Package ‘LinearDetect’

March 22, 2021

Type Package
Title Change Point Detection in High-Dimensional Linear Regression Models
Version 0.1.5
Author Yue Bai [aut, cre], Abolfazl Safikhani [aut]
Maintainer Yue Bai <baiyue@ufl.edu>
Description A unified framework for simultaneous structural break detection and parameter estimation in high-dimensional linear models. The proposed method can handle a wide range of models, including change-in-mean model, multiple linear regression model, Vector autoregressive model and Gaussian graphical model.
License GPL-2
Encoding UTF-8
LazyData true
Imports stats, graphics, mvtnorm, factoextra, Rcpp, ggplot2, glmnet, sparsevar
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-03-22 00:20:02 UTC

R topics documented:

BIC .. 2
BIC.threshold 3
BIC.threshold.ggm 4
constant.sim.break 5
BIC and HBIC function

Description

BIC and HBIC function

Usage

BIC(residual, phi, gamma.val = 1, method = "MLR")

Arguments

residual
 residual matrix
phi
 estimated coefficient matrix of the model
gamma.val
 hyperparameter for HBIC, if HBIC == TRUE.
method
 method name for the model: MLR: Multiple Linear Regression; VAR: Vector autoregression;

Value

A list object, which contains the followings

BIC BIC value
HBIC HBIC value
BIC.threshold

BIC threshold for final parameter estimation

Description

BIC threshold for final parameter estimation

Usage

```r
BIC.threshold(
  method,  
  beta.final, 
  k, 
  m.hat, 
  brk, 
  data_y, 
  data_x = NULL, 
  b_n = 2, 
  nlam = 20
)
```

Arguments

- `method` method name for the model: Constant; Mean-shift Model; MvLR: Multivariate Linear Regression; MLR: Multiple Linear Regression
- `beta.final` a combined matrix of estimated parameter coefficient matrices for all stationary segmentations
- `k` dimensions of parameter coefficient matrices
- `m.hat` number of estimated change points
- `brk` vector of estimated change points
- `data_y` input data matrix (response), with each column representing the time series component
- `data_x` input data matrix (predictor), with each column representing the time series component
- `b_n` the block size
- `nlam` number of hyperparameters for grid search

Value

lambda.val.best, the tuning parameter lambda selected by BIC.
Description

BIC threshold for final parameter estimation (GGM)

Usage

BIC.threshold.ggm(
 beta.final,
 k,
 m.hat,
 brk,
 data_y,
 data_x = NULL,
 b_n = 2,
 nlam = 20
)

Arguments

 beta.final : a combined matrix of estimated parameter coefficient matrices for all stationary segmentations
 k : dimensions of parameter coefficient matrices
 m.hat : number of estimated change points
 brk : vector of estimated change points
 data_y : input data matrix (response), with each column representing the time series component
 data_x : input data matrix (predictor), with each column representing the time series component
 b_n : the block size
 nlam : number of hyperparameters for grid search

Value

lambda.val.best, the tuning parameter lambda selected by BIC.
constant.sim.break Generate the constant model data with break points

Description
Generate the constant model data with break points

Usage
constant.sim.break(nobs, cnst, sigma, brk = nobs + 1)

Arguments
nobs number of time points
cnst the constant
sigma covariance matrix of the white noise
brk vector of break points

Value
A list object, which contains the followings

series_y matrix of response data
noises matrix of white noise error

ggm.first.step.blocks Threshold block fused lasso step for gaussian graphical model.

Description
Perform the block fused lasso with thresholding to detect candidate break points.

Usage
ggm.first.step.blocks(
 data_y,
 data_x,
 lambda1,
 lambda2,
 max.iteration = max.iteration,
 tol = tol,
 blocks,
 cv.index,
 HBIC = FALSE,
 gamma.val = NULL
)
Arguments

- **data_y**: input data matrix Y
- **data_x**: input data matrix X
- **lambda1**: tuning parameter lambda_1 for fused lasso
- **lambda2**: tuning parameter lambda_2 for fused lasso
- **max.iteration**: max number of iteration for the fused lasso
- **tol**: tolerance for the fused lasso
- **blocks**: the blocks
- **cv.index**: the index of time points for cross-validation
- **HBIC**: logical; if TRUE, use high-dimensional BIC, if FALSE, use original BIC. Default is FALSE.
- **gamma.val**: hyperparameter for HBIC, if HBIC == TRUE.

