
xvar.wt vector of non-negative weights representing the probability of selecting a variable for splitting.
split.wt vector of non-negative weights used for multiplying the split statistic for a variable.
var.used whether and how to return variables used for splitting.
split.depth whether and how to return minimal depth for each variable.
do.trace number of seconds between updates to the user on approximate time to completion.
statistics logical indicating whether to return split statistics.
terminal.qualts logical indicating whether to return terminal node membership information.
... arguments passed to RFSRCModel.
Details

**Response Types:** factor, matrix, numeric, Surv

**Automatic Tuning of Grid Parameters:** mtry, nodesize

Default values for the NULL arguments and further model details can be found in the source link below.

In calls to `varimp` for RFSRCModel, argument metric may be specified as "permute" (default) from permuting OOB cases, as "random" for permutation replaced with random assignment, or as "anit" for cases assigned to the split opposite of the random assignments. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

`rfsrc`, `rfsrc.fast`, `fit`, `resample`

Examples

```r
Requires prior installation of suggested package randomForestSRC to run
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = RFSRCModel)
varimp(model_fit, metric = "random", scale = TRUE)
```

---

RPartModel  
*Recursive Partitioning and Regression Tree Models*

Description

Fit an rpart model.

Usage

```r
RPartModel(
 msplit = 20,
 minbucket = round(minsplit/3),
 cp = 0.01,
 maxcompete = 4,
 maxsurrogate = 5,
 usesurrogate = 2,
 xval = 10,
 surrogatetestyle = 0,
```
maxdepth = 30
}

Arguments

minsplit minimum number of observations that must exist in a node in order for a split to be attempted.

minbucket minimum number of observations in any terminal node.

cp complexity parameter.

maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.

usesurrogate how to use surrogates in the splitting process.

xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: cp

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

rpart, fit, resample

Examples

## Requires prior installation of suggested packages rpart and partykit to run

fit(Species ~ ., data = iris, model = RPartModel)
Description

Formula, design matrix, model frame, or recipe selection from a candidate set.

Usage

SelectedInput(...)

## S3 method for class 'formula'
SelectedInput(
  ...,
  data,
  control = MachineShop::settings("control"),
  metrics = NULL,
  stat = MachineShop::settings("stat.Trained"),
  cutoff = MachineShop::settings("cutoff")
)

## S3 method for class 'matrix'
SelectedInput(
  ...,
  Y,
  control = MachineShop::settings("control"),
  metrics = NULL,
  stat = MachineShop::settings("stat.Trained"),
  cutoff = MachineShop::settings("cutoff")
)

## S3 method for class 'ModelFrame'
SelectedInput(
  ...,
  control = MachineShop::settings("control"),
  metrics = NULL,
  stat = MachineShop::settings("stat.Trained"),
  cutoff = MachineShop::settings("cutoff")
)

## S3 method for class 'recipe'
SelectedInput(
  ...,
  control = MachineShop::settings("control"),
  metrics = NULL,
  stat = MachineShop::settings("stat.Trained"),
  cutoff = MachineShop::settings("cutoff")
)
## S3 method for class 'list'

SelectedInput(x, ...)

**Arguments**

- `...`: inputs specifying relationships between model predictor and response variables. Supplied inputs must all be of the same type and may be named or unnamed.
- `data`: data frame or an object that can be converted to one.
- `control`: control function, function name, or object defining the resampling method to be employed.
- `metrics`: metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the `performance` functions are used. Recipe selection is based on the first calculated metric.
- `stat`: function or character string naming a function to compute a summary statistic on resampled metric values for recipe selection.
- `cutoff`: argument passed to the `metrics` functions.
- `y`: response variable.
- `x`: list of inputs followed by arguments passed to their method function.

**Value**

SelectedModelFrame or SelectedModelRecipe class object that inherits from SelectedInput and ModelFrame or recipe.

**See Also**

fit, resample

**Examples**

```r
Selected model frame
sel_mf <- SelectedInput(
 sale_amount ~ sale_year + built + style + construction,
 Sale_amount ~ sale_year + base_size + bedrooms + basement,
 data = ICHomes
)
fit(sel_mf, model = GLMModel)
```

```r
Selected recipe
library(recipes)
data(Boston, package = "MASS")
rec1 <- recipe(medv ~ crim + zn + indus + chas + nox + rm, data = Boston)
rec2 <- recipe(medv ~ chas + nox + rm + age + dis + rad + tax, data = Boston)
sel_rec <- SelectedInput(rec1, rec2)
```
SelectedModel

Description

Model selection from a candidate set.

Usage

SelectedModel(
  ...,  
  control = MachineShop::settings("control"), 
  metrics = NULL, 
  stat = MachineShop::settings("stat.Trained"), 
  cutoff = MachineShop::settings("cutoff")
)

Arguments

...  model functions, function names, objects, or vectors of these to serve as the candidate set from which to select, such as that returned by expand_model.

control  control function, function name, or object defining the resampling method to be employed.

metrics  metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.

stat  function or character string naming a function to compute a summary statistic on resampled metric values for model selection.

cutoff  argument passed to the metrics functions.

Details

Response Types: factor, numeric, ordered, Surv

Value

SelectedModel class object that inherits from MLModel.

See Also

fit, resample
## Requires prior installation of suggested package gbm and glmnet to run

```r
model_fit <- fit(sale_amount ~ ., data = ICHomes,
 model = SelectedModel(GBMModel, GLMNetModel, SVMRadialModel))
(selected_model <- as.MLModel(model_fit))
summary(selected_model)
```

---

### Description

 Allow the user to view or change global settings which affect default behaviors of functions in the *MachineShop* package.

