Package ‘LifemapR’

August 24, 2023

Title Data Visualisation on 'Lifemap' Tree

Version 1.0.4

Imports leaflet, shiny, jsonlite, dplyr, leaflet.minicharts, purrr, htmltools, rlang

Description Allow to visualise data on the NCBI phylogenetic tree as presented in Lifemap '<http://lifemap.univ-lyon1.fr/>'. It takes as input a dataframe with at least a "taxid" column containing NCBI format TaxIds and allows to draw multiple layers with different visualisation tools.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

Suggests knitr

VignetteBuilder knitr

NeedsCompilation no

Author Cassandra Bompad [aut], Damien M. de Vienne [aut], Aurélie Siberchicot [ctb, cre]

Maintainer Aurélie Siberchicot <aurelie.siberchicot@univ-lyon1.fr>

Repository CRAN

Date/Publication 2023-08-24 08:20:06 UTC

R topics documented:

+.lifemap_obj ... 2
add_lm_branches ... 3
add_lm_markers .. 4
add_lm_piecharts .. 4
build_Lifemap ... 5
create_matrix .. 6
create_value_range ... 6
+.lifemap_obj

Add a graphical element to a tree visualisation.

Description

Add a graphical element to a tree visualisation.

Usage

S3 method for class 'lifemap_obj'
e1 + e2

Arguments

<table>
<thead>
<tr>
<th>e1</th>
<th>An object of class lifemap_obj that contains at least df, a dataframe, and $basemap$, the map used to get the coordinates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2</td>
<td>A description of the graphical features wanted for a set of points (eg. markers, subtree, piecharts, ...).</td>
</tr>
</tbody>
</table>

Value

A lifemap_obj object.
add_lm_branches

Examples

```r
## Only run examples in interactive R sessions
if (interactive()) {
  data(LM_eukaryotes)
  LM_obj <- lifemap(LM_eukaryotes) + lm_markers() + lm_branches()
}
```

add_lm_branches
Compute the aesthetics for a subtree visualisation.

Description

Compute the aesthetics for a subtree visualisation.

Usage

```r
add_lm_branches(
  proxy,
  aes,
  df,
  df_visible,
  df_descendants,
  group_info,
  all_taxids
)
```

Arguments

- `proxy`
 The map to be modified.
- `aes`
 The dataframe containing the aesthetics details (must be of lm_branches class).
- `df`
 The full dataframe.
- `df_visible`
 The dataframe containing visible taxa.
- `df_descendants`
 The dataframe containing all the information on the descendants of visible taxa.
- `group_info`
 The ID of this group of lines.
- `all_taxids`
 A vector containing all the visible taxids and their direct descendants.

Value

An updated map with the new layer added.
add_lm_markers Compute the aesthetics for markers visualisation.

Description
Compute the aesthetics for markers visualisation.

Usage
add_lm_markers(proxy, aes, df, df_visible, group_info)

Arguments
- proxy: The map to be modified.
- aes: The dataframe containing the aesthetics information (must be of lm_markers class).
- df: The full dataframe.
- df_visible: The dataframe containing visible taxa.
- group_info: The ID of this group of markers.

Value
An updated map with the new layer added.

add_lm_piecharts Compute the aesthetics for discret values visualisation.

Description
Compute the aesthetics for discret values visualisation.

Usage
add_lm_piecharts(proxy, aes, df, df_visible, layer)

Arguments
- proxy: The map to be modified.
- aes: The dataframe containing the aesthetics details (must be of lm_piecharts class).
- df: The full dataframe.
- df_visible: The dataframe containing visible taxa.
- layer: The ID of this group of charts

Value
An updated map with the new layer added.
`build_Lifemap`

A function to construct a LifemapR object, usable by the other functions of the package.

Description

A function to construct a LifemapR object, usable by the other functions of the package.

Usage

```r
build_Lifemap(df, basemap = c("fr", "ncbi", "base", "virus"), verbose = TRUE)
```

Arguments

- **df**: A dataframe containing at least a column named "taxid" including NCBI format TaxIDs. The dataframe can also contain characteristics associated with those TaxIDs in separated columns.
- **basemap**: The basemap wanted ("fr","ncbi", "base" or "virus").
- **verbose**: If TRUE, will write details on the status of the operation in the terminal.

Value

A lifemap object with:

- **df**: a dataframe containing at least for each TaxID (taxid):
 - The longitude (long)
 - The latitude (lat)
 - The scientific name (sci_name)
 - The zoom level at which the taxa can be seen (zoom)
 - Its ascendants (ascend)
 - Its type ("requested" or "ancestor")
- **basemap**: the basemap used to get taxa’s details

Examples

```r
data(eukaryotes_80)
LM <- build_Lifemap(eukaryotes_80, "fr")
```
create_matrix

Create a dataframe for the ancestry.