Value

A list object, which contains the followings

- **jump.l2**: estimated jump size in L2 norm
- **jump.l1**: estimated jump size in L1 norm
- **pts.list**: estimated change points in the first step
- **beta.full**: estimated parameters in the first step

Description

Perform the exhaustive search to "thin out" redundant break points.

Usage

```r
ggm.second.step.search(
  data_y,  # input data matrix Y
  data_x,  # input data matrix X
  max.iteration = max.iteration,
  tol = tol,
  cp.first,  # estimated change points in the first step
  beta.est,  # estimated parameters in the first step
  blocks
)```
**Arguments**

- **data_y**: input data matrix, with each column representing the time series component
- **data_x**: input data matrix, with each column representing the time series component
- **max.iteration**: max number of iteration for the fused lasso
- **tol**: tolerance for the fused lasso
- **cp.first**: the selected break points after the first step
- **beta.est**: the estimated parameters by block fused lasso
- **blocks**: the blocks

**Value**

A list object, which contains the followings

- **cp.final**: a set of selected break point after the exhaustive search step
- **beta.hat.list**: the estimated coefficient matrix for each segmentation

---

**Description**

Generate the gaussian graphical model data with break points

**Usage**

```r
ggm.sim.break(nobs, px, sigma, brk = nobs + 1)
```

**Arguments**

- **nobs**: number of time points
- **px**: the number of features
- **sigma**: covariance matrix of the X matrix
- **brk**: vector of break points

**Value**

A list object, which contains the followings

- **series_x**: matrix of data
lambda_warm_up_lm

Description

lambda warm up for linear regression model

Usage

lambda_warm_up_lm(data_y, data_x, blocks, cv_index)

Arguments

data_y input matrix Y
data_x input matrix X
blocks the vector of blocks
cv_index the vector of indices for validation

Value

a value for parameter lambda

lm.first.step.blocks

Description

Threshold block fused lasso step for linear regression model.

Usage

lm.first.step.blocks(
  data_y,  
data_x,  
lambda1,  
lambda2, 
max.iteration = max.iteration, 
tol = tol, 
blocks, 
cv_index, 
fixed_index = NULL, 
nonfixed_index = NULL, 
HBIC = FALSE,  
gamma.val = NULL
)


**lm.second.step.search**

**Arguments**

- **data_y**: input data matrix Y, with each column representing the time series component
- **data_x**: input data matrix X, with each column representing the time series component
- **lambda1**: tuning parameter lambda_1 for fused lasso
- **lambda2**: tuning parameter lambda_2 for fused lasso
- **max.iteration**: max number of iteration for the fused lasso
- **tol**: tolerance for the fused lasso
- **blocks**: the blocks
- **cv.index**: the index of time points for cross-validation
- **fixed_index**: index for linear regression model with only partial components change.
- **nonfixed_index**: index for linear regression model with only partial components change.
- **HBIC**: logical; if TRUE, use high-dimensional BIC, if FALSE, use original BIC. Default is FALSE.
- **gamma.val**: hyperparameter for HBIC, if HBIC == TRUE.

**Value**

A list object, which contains the followings

- **jump.l2**: estimated jump size in L2 norm
- **jump.l1**: estimated jump size in L1 norm
- **pts.list**: estimated change points in the first step
- **beta.full**: estimated parameters in the first step

---

**lm.second.step.search**  Exhaustive search step for linear regression model.

**Description**

Perform the exhaustive search to "thin out" redundant break points.

**Usage**

```r
lm.second.step.search(
 data_y,
 data_x,
 max.iteration = max.iteration,
 tol = tol,
 cp.first,
 beta.est,
 blocks
)
```
Arguments

- `data_y`: input data matrix, with each column representing the time series component
- `data_x`: input data matrix, with each column representing the time series component
- `max.iteration`: max number of iteration for the fused lasso
- `tol`: tolerance for the fused lasso
- `cp.first`: the selected break points after the first step
- `beta.est`: the estimated parameters by block fused lasso
- `blocks`: the blocks

Value

A list object, which contains the followings

- `cp.final`: a set of selected break point after the exhaustive search step
- `beta.hat.list`: the estimated coefficient matrix for each segmentation

---

**lm.sim.break**

*Generate the linear regression model data with break points*

**Description**

Generate the linear regression model data with break points

**Usage**