### Usage

```r
settings(...)```

Arguments

- `...` character names of settings to view, name = value pairs giving the values of settings to change, a vector of these, "reset" to restore all package defaults, or no arguments to view all settings. Partial matching of setting names is supported.

Value

 The setting value if only one is specified to view. Otherwise, a list of the values of specified settings as they existed prior to any requested changes. Such a list can be passed as an argument to `settings` to restore their values.

Settings

- `control` function, function name, or object defining a default resampling method [default: "CVControl"].
- `cutoff` numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified [default: 0.5].
- `distr.SurvMeans` character string specifying distributional approximations to estimated survival curves for predicting survival means. Choices are "empirical" for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull" (default).
- `distr.SurvProbs` character string specifying distributional approximations to estimated survival curves for predicting survival events/probabilities. Choices are "empirical" (default) for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull".
grid size argument to Grid indicating the number of parameter-specific values to generate automatically for tuning of models that have pre-defined grids or a Grid function, function name, or object [default: 3].

method.EmpiricalSurv character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).

metrics.ConfusionMatrix function, function name, or vector of these with which to calculate performance metrics for confusion matrices [default: c(Accuracy = "accuracy", Kappa = "kappa2", Weighted Kappa = "weighted_kappa2", Sensitivity = "sensitivity", Specificity = "specificity").]

metrics.factor function, function name, or vector of these with which to calculate performance metrics for factor responses [default: c(Brier = "brier", Accuracy = "accuracy", Kappa = "kappa2", Weighted Kappa = "weighted_kappa2", ROC AUC = "roc_auc", Sensitivity = "sensitivity", Specificity = "specificity").]

metrics.matrix function, function name, or vector of these with which to calculate performance metrics for matrix responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.numeric function, function name, or vector of these with which to calculate performance metrics for numeric responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.Surv function, function name, or vector of these with which to calculate performance metrics for survival responses [default: c("C-Index" = "cindex", Brier = "brier", ROC AUC = "roc_auc", Accuracy = "accuracy").]

print_max number of models or data rows to show with print methods or Inf to show all [default: 10].

require names of installed packages to load during parallel execution of resampling algorithms [default: c("MachineShop", "survival", "recipes").]

reset character names of settings to reset to their default values.

RHS.formula non-modifiable character vector of operators and functions allowed in traditional formula specifications.

stat.Curve function or character string naming a function to compute one summary statistic at each cutoff value of resampled metrics in performance curves, or NULL for resample-specific metrics [default: "base::mean").]

stat.Resamples function or character string naming a function to compute one summary statistic to control the ordering of models in plots [default: "base::mean").]

stat.Trained function or character string naming a function to compute one summary statistic on resampled performance metrics for input selection or tuning or for model selection or tuning [default: "base::mean").]

stats.PartialDependence function, function name, or vector of these with which to compute partial dependence summary statistics [default: c(Mean = "base::mean");]

stats.Resamples function, function name, or vector of these with which to compute summary statistics on resampled performance metrics [default: c(Mean = "base::mean", Median = "stats::median", SD = "stats::sd", Min = "base::min", Max = "base::max").]
Examples

```r
## View all current settings
settings()

## Change settings
presets <- settings(control = "BootControl", grid = 10)

## View one setting
settings("control")

## View multiple settings
settings("control", "grid")

## Restore the previous settings
settings(presets)
```

set_monitor
Resampling Monitoring Control

Description

Set parameters that control the monitoring of resample estimation of model performance.

Usage

```r
set_monitor(x, progress = TRUE, verbose = FALSE)
```

Arguments

- `x`
 - control object.
- `progress`
 - logical indicating whether to display a progress bar during resampling if a computing cluster is not registered or is registered with the doSNOW package.
- `verbose`
 - logical indicating whether to enable verbose messages which may be useful for trouble shooting.

Value

Argument x updated with the supplied parameters.

See Also

`set_predict`, `set_strata`, `resample`, `SelectedInput`, `SelectedModel`, `TunedInput`, `TunedModel`

Examples

```r
CVControl() %>% set_monitor(verbos = TRUE)
```
set_predict Resampling Prediction Control

Description
Set parameters that control prediction during resample estimation of model performance.

Usage
set_predict(x, times = NULL, distr = NULL, method = NULL)

Arguments
x control object.
times, distr, method
arguments passed to predict.

Value
Argument x updated with the supplied parameters.

See Also
set_monitor, set_strata, resample, SelectedInput, SelectedModel, TunedInput, TunedModel

Examples
CVControl() %>% set_predict(times = 1:3)

set_strata Resampling Stratification Control

Description
Set parameters that control the construction of strata during resample estimation of model performance.

Usage
set_strata(x, breaks = 4, nunique = 5, prop = 0.1, size = 20)
Arguments

- **x**: control object.
- **breaks**: number of quantile bins desired for stratification of numeric data during resampling.
- **nunique**: number of unique values at or below which numeric data are stratified as categorical.
- **prop**: minimum proportion of data in each strata.
- **size**: minimum number of values in each strata.

Details

The arguments control resampling strata which are constructed from numeric proportions for `BinomialVariate`; original values for character, factor, logical, numeric, and ordered; first columns of values for matrix; and numeric times within event statuses for `Surv`. Stratification of survival data by event status only can be achieved by setting `breaks = 1`. Numeric values are stratified into quantile bins and categorical values into factor levels. The number of bins will be the largest integer less than or equal to `breaks` satisfying the `prop` and `size` control argument thresholds. Categorical levels below the thresholds will be pooled iteratively by reassigning values in the smallest nominal level to the remaining ones at random and by combining the smallest adjacent ordinal levels. Missing values are replaced with non-missing values sampled at random with replacement.

Value

Argument x updated with the supplied parameters.

See Also

`set_monitor`, `set_predict`, `resample`, `SelectedInput`, `SelectedModel`, `TunedInput`, `TunedModel`

Examples