```r
lm.sim.break(
 nobs,
 px,
 cnst = NULL,
 phi = NULL,
 sigma,
 sigma_x = 1,
 brk = nobs + 1
)
```

**Arguments**

- `nobs`: number of time points
- `px`: the number of features
- `cnst`: the constant
- `phi`: parameter coefficient matrix of the linear model
- `sigma`: covariance matrix of the white noise
- `sigma_x`: variance of the predictor variable x
- `brk`: vector of break points
**Value**

A list object, which contains the followings

- **series_y** matrix of response data
- **series_x** matrix of predictor data
- **noises** matrix of white noise error

---

**mspe.plot**

*Plot the cross-validation score*

---

**Description**

Plot the cross-validation score

**Usage**

`mspe.plot(pred.error, lambda)`

**Arguments**

- **pred.error** prediction error
- **lambda** indice of tuning parameter lambda

**Value**

No return value, called for plot

---

**pred**

*prediction function*

---

**Description**

prediction function

**Usage**

`pred(X, phi, j, p.x, p.y, h = 1)`

**Arguments**

- **X** data for prediction
- **phi** parameter matrix
- **j** the start time point for prediction
- **p.x** the dimension of data X
- **p.y** the dimension of data Y
- **h** the length of observation to predict
**Value**

prediction matrix

---

**pred.block**

*Prediction function (block)*

---

**Description**

Prediction function (block)

**Usage**

pred.block(X, phi, j, p.x, p.y, h)

**Arguments**

- **X** data for prediction
- **phi** parameter matrix
- **j** the start time point for prediction
- **p.x** the dimension of data X
- **p.y** the dimension of data Y
- **h** the length of observation to predict

**Value**

prediction matrix

---

**pred.block.var**

*Prediction function for VAR (block)*

---

**Description**

Prediction function for VAR (block)

**Usage**

pred.block.var(Y, phi, q, TT, p, h)

**Arguments**

- **Y** data for prediction
- **phi** parameter matrix
- **q** the AR order
- **TT** the start time point for prediction
- **p** the number of time series components
- **h** the length of observation to predict
**pred.var**

**Value**

prediction matrix

---

**pred.var**  
*Prediction function for VAR 2*

**Description**

Prediction function for VAR 2

**Usage**

```r
pred.var(Y, phi, q, TT, p, h = 1)
```

**Arguments**

- `Y`: data for prediction
- `phi`: parameter matrix
- `q`: the AR order
- `TT`: the start time point for prediction
- `p`: the number of time series components
- `h`: the length of observation to predict

**Value**

prediction matrix

---

**remove.extra.pts**  
*helper function for detection check*

**Description**

helper function for detection check

**Usage**

```r
remove.extra.pts(pts, brk)
```

**Arguments**

- `pts`: the estimated change points
- `brk`: the true change points

**Value**

a vector of timepoints
**soft_full**  
*soft threshold function*

---

**Description**

soft threshold function

**Usage**

```r
soft_full(L, lambda)
```

**Arguments**

- `L`: input matrix
- `lambda`: threshold parameter

**Value**

thresholded matrix L

---

**tbfl**  
*Threshold block fused lasso (TBFL) algorithm for change point detection*

---

**Description**

Perform the threshold block fused lasso (TBFL) algorithm to detect the structural breaks in large scale high-dimensional non-stationary linear regression models.

**Usage**

```r
tbfl(
 method,
 data_y,
 data_x = NULL,
 lambda.1.cv = NULL,
 lambda.2.cv = NULL,
 q = 1,
 max.iteration = 100,
 tol = 10^(-2),
 block.size = NULL,
 blocks = NULL,
 refit = FALSE,
 fixed_index = NULL,
 HBIC = FALSE,
```
gamma.val = NULL,
optimal.block = TRUE,
optimal.gamma.val = 1.5,
block.range = NULL
)

Arguments

method  method name for the model: Constant: Mean-shift Model; MvLR: Multivariate Linear Regression; MLR: Multiple Linear Regression; VAR: Vector autoregression; GGM: Gaussian graphical model
data_y input data matrix (response), with each column representing the time series component
data_x input data matrix (predictor), with each column representing the time series component
lambda.1.cv tuning parameter lambda_1 for fused lasso
lambda.2.cv tuning parameter lambda_2 for fused lasso
q the AR order
max.iteration max number of iteration for the fused lasso
tol tolerance for the fused lasso
block.size the block size
blocks the blocks
refit logical; if TRUE, refit the model, if FALSE, use BIC to find a thresholding value and then output the parameter estimates without refitting. Default is FALSE.
fixed_index index for linear regression model with only partial components change.
HBIC logical; if TRUE, use high-dimensional BIC, if FALSE, use original BIC. Default is FALSE.
gamma.val hyperparameter for HBIC, if HBIC == TRUE.
optimal.block logical; if TRUE, grid search to find optimal block size, if FALSE, directly use the default block size. Default is TRUE.
optimal.gamma.val hyperparameter for optimal block size, if optimal.blocks == TRUE. Default is 1.5.
block.range the search domain for optimal block size.

Value

A list object, which contains the followings

cp.first a set of selected break point after the first block fused lasso step
cp.final a set of selected break point after the final exhaustive search step
beta.hat.list a list of estimated parameter coefficient matrices for each stationary segmentation
beta.est a list of estimated parameter coefficient matrices for each block
**beta.final** a list of estimated parameter coefficient matrices for each stationary segmentation, using BIC thresholding or refitting the model.

**beta.full.final** For GGM only. A list of $p \times p$ matrices for each stationary segmentation. The off-diagonal entries are same as the beta.final.

**jumps** The change (jump) of the values in estimated parameter coefficient matrix.

**bn.optimal** The optimal block size.

**bn.range** The values of block size in grid search.

**HBIC.full** The HBIC values.

**pts.full** The selected change points for each block size.

**Author(s)**

Yue Bai, `<baiyue@ufl.edu>`

**Examples**