```r
CVControl() %>% set_strata(breaks = 3)
```

StackedModel

Stacked Regression Model

Description

Fit a stacked regression model from multiple base learners.

Usage

```r
StackedModel(..., control = MachineShop::settings("control"), weights = NULL)
```
Arguments

... model functions, function names, objects, or vector of these to serve as base learners.

control control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.

weights optional fixed base learner weights.

Details

Response Types: factor, numeric, ordered, Surv

Value

StackedModel class object that inherits from MLMModel.

References

See Also

fit, resample

Examples

Requires prior installation of suggested packages gbm and glmnet to run

model <- StackedModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
Usage

```r
step_kmeans(
  recipe,
  ...,  
  k = 5,
  center = TRUE,
  scale = TRUE,
  algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
  max_iter = 10,
  num_start = 1,
  replace = TRUE,
  prefix = "KMeans",
  role = "predictor",
  skip = FALSE,
  id = recipes::rand_id("kmeans")
)
```

S3 method for class 'step_kmeans'

```r
tidy(x, ...)
```

tunable.step_kmeans(x, ...)

Arguments

- **recipe**: Recipe object to which the step will be added.

- **...**: One or more selector functions to choose which variables will be used to compute the components. See selections for more details. These are not currently used by the tidy method.

- **k**: Number of k-means clusterings of the variables. The value of k is constrained to be between 1 and one less than the number of original variables.

- **center, scale**: Logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.

- **algorithm**: Character string specifying the clustering algorithm to use.

- **max_iter**: Maximum number of algorithm iterations allowed.

- **num_start**: Number of random cluster centers generated for starting the Hartigan-Wong algorithm.

- **replace**: Logical indicating whether to replace the original variables.

- **prefix**: Character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.

- **role**: Analysis role that added step variables should be assigned. By default, they are designated as model predictors.

- **skip**: Logical indicating whether to skip the step when the recipe is baked. While all operations are baked when `prep` is run, some operations may not be applicable to new data (e.g., processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
step_kmeans

id

unique character string to identify the step.

x

step_kmeans object.

Details

K-means clustering partitions variables into k groups such that the sum of squares between the
variables and their assigned cluster means is minimized. Variables within each cluster are then
averaged to derive a new set of k variables.

Value

Function step_kmeans creates a new step whose class is of the same name and inherits from
step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the
updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected),
cluster assignments, sqdist (squared distance from cluster centers), and name of the new variable
names.

References

Forgy EW (1965). Cluster analysis of multivariate data: efficiency vs interpretability of classifica-

108.

Lloyd SP (1957, 1982). Least squares quantization in PCM. Technical Note, Bell Laboratories.
Published in 1982 in IEEE Transactions on Information Theory 28, 128–137.

MacQueen J (1967). Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L.

See Also

kmeans, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmeans_rec <- rec %>%
 step_kmeans(all_predictors(), k = 3)
kmeans_prep <- prep(kmeans_rec, training = attitude)
kmeans_data <- bake(kmeans_prep, attitude)

pairs(kmeans_data, lower.panel = NULL)

tidy(kmeans_rec, number = 1)
tidy(kmeans_prep, number = 1)
step_kmedoids

K-Medoids Clustering Variable Selection

Description

Creates a *specification* of a recipe step that will partition numeric variables according to k-medoids clustering and select the cluster medoids.

Usage

```r
tunable.step_kmedoids(x, ...)
```

Arguments

- `recipe`: recipe object to which the step will be added.
- `...`: one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the tidy method.
- `k`: number of k-medoids clusterings of the variables. The value of `k` is constrained to be between 1 and one less than the number of original variables.
- `center, scale`: logicals indicating whether to mean center and median absolute deviation scale the original variables prior to cluster partitioning, or functions or names of functions for the centering and scaling; not applied to selected variables.
- `method`: character string specifying one of the clustering methods provided by the `cluster` package. The `clara` (clustering large applications) method is an extension of `pam` (partitioning around medoids) designed to handle large datasets.
- `metric`: character string specifying the metric used to compute distances. Not used for the `clara` method.
- `optimize`: logical indicating whether to run an optimization step to improve the solution.
- `num_samp`: integer giving the number of samples to use for the sampling method.
- `samp_size`: integer giving the size of the sample from which the initial medoids are chosen.
- `replace`: logical indicating whether to sample with replacement.
- `prefix`: character string giving the prefix for the generated variables.
- `role`: character string giving the role of the variables to be selected.
- `skip`: logical indicating whether to skip the step.
- `id`: character string giving the id of the step.
step_kmedoids

metric
character string specifying the distance metric for calculating dissimilarities between observations as "euclidean", "manhattan", or "jaccard" (clara only).

optimize
logical indicator or 0:5 integer level specifying optimization for the pam clustering method.

num_samp
number of sub-datasets to sample for the clara clustering method.

samp_size
number of cases to include in each sub-dataset.

replace
logical indicating whether to replace the original variables.

prefix
if the original variables are not replaced, the selected variables are added to the dataset with the character string prefix added to their names; otherwise, the original variable names are retained.

role
analysis role that added step variables should be assigned. By default, they are designated as model predictors.

skip
logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id
unique character string to identify the step.

x
step_kmedoids object.

Details

K-medoids clustering partitions variables into k groups such that the dissimilarity between the variables and their assigned cluster medoids is minimized. Cluster medoids are then returned as a set of k variables.

Value

Function step_kmedoids creates a new step whose class is of the same name and inherits from step_sbf, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), cluster assignments, selected (logical indicator of selected cluster medoids), silhouette (silhouette values), and name of the selected variable names.

References

See Also

pam, clara, recipe, prep, bake
Examples

```r
library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmedoids_rec <- rec %>%
  step_kmedoids(all_predictors(), k = 3)
kmedoids_prep <- prep(kmedoids_rec, training = attitude)
kmedoids_data <- bake(kmedoids_prep, attitude)

pairs(kmedoids_data, lower.panel = NULL)

tidy(kmedoids_rec, number = 1)
tidy(kmedoids_prep, number = 1)
```

step_lincomp
Linear Components Variable Reduction

Description

Creates a *specification* of a recipe step that will compute one or more linear combinations of a set of numeric variables according to a user-specified transformation matrix.

Usage

```r
step_lincomp(
  recipe,
  ..., 
  transform,
  num_comp = 5,
  options = list(),
  center = TRUE,
  scale = TRUE,
  replace = TRUE,
  prefix = "LinComp",
  role = "predictor",
  skip = FALSE,
  id = recipes::rand_id("lincomp")
)
```

S3 method for class 'step_lincomp'
```r
tidy(x, ...)
tunable.step_lincomp(x, ...)
```
Arguments

- **recipe**: `recipe` object to which the step will be added.
- **transform**: function whose first argument `x` is a matrix of variables with which to compute linear combinations and second argument `step` is the current step. The function should return a transformation matrix or `Matrix` of variable weights in its columns, or return a list with element `weights` containing the transformation matrix and possibly with other elements to be included as attributes in output from the `tidy` method.
- **num_comp**: number of components to derive. The value of `num_comp` will be constrained to a minimum of 1 and maximum of the number of original variables when `prep` is run.
- **options**: list of elements to be added to the step object for use in the `transform` function.
- **center, scale**: logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
- **skip**: logical indicating whether to skip the step when the recipe is baked. While all operations are baked when `prep` is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: unique character string to identify the step.
- **x**: step_lincomp object.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (selectors or variables selected), `weight` of each variable in the linear transformations, and `name` of the new variable names.

See Also

- `recipe`, `prep`, `bake`

Examples

```r
library(recipes)

pca_mat <- function(x, step) {

```
step_sbf

```r
prcomp(x)$rotation[, 1:step$num_comp, drop = FALSE]
}

rec <- recipe(rating ~ ., data = attitude)
lincomp_rec <- rec %>%
  step_lincomp(all_numeric(), -all_outcomes(),
              transform = pca_mat, num_comp = 3, prefix = "PCA")
lincomp_prep <- prep(lincomp_rec, training = attitude)
lincomp_data <- bake(lincomp_prep, attitude)
pairs(lincomp_data, lower.panel = NULL)
tidy(lincomp_rec, number = 1)
tidy(lincomp_prep, number = 1)
```

step_sbf
Variable Selection by Filtering

Description

Creates a *specification* of a recipe step that will select variables from a candidate set according to a user-specified filtering function.

Usage

```r
step_sbf(
  recipe,
  ..., filter, multivariate = FALSE,
  options = list(), replace = TRUE,
  prefix = "SBF", role = "predictor",
  skip = FALSE,
  id = recipes::rand_id("sbf")
)
```

```
## S3 method for class 'step_sbf'
tidy(x, ...)
```

Arguments

- `recipe`
 `recipe` object to which the step will be added.

- `...`
 one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the `tidy` method.
filter function whose first argument x is a univariate vector or a multivariate data frame of candidate variables from which to select, second argument y is the response variable as defined in preceding recipe steps, and third argument step is the current step. The function should return a logical value or vector of length equal the number of variables in x indicating whether to select the corresponding variable, or return a list or data frame with element `selected` containing the logical(s) and possibly with other elements of the same length to be included in output from the tidy method.

multivariate logical indicating that candidate variables be passed to the x argument of the filter function separately as univariate vectors if FALSE, or altogether in one multivariate data frame if TRUE.

options list of elements to be added to the step object for use in the filter function.

replace logical indicating whether to replace the original variables.

prefix if the original variables are not replaced, the selected variables are added to the dataset with the character string prefix added to their names; otherwise, the original variable names are retained.

role analysis role that added step variables should be assigned. By default, they are designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_sbf object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (selectors or variables selected), selected (logical indicator of selected variables), and name of the selected variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

glm_filter <- function(x, y, step) {
 model_fit <- glm(y ~ ., data = data.frame(y, x))
 p_value <- drop1(model_fit, test = "F")[-1, "Pr(>F)"
 p_value < step$threshold
}

rec <- recipe(rating ~ ., data = attitude)
sbf_rec <- rec %>%
 step_sbf(all_numeric(), -all_outcomes(),
```r
sbf_prep <- prep(sbf_rec, training = attitude)
sbf_data <- bake(sbf_prep, attitude)

pairs(sbf_data, lower.panel = NULL)

 tidy(sbf_rec, number = 1)
tidy(sbf_prep, number = 1)
```

step_spca
Sparse Principal Components Analysis Variable Reduction

Description

Creates a *specification* of a recipe step that will derive sparse principal components from one or more numeric variables.

Usage