```r
constant model
TT <- 10^3; # number of observations/samples
p.y <- 50; # dimension of observed Y
brk <- c(floor(TT/3),floor(2*TT/3), TT+1)
m <- length(brk)
d <- 5 #number of non-zero coefficient
generate coefficient
constant.full <- matrix(0, p.y, m)
set.seed(1)
constant.full[,sample(1:p.y, d, replace = FALSE), 1] <- runif(d, -1, -0.5);
constant.full[,sample(1:p.y, d, replace = FALSE), 2] <- runif(d, 0.5, 1);
constant.full[,sample(1:p.y, d, replace = FALSE), 3] <- runif(d, -1, -0.5);
e.sigma <- as.matrix(1*diag(p.y))
try <- constant.sim.break(nobs = TT, cnst = constant.full, sigma = e.sigma, brk = brk)
data_y <- try$series_y; data_y <- as.matrix(data_y, ncol = p.y)
Fit the model
method <- c("Constant")
temp <- tbfl(method, data_y, block.size = 40, optimal.block = FALSE) #use a single block size
temp$cp.final
temp$beta.final
temp <- tbfl(method, data_y) # using optimal block size

multiple linear regression
TT <- 2*10^3; # number of observations/samples
p.y <- 1; # dimension of observed Y
p.x <- 20
brk <- c(floor(TT/4), floor(2*TT/4), floor(3*TT/4), TT+1)
m <- length(brk)
d <- 15 #number of non-zero coefficient
###generate coefficient beta
beta.full <- matrix(0, p.y, p.x*m)
```
set.seed(1)
aa <- c(-3, 5, -3, 3)
for(i in 1:m){beta.full[, (i-1)*p.x+sample(1:p.x, d, replace = FALSE)] <- aa[i] + runif(d, -1, 1);}
e.sigma <- as.matrix(1*diag(p.y))
try <- lm.sim.break(nobs = TT, px = p.x, phi = beta.full, sigma = e.sigma, sigma_x = 1, brk = brk)
data_y <- try$series_y; data_y <- as.matrix(data_y, ncol = p.y)
data_x <- try$series_x; data_x <- as.matrix(data_x)
### Fit the model
method <- c("MLR")
temp <- tbfl(method, data_y, data_x)
temp$cp.final #change points
temp$beta.final #final estimated parameters (after BIC threshold)
temp_refit <- tbfl(method, data_y, data_x, refit = TRUE)
temp_refit$beta.final #final estimated parameters (refitting the model)

#### Gaussian Graphical model
TT <- 3*10^3; # number of observations/samples
p.x <- 20 # dimension of observed X
# TRUE BREAK POINTS WITH T+1 AS THE LAST ELEMENT
brk <- c(floor(TT/3), floor(2*TT/3), TT+1)
m <- length(brk)
###generate precision matrix and covariance matrix
eta = 0.1
d <- ceiling(p.x*eta)
sigma.full <- matrix(0, p.x, p.x*m)
omega.full <- matrix(0, p.x, p.x*m)
aa <- 1/d
for(i in 1:m){
  if(i%%2==1){
    ajmatrix <- matrix(0, p.x, p.x)
    for(j in 1:(floor(p.x/5)) ){
      ajmatrix[ ((j-1)*5+1): (5*j), ((j-1)*5+1): (5*j) ] <- 1
    }
  }
  if(i%%2==0){
    ajmatrix <- matrix(0, p.x, p.x)
    for(j in 1:(floor(p.x/10)) ){
      ajmatrix[ seq(((j-1)*10+1), (10*j), 2), seq(((j-1)*10+1), (10*j), 2) ] <- 1
      ajmatrix[ seq(((j-1)*10+2), (10*j), 2), seq(((j-1)*10+2), (10*j), 2) ] <- 1
    }
  }
  theta <- aa* ajmatrix
  # force it to be positive definite
  if(min(eigen(theta)$values) <= 0){
    print('add noise')
    theta = theta - (min(eigen(theta)$values)-0.05) * diag(p.x)
  }
  sigma.full[, ((i-1)*p.x+1):(i*p.x)] <- as.matrix(solve(theta))
  omega.full[, ((i-1)*p.x+1):(i*p.x)] <- as.matrix(omega)
}
# simulate data
try <- ggm.sim.break(nobs = TT, px = p.x, sigma = sigma.full, brk = brk)
data_y <- try$series_x; data_y <- as.matrix(data_y)
### Fit the model
method <- c("GGM")
# use a single block size
temp <- tbfl(method, data_y = data_y, block.size = 80, optimal.block = FALSE)
temp$cp.final # change points
temp$beta.final

---

var.first.step.blocks  *Threshold block fused lasso step for linear regression model.*

**Description**
Perform the block fused lasso with thresholding to detect candidate break points.

**Usage**