```r
tuning.step_spca(x, 
  ..., 
  num_comp = 5, 
  sparsity = 0, 
  num_var = NULL, 
  shrinkage = 1e-06, 
  center = TRUE, 
  scale = TRUE, 
  max_iter = 200, 
  tol = 0.001, 
  replace = TRUE, 
  prefix = "SPCA", 
  role = "predictor", 
  skip = FALSE, 
  id = recipes::rand_id("spca")
)
```

Arguments

- `recipe`

 recipe object to which the step will be added.

- `...`

 one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the tidy method.
num_comp
number of components to derive. The value of num_comp will be constrained to a minimum of 1 and maximum of the number of original variables when prep is run.

density, num_var
sparsity (L1 norm) penalty for each component or number of variables with non-zero component loadings. Larger sparsity values produce more zero loadings. Argument density is ignored if num_var is given. The argument value may be a single number applied to all components or a vector of component-specific numbers.

shrinkage
numeric shrinkage (quadratic) penalty for the components to improve conditioning; larger values produce more shrinkage of component loadings toward zero.

center, scale
logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.

max_iter
maximum number of algorithm iterations allowed.

tol
numeric tolerance for the convergence criterion.

replace
logical indicating whether to replace the original variables.

prefix
character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.

role
analysis role that added step variables should be assigned. By default, they are designated as model predictors.

skip
logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id
unique character string to identify the step.

x
step_spca object.

Details

Sparse principal components analysis (SPCA) is a variant of PCA in which the original variables may have zero loadings in the linear combinations that form the components.

Value

Function step_spca creates a new step whose class is of the same name and inherits from step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable loading in the components, and name of the new variable names; and with attribute pev containing the proportions of explained variation.

References

See Also

spca, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
spca_rec <- rec %>%
 step_spca(all_predictors(), num_comp = 5, sparsity = 1)
spca_prep <- prep(spca_rec, training = attitude)
spca_data <- bake(spca_prep, attitude)
pairs(spca_data, lower.panel = NULL)
tidy(spca_rec, number = 1)
tidy(spca_prep, number = 1)

summary

Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

S3 method for class 'ConfusionList'
summary(object, ...)

S3 method for class 'ConfusionMatrix'
summary(object, ...)

S3 method for class 'MLModel'
summary(
 object,
 stats = MachineShop::settings("stats.Resamples"),
 na.rm = TRUE,
 ...
)

S3 method for class 'Performance'
summary(
 object,
 stats = MachineShop::settings("stats.Resamples"),
 na.rm = TRUE,
 ...
summary

S3 method for class 'PerformanceCurve'
summary(object, stat = MachineShop::settings("stat.Curve"), ...)

S3 method for class 'Resamples'
summary(
 object,
 stats = MachineShop::settings("stats.Resamples"),
 na.rm = TRUE,
 ...
)

Arguments

- **object**: confusion, lift, trained model fit, performance, performance curve, or resample result.
- ...: arguments passed to other methods.
- **stats**: function, function name, or vector of these with which to compute summary statistics.
- **na.rm**: logical indicating whether to exclude missing values.
- **stat**: function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in PerformanceCurve, or NULL for resample-specific metrics.

Value

An object of summary statistics.

Examples

Requires prior installation of suggested package gbm to run

Factor response example

```r
fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
summary(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
```
SuperModel

Super Learner Model

Description

Fit a super learner model to predictions from multiple base learners.

Usage

SuperModel(
 ...,
 model = GBMModel,
 control = MachineShop::settings("control"),
 all_vars = FALSE
)

Arguments

 ... model functions, function names, objects, or vector of these to serve as base learners.
 model model function, function name, or object defining the super model.
 control control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.
 all_vars logical indicating whether to include the original predictor variables in the super model.

Details

 Response Types: factor, numeric, ordered, Surv

Value

SuperModel class object that inherits from MlModel.

References

See Also

 fit, resample
Requires prior installation of suggested packages gbm and glmnet to run

```r
model <- SuperModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
```

SurvMatrix

SurvMatrix Class Constructors

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SurvEvents</td>
<td>Create a matrix of survival events or probabilities.</td>
</tr>
<tr>
<td>SurvProbs</td>
<td></td>
</tr>
</tbody>
</table>

Description

Create a matrix of survival events or probabilities.

Usage

```r
SurvEvents(data = NA, times = NULL, distr = NULL)
SurvProbs(data = NA, times = NULL, distr = NULL)
```

Arguments

- **data**: matrix, or object that can be coerced to one, with survival events or probabilities at points in time in the columns and cases in the rows.
- **times**: numeric vector of survival times for the columns.
- **distr**: character string specifying the survival distribution from which the matrix values were derived.

Value

Object that is of the same class as the constructor name and inherits from SurvMatrix. Examples of these are predicted survival events and probabilities returned by the `predict` function.

See Also

- `performance.metrics`
SurvRegModel

Parametric Survival Model

Description

Fits the accelerated failure time family of parametric survival models.

Usage

```r
SurvRegModel(
  dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal", "logloglogistic"),
  scale = NULL,
  parms = NULL,
  ...
)
```

```r
SurvRegStepAICModel(
  dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal", "logloglogistic"),
  scale = NULL,
  parms = NULL,
  ..., 
  direction = c("both", "backward", "forward"),
  scope = NULL,
  k = 2,
  trace = FALSE,
  steps = 1000
)
```

Arguments

- `dist` assumed distribution for y variable.
- `scale` optional fixed value for the scale.
- `parms` list of fixed parameters.
- `...` arguments passed to `survreg.control`.
- `direction` mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- `scope` defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- `k` multiple of the number of degrees of freedom used for the penalty. Only `k = 2` gives the genuine AIC; `k = .(log(nobs))` is sometimes referred to as BIC or SBC.
- `trace` if positive, information is printed during the running of `stepAIC`. Larger values may give more information on the fitting process.
- `steps` maximum number of steps to be considered.
Details

Response Types: Surv
Default values for the NULL arguments and further model details can be found in the source link below.

Value
MLModel class object.

See Also
psm, survreg, survreg.control, stepAIC, fit, resample
stepAIC, fit, resample

Examples

```r
## Requires prior installation of suggested packages rms and Hmisc to run
library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = SurvRegModel)
```

Description

Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (regression) formulations along with native multi-class classification formulations and the bound-constraint SVM formulations.

Usage

```r
SVMMModel(
  scaled = TRUE,
  type = NULL,
  kernel = c("rbfdot", "polydot", "vanilladot", "tanhdot", "laplacedot", "besseldot",
             "anovadot", "splinedot"),
  kpar = "automatic",
  C = 1,
  nu = 0.2,
  epsilon = 0.1,
  cache = 40,
  tol = 0.001,
```
SVMMModel

shrink = TRUE

SVMANOVAModel(sigma = 1, degree = 1, ...)
SVMBesselModel(sigma = 1, order = 1, degree = 1, ...)
SVMLaplaceModel(sigma = NULL, ...)
SVMLinearModel(...)
SVMPolyModel(degree = 1, scale = 1, offset = 1, ...)
SVMRadialModel(sigma = NULL, ...)
SVMSplineModel(...)
SVMTanhModel(scale = 1, offset = 1, ...)

Arguments

- scaled: logical vector indicating the variables to be scaled.
- type: type of support vector machine.
- kernel: kernel function used in training and predicting.
- kpar: list of hyper-parameters (kernel parameters).
- C: cost of constraints violation defined as the regularization term in the Lagrange formulation.
- nu: parameter needed for nu-svc, one-svc, and nu-svr.
- epsilon: parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.
- cache: cache memory in MB.
- tol: tolerance of termination criterion.
- shrinking: whether to use the shrinking-heuristics.
- sigma: inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.
- degree: degree of the ANOVA, Bessel, and polynomial kernel functions.
- ...: arguments passed to SVMMModel.
- order: order of the Bessel function to be used as a kernel.
- scale: scaling parameter of the polynomial and hyperbolic tangent kernels as a convenient way of normalizing patterns without the need to modify the data itself.
- offset: offset used in polynomial and hyperbolic tangent kernels.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters

- SVMANOVAModel: C, degree
SVMBesselModel: C, order, degree
SVMLaplaceModel: C, sigma
SVMLinearModel: C
SVMPolyModel: C, degree, scale
SVMRadialModel: C, sigma

Arguments kernel and kpar are automatically set by the kernel-specific constructor functions. Default values for the NULL arguments and further model details can be found in the source link below.

Value
MLModel class object.

See Also
ksvm, fit, resample

Examples
fit(sale_amount ~ ., data = ICHomes, model = SVMRadialModel)

t.test
Paired t-Tests for Model Comparisons

Description
Paired t-test comparisons of resampled performance metrics from different models.

Usage
S3 method for class 'PerformanceDiff'
t.test(x, adjust = "holm", ...)

Arguments
x performance difference result.
adjust p-value adjustment for multiple statistical comparisons as implemented by p.adjust.
... arguments passed to other methods.

Value
PerformanceDiffTest class object that inherits from array. p-values and mean differences are contained in the lower and upper triangular portions, respectively, of the first two dimensions. Model pairs are contained in the third dimension.
Examples

```r
## Requires prior installation of suggested package gbm to run

## Numeric response example
fo <- sale_amount ~ .
control <- CVControl()

gbm_res1 <- resample(fo, ICHomes, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, ICHomes, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, ICHomes, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
t.test(res_diff)
```

TreeModel

Classification and Regression Tree Models

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and choosing splits from the terms of the right-hand-side.

Usage

```r
TreeModel(
  mincut = 5,
  minsize = 10,
  mindev = 0.01,
  split = c("deviance", "gini"),
  k = NULL,
  best = NULL,
  method = c("deviance", "misclass")
)
```

Arguments

- **mincut**: minimum number of observations to include in either child node.
- **minsize**: smallest allowed node size: a weighted quantity.
- **mindev**: within-node deviance must be at least this times that of the root node for the node to be split.
- **split**: splitting criterion to use.
- **k**: scalar cost-complexity parameter defining a subtree to return.
best integer alternative to k requesting the number of terminal nodes of a subtree in the cost-complexity sequence to return.

method character string denoting the measure of node heterogeneity used to guide cost-complexity pruning.

Details

Response Types: factor, numeric

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

tree, prune.tree, fit, resample

Examples

Requires prior installation of suggested package tree to run

fit(Species ~ ., data = iris, model = TreeModel)

TunedInput

Tuned Model Inputs

Description

Recipe tuning over a grid of parameter values.

Usage

TunedInput(x, ...)

S3 method for class 'recipe'
TunedInput(
 x,
 grid = expand_steps(),
 control = MachineShop::settings("control"),
 metrics = NULL,
 stat = MachineShop::settings("stat.Trained"),
 cutoff = MachineShop::settings("cutoff"),
 ...
)
Arguments

- **x**: untrained `recipe`.
- **...**: arguments passed to other methods.
- **grid**: `RecipeGrid` containing parameter values at which to evaluate a recipe, such as those returned by `expand_steps`.
- **control**: control function, function name, or object defining the resampling method to be employed.
- **metrics**: metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the `performance` functions are used. Recipe selection is based on the first calculated metric.
- **stat**: function or character string naming a function to compute a summary statistic on resampled metric values for recipe tuning.
- **cutoff**: argument passed to the `metrics` functions.

Value

TunedModelRecipe class object that inherits from TunedInput and recipe.

See Also

- `fit`, `resample`

Examples