```r
var.first.step.blocks(
 data_y,
 lambda1,
 lambda2,
 q,
 max.iteration,
 tol,
 blocks,
 cv.index,
 HBIC = FALSE,
 gamma.val = NULL
)
```

**Arguments**

- `data_y` input data matrix Y, with each column representing the time series component
- `lambda1` tuning parameter lambda_1 for fused lasso
- `lambda2` tuning parameter lambda_2 for fused lasso
- `q` the AR order
- `max.iteration` max number of iteration for the fused lasso
- `tol` tolerance for the fused lasso
- `blocks` the blocks
- `cv.index` the index of time points for cross-validation
- `HBIC` logical; if TRUE, use high-dimensional BIC, if FALSE, use orginal BIC. Default is FALSE.
- `gamma.val` hyperparameter for HBIC, if HBIC == TRUE.
var.second.step.search

Value

A list object, which contains the followings

\( \text{jump.l2} \) estimated jump size in L2 norm
\( \text{jump.l1} \) estimated jump size in L1 norm
\( \text{pts.list} \) estimated change points in the first step
\( \text{phi.full} \) estimated parameters in the first step

---

var.second.step.search

**Exhaustive search step**

Description

Perform the exhaustive search to "thin out" redundant break points.

Usage

```r
var.second.step.search(
 data_y, q,
 max.iteration = max.iteration,
 tol = tol,
 cp.first, beta.est,
 blocks
)
```

Arguments

- `data_y`: input data matrix, with each column representing the time series component
- `q`: the AR order
- `max.iteration`: max number of iteration for the fused lasso
- `tol`: tolerance for the fused lasso
- `cp.first`: the selected break points after the first step
- `beta.est`: the estimated parameters by block fused lasso
- `blocks`: the blocks

Value

A list object, which contains the followings

- `cp.final`: a set of selected break point after the exhaustive search step
- `phi.hat.list`: the estimated coefficient matrix for each segmentation
Generating non-stationary ARMA data.

Usage

```r
var.sim.break(
 nobs,
 arlags = NULL,
 malags = NULL,
 cnst = NULL,
 phi = NULL,
 theta = NULL,
 skip = 200,
 sigma,
 brk = nobs + 1
)
```

Arguments

- `nobs` number of time points
- `arlags` the true AR order
- `malags` the true MA order
- `cnst` the constant
- `phi` parameter matrix of the AR model
- `theta` parameter matrix of the MA model
- `skip` the number of time points to skip at the beginning (for stable data)
- `sigma` covariance matrix of the white noise
- `brk` vector of break points

Value

Matrice of time series data and white noise data
Index

BIC, 2
BIC.threshold, 3
BIC.threshold.ggm, 4
constant.sim.break, 5

ggm.first.step.blocks, 5
ggm.second.step.search, 6
ggm.sim.break, 7

lambda_warm_up_lm, 8
lm.first.step.blocks, 8
lm.second.step.search, 9
lm.sim.break, 10

mspe.plot, 11

pred, 11
pred.block, 12
pred.block.var, 12
pred.var, 13

remove.extra.pts, 13

soft_full, 14

tbfl, 14

var.first.step.blocks, 18
var.second.step.search, 19
var.sim.break, 20