```r
library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
  step_pca(all_numeric(), -all_outcomes(), id = "pca")

grid <- expand_steps(
  pca = list(num_comp = 1:2)
)

fit(TunedInput(rec, grid = grid), model = GLMModel)
```

TunedModel Tuned Model

Description

Model tuning over a grid of parameter values.
Usage

TunedModel(
 model,
 grid = MachineShop::settings("grid"),
 fixed = list(),
 control = MachineShop::settings("control"),
 metrics = NULL,
 stat = MachineShop::settings("stat.Trained"),
 cutoff = MachineShop::settings("cutoff")
)

Arguments

model model function, function name, or object defining the model to be tuned.

grid single integer or vector of integers whose positions or names match the parameters in the model's pre-defined tuning grid if one exists and which specify the number of values used to construct the grid; Grid function, function name, or object; ParameterGrid object; or data frame containing parameter values at which to evaluate the model, such as that returned by expand_params.

fixed list or one-row data frame with columns of fixed parameter values to combine with those in grid.

control control function, function name, or object defining the resampling method to be employed.

metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.

stat function or character string naming a function to compute a summary statistic on resampled metric values for model tuning.

cutoff argument passed to the metrics functions.

Details

The expand_modelgrid function enables manual extraction and viewing of grids created automatically when a TunedModel is fit.

Response Types: factor, numeric, ordered, Surv

Value

TunedModel class object that inherits from MLModel.

See Also

fit, resample
Requires prior installation of suggested package gbm to run
May require a long runtime

Automatically generated grid
model_fit <- fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(GBMModel))
varimp(model_fit)
(tuned_model <- as.MLModel(model_fit))
summary(tuned_model)
plot(tuned_model, type = "l")

Randomly sampled grid points
fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(GBMModel, grid = Grid(size = 1000, random = 5)))

User-specified grid
fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(GBMModel,
 grid = expand_params(n.trees = c(50, 100),
 interaction.depth = 1:2,
 n.minobsinnode = c(5, 10))))

unMLModelFit

Revert an MLModelFit Object

Description

Function to revert an MLModelFit object to its original class.

Usage

`unMLModelFit(object)`

Arguments

- **object**: model fit result.

Value

The supplied object with its MLModelFit classes and fields removed.
Description

Calculate measures of the relative importance of predictors in a model.

Usage

```r
varimp(object, scale = TRUE, ...)
```

Arguments

- `object`: model fit result.
- `scale`: logical indicating whether importance measures should be scaled to range from 0 to 100.
- `...`: arguments passed to model-specific variable importance functions.

Value

VarImp class object.

See Also

`plot`

Examples

```r
## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
(vi <- varimp(gbm_fit))
plot(vi)
```
Description

Fits models within an efficient implementation of the gradient boosting framework from Chen & Guestrin.

Usage

XGBModel(params = list(), nrounds = 1, verbose = 0, print_every_n = 1)

XGBDARTModel(
 objective = NULL,
 aft_loss_distribution = "normal",
 aft_loss_distribution_scale = 1,
 base_score = 0.5,
 eta = 0.3,
 gamma = 0,
 max_depth = 6,
 min_child_weight = 1,
 max_delta_step = .(0.7 * is(y, "PoissonVariate")),
 subsample = 1,
 colsample_bytree = 1,
 colsample_bylevel = 1,
 colsample_bynode = 1,
 lambda = 1,
 alpha = 0,
 tree_method = "auto",
 sketch_eps = 0.03,
 scale_pos_weight = 1,
 refresh_leaf = 1,
 process_type = "default",
 grow_policy = "depthwise",
 max_leaves = 0,
 max_bin = 256,
 num_parallel_tree = 1,
 sample_type = "uniform",
 normalize_type = "tree",
 rate_drop = 0,
 one_drop = 0,
 skip_drop = 0,
 ...
)

XGBLinearModel(
 objective = NULL,
aft_loss_distribution = "normal",
aft_loss_distribution_scale = 1,
base_score = 0.5,
lambda = 0,
alpha = 0,
updater = "shotgun",
feature_selector = "cyclic",
top_k = 0,
...
)

XGBTreeModel(
 objective = NULL,
aft_loss_distribution = "normal",
aft_loss_distribution_scale = 1,
base_score = 0.5,
eta = 0.3,
gamma = 0,
max_depth = 6,
min_child_weight = 1,
max_delta_step = (.0.7 * is(y, "PoissonVariate")),
subsample = 1,
colsample_bytree = 1,
colsample_bylevel = 1,
colsample_bynode = 1,
lambda = 1,
alpha = 0,
tree_method = "auto",
sketch_eps = 0.03,
scale_pos_weight = 1,
refresh_leaf = 1,
process_type = "default",
grow_policy = "depthwise",
max_leaves = 0,
max_bin = 256,
num_parallel_tree = 1,
...
)

Arguments

params list of model parameters as described in the XGBoost documentation.
nrounds maximum number of boosting iterations.
verbose numeric value controlling the amount of output printed during model fitting, such that 0 = none, 1 = performance information, and 2 = additional information.
print_every_n numeric value designating the fitting iterations at which to print output when verbose > 0.
XGBModel

objective
character string specifying the learning task and objective. Possible values for supported response variable types are as follows:
- factor: "multi:softprob", "binary:logistic" (2 levels only)
- PoissonVariate: "count:poisson"
- Surv: "survival:cox", "survival:aft"

The first values listed are the defaults for the corresponding response types.

aft_loss_distribution
character string specifying the distribution for the accelerated failure time objective ("survival:aft") as "normal", "logistic", or "extreme".

aft_loss_distribution_scale
numeric scaling parameter for the accelerated failure time distribution.

base_score
initial numeric prediction score of all instances, global bias.

eta, gamma, max_depth, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel
see params reference.

... arguments passed to XGBModel.

Details

Response Types: factor, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters
- XGBDARTModel: nrounds, max_depth, eta, gamma*, min_child_weight*, subsample, colsample_bytree, rate_drop, skip_drop
- XGBLinearModel: nrounds, lambda, alpha
- XGBTreeModel: nrounds, max_depth, eta, gamma*, min_child_weight*, subsample, colsample_bytree

* excluded from grids by default

Default values for the NULL arguments and further model details can be found in the source link below.

In calls to `varimp` for XGBTreeModel, argument metric may be specified as "Gain" (default) for the fractional contribution of each predictor to the total gain of its splits, as "Cover" for the number of observations related to each predictor, or as "Frequency" for the percentage of times each predictor is used in the trees. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

xgboost, fit, resample
Requires prior installation of suggested package xgboost to run

```r
model_fit <- fit(Species ~ ., data = iris, model = XGBTreeModel)
varimp(model_fit, metric = "Frequency", scale = FALSE)
```
Index

* datasets
 ICHomes, 45
 +,SurvMatrix, SurvMatrix-method (combine), 20
 .. 34, 52
 . (quote), 85
 [,DiscreteVariate, ANY, missing, missing-method (extract), 33
 [,ModelFrame, ANY, ANY, ANY-method (extract), 33
 [,ModelFrame, ANY, missing, missing-method (extract), 33
 [,RecipeGrid, ANY, ANY, ANY-method (extract), 33
 [,Resamples, ANY, ANY, ANY-method (extract), 33
 [,Resamples, ANY, ANY, ANY-method (extract), 33
 [,SurvMatrix, ANY, ANY, ANY-method (extract), 33
 [,SurvMeans, ANY, missing, missing-method (extract), 33
 [,BinomialVariate (extract), 33
 [,ModelFrame (extract), 33

 accuracy (metrics), 54
 AdaBagModel, 6, 68
 AdaBoostModel, 8, 68
 as.MLModel, 9, 36
 auc, 76
 auc (metrics), 54
 Automatic Tuning, 7, 9, 11, 14, 16, 20, 27, 34, 37, 39, 40, 43, 47–49, 52, 72, 79, 86, 88, 94, 95, 121, 131

 bagging, 7

 bake, 106, 108, 110, 112, 115
 bartMachine, 10, 11
 BARTMachineModel, 10, 68
 BARTModel, 11, 68
 base learner, 37
 baselearners, 38
 BinomialVariate, 46, 89, 90, 103
 BinomialVariate (DiscreteVariate), 26
 blackboost, 15
 BlackBoostModel, 13, 68
 boosting, 9
 BoostControl, 5
 BoostControl (MLControl), 58
 BootOptimismControl, 5
 BootOptimismControl (MLControl), 58
 brier (metrics), 54
 bruto, 34, 52

c, 18, 22, 50, 76, 91
 c.Calibration (combine), 20
 c.ConfusionList (combine), 20
 c.ConfusionMatrix (combine), 20
 c.LiftCurve (combine), 20
 c.ListOf (combine), 20
 c.PerformanceCurve (combine), 20
 c.Resamples (combine), 20
 C5.0, 16
 C5.0Control, 16
 C50Model, 15, 68
 calibration, 5, 17, 21, 78
 case weights, 17, 21, 50, 57, 75, 76
 case_weights, 18
 cforest, 20
 cforest_control, 20
 CForestModel, 19, 68
 cindex (metrics), 54
 clara, 108
 combine, 20
 confusion, 5, 21, 21, 53, 57, 74, 78, 82, 116
 ConfusionMatrix (confusion), 21
control, 21, 90, 97–99, 101–104, 117, 125, 126
controls (MLControl), 58
CoxModel, 22, 68
coxph, 23
coxph.control, 23
CoxStepAICModel, 68
CoxStepAICModel (CoxModel), 22
cross_entropy (metrics), 54
ctree_control, 14, 15
curves (performance_curve), 75
CVControl, 5
CVControl (MLControl), 58
CVOptimismControl, 6
CVOptimismControl (MLControl), 58
data frame, 18, 24, 30, 36, 65, 66, 81, 90, 92, 97, 126
dependence, 5, 24, 78
diff, 5, 25
difference, 122
DiscreteVariate, 26, 46
earth, 28
EarthModel, 27, 68
expand_model, 5, 28, 98
expand_modelgrid, 5, 29, 44, 126
expand_params, 5, 31, 126
expand_steps, 5, 32, 125
extract, 33
f_score (metrics), 54
factor, 46
Family, 14, 15, 37, 38, 40
fda, 35
FDMModel, 34, 68
fitting, 89
fnr (metrics), 54
formula, 46, 66
fpr (metrics), 54
gamboost, 38
GAMBoostModel, 37, 68
gbart, 13
gbm, 39
GBMModel, 38, 68
gen.ridge, 34, 52
gini (metrics), 54
glm, 42
glm.control, 41, 42
glmboost, 40
GLMBoostModel, 39, 68
GLMModel, 41, 68
glmnet, 43
GLMNNetModel, 42, 68
GLMStepAICModel, 68
Grid, 44, 100, 126
ICHomes, 45
inputs, 29, 36, 65, 90
install.packages, 67
kappa2 (metrics), 54
kknn, 47
kmeans, 106
KNNModel, 46, 68
ksvm, 122
lars, 48
LARSModel, 47, 68
lda, 49
LDAModel, 49, 69
library, 67
lift, 5, 21, 50, 78, 116
lm, 51
LMMModel, 51, 69
loess, 17
MachineShop (MachineShop-package), 4
MachineShop-package, 4
mae (metrics), 54
mars, 34, 52
Matrix, 110
matrix, 46, 66, 110
mbart, 13
mda, 53
MDAModel, 51, 69
metric, 53, 75, 97, 98, 125, 126
metricinfo, 6, 53, 58
metrics, 5, 21, 54, 59, 62, 76, 82, 91, 100, 118
MLControl, 58, 90
INDEX

XGBModel, 69, 129
xgboost, 131
XGBTeeModel, 69
XGBTeeModel (XGBModel), 129