Description

Create a dataframe with pairs of taxids, each taxid and their corresponding values are associated with every one of its ancestors.

Usage

create_matrix(df, cols)

Arguments

df
A dataframe containing taxids and values.

cols
The columns containing the values which needs to be inferred.

Value

A dataframe.

Examples

data(LM_eukaryotes)

create_matrix(LM_eukaryotes$df, c("GC.", "Genes"))

create_value_range

Compute a new scale for a value

Description

Compute a new scale for a value

Usage

create_value_range(value, df, df2, min, max)

Arguments

value
A vector of values.

df
The full dataframe.

df2
The dataframe containing visibles taxa.

min
The new minimum of the range.

max
The new maximum of the range.
display_map

Value

A vector of values.

<table>
<thead>
<tr>
<th>display_map</th>
<th>Create a Lifemap base.</th>
</tr>
</thead>
</table>

Description

This function creates a blank Leaflet map using the leaflet function from the leaflet package. If a dataframe is provided, it will be used for the creation of the map.

Usage

```r
display_map(df = NULL, basemap = c("fr", "ncbi", "base", "virus"))
```

Arguments

- `df`: A dataframe. If given, its columns can be easily accessed with "~" (eg. ~GC.).
- `basemap`: The basemap chosen to be displayed, it can be either:
 - 'base' for https://lifemap.univ-lyon1.fr/

Value

An HTML widget object with graphics layers.

Examples

```r
display_map()
```

display_option

Compute the different display options.

<table>
<thead>
<tr>
<th>display_option</th>
<th>Compute the different display options.</th>
</tr>
</thead>
</table>

Description

Compute the different display options.

Usage

```r
display_option(m, aes, df, type, leaves, i)
```
draw_Lifemap

Arguments

- `m`: The map to be modified.
- `aes`: The dataframe containing the aesthetics details
- `df`: The full dataframe.
- `type`: A string indicating the type of representation, either "markers" or "discret"
- `leaves`: The Vector of all the terminal taxids.
- `i`: The index of the aesthetics.

Value

An updated map.

Description

Draw a map and all the aesthetics in the order you put them in, the last one will be on top of the others.

Usage

```r
draw_Lifemap(lm_obj)
```

Arguments

- `lm_obj`: A Lifemap object filled with aesthetics.

Value

A shiny application

Examples

```r
## Only run examples in interactive R sessions
if (interactive()) {
    data(LM_eukaryotes)
    lifemap(LM_eukaryotes) + lm_markers() + lm_branches()
}
```
Description

A dataset containing NCBI information of 1000 eukaryotes. The variables are as follows:

Usage

data(eukaryotes_1000)

Format

A data frame with 1000 rows and 19 variables:

- **X.Organism.Name**: Organism name at the species level
- **taxid**: NCBI taxid
- **BioProject.Accession**: BioProject Accession number (from BioProject database)
- **BioProject.ID**: BioProject ID
- **Group**: Commonly used organism groups: Animals, Fungi, Plants, Protists
- **SubGroup**: NCBI Taxonomy level below group: Mammals, Birds, Fishes, Flatworms, Insects, Amphibians, Reptiles, Roundworms, Ascomycetes, Basidiomycetes, Land Plants, Green Algae, Apicomplexans, Kinetoplasts
- **Size..Mb.**: Total length of DNA submitted for the project
- **GC.**: Percent of nitrogenous bases (guanine or cytosine) in DNA submitted for the project
- **Assembly.Accession**: Name of the genome assembly (from NCBI Assembly database)
- **Replicons**: Number of replicons in the assembly
- **WGS**: Four-letter Accession prefix followed by version as defined in WGS division of GenBank/INSDC
- **Scaffolds**: Number of scaffolds in the assembly
- **Genes**: Number of Genes annotated in the assembly
- **Proteins**: Number of Proteins annotated in the assembly
- **Release.Date**: First public sequence release for the project
- **Modify.Date**: Sequence modification date for the project
- **Status**: Highest level of assembly: Chromosomes: one or more chromosomes are assembled Scaffolds or contigs: sequence assembled but no chromosomes
- **Center**: Origin of the sample
- **BioSample.Accession**: BioSample Accession number
Description

A dataset containing NCBI information of 80 eukaryotes. The variables are as follows:

Usage

data(eukaryotes_80)

Format

A data frame with 80 rows and 19 variables:

- **X.Organism.Name** Organism name at the species level
- **taxid** NCBI taxid
- **BioProject.Accession** BioProject Accession number (from BioProject database)
- **BioProject.ID** BioProject ID
- **Group** Commonly used organism groups: Animals, Fungi, Plants, Protists
- **SubGroup** NCBI Taxonomy level below group: Mammals, Birds, Fishes, Flatworms, Insects, Amphibians, Reptiles, Roundworms, Ascomycetes, Basidiomycetes, Land Plants, Green Algae, Apicomplexans, Kinetoplasts
- **Size..Mb.** Total length of DNA submitted for the project
- **GC.** Percent of nitrogenous bases (guanine or cytosine) in DNA submitted for the project
- **Assembly.Accession** Name of the genome assembly (from NCBI Assembly database)
- **Replicons** Number of replicons in the assembly
- **WGS** Four-letter Accession prefix followed by version as defined in WGS division of GenBank/INSDC
- **Scaffolds** Number of scaffolds in the assembly
- **Genes** Number of Genes annotated in the assembly
- **Proteins** Number of Proteins annotated in the assembly
- **Release.Date** First public sequence release for the project
- **Modify.Date** Sequence modification date for the project
- **Status** Highest level of assembly: Chromosomes: one or more chromosomes are assembled Scaffolds or contigs: sequence assembled but no chromosomes
- **Center** Origin of the sample
- **BioSample.Accession** BioSample Accession number
Genomic results

Description
A dataset containing information on Genome size and TE content for 808 taxids

Usage
data(gen_res)

Format
A data frame with 808 rows and 3 variables:

- **taxid** NCBI taxid
- **Genome_size** the Genome size in pb
- **TEcontent_bp** the transposable element content in pb

get_direct_ancestor Add the direct ancestor for each taxa of the dataframe.

Description
Add the direct ancestor for each taxa of the dataframe.

Usage
get_direct_ancestor(df)

Arguments
- **df** A dataframe with requested taxid and the full ascendance information.

Value
A dataframe with the direct ancestor for each taxa.
is.lm_branches

Description

Reports whether x is a lm_branches object.

Usage

is.lm_branches(x)

Arguments

x The object to test.

Value

A boolean indicating whether or not the object is of lm_branches type.

Examples

Only run examples in interactive R sessions
if (interactive()) {
 data(LM_eukaryotes)
 is.lm_branches(LM_eukaryotes)
}

is.lifemap_obj Reports whether x is a lifemap_obj object.

Description

Reports whether x is a lifemap_obj object.

Usage

is.lifemap_obj(x)

Arguments

x The object to test.

Value

A boolean indicating whether or not the object is of lifemap_obj type.

Examples

Only run examples in interactive R sessions
if (interactive()) {
 data(LM_eukaryotes)
 is.lifemap_obj(LM_eukaryotes)
}
is.lm_markers

Reports whether x is a lm_markers object.

Description

Reports whether x is a lm_markers object.

Usage

is.lm_markers(x)

Arguments

x The object to test.

Value

A boolean indicating whether or not the object is of lm_markers type.

is.lm_piecharts

Reports whether x is a lm_branches object.

Description

Reports whether x is a lm_branches object.

Usage

is.lm_piecharts(x)

Arguments

x The object to test.

Value

A boolean indicating whether or not the object is of lm_piecharts type.
kraken_res

Kraken results

Description

A dataset containing NCBI information of 1000 eukaryotes. The variables are as follows:

Usage

data(kraken_res)

Format

A data frame with 4427 rows and 6 variables:

- **coverage_percent** Percentage of fragments covered by the clade rooted at this taxon
- **coverage_number** Number of fragments covered by the clade rooted at this taxon
- **fragment_number** Number of fragments assigned directly to this taxon
- **rank** A rank code, indicating (U)nclassified, (R)oot, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rd, (F)amily, (G)enus, or (S)pecies. Taxa that are not at any of these 10 ranks have a rank code that is formed by using the rank code of the closest ancestor rank with a number indicating the distance from that rank. E.g., "G2" is a rank code indicating a taxon is between genus and species and the grandparent taxon is at the genus rank.
- **taxid** NCBI taxonomic ID number
- **name** Indented scientific name

lifemap

Initialise a new Lifemap visualisation.

Description

Initialise a lifemap_obj object. It can be used to describe aesthetics like the zoom level at which taxids becomes visible...

Usage

lifemap(lm_obj, zoom = 4)

Arguments

- **lm_obj** lifemap_obj object used for data visualisation.
- **zoom** The level of zoom for which values are displayed (if zoom = 0 only the nodes at the current zoom level or lower can have their values displayed).

Value

A lifemap_obj object.
lm_branches

Add a "branches" layer to a lifemap_obj object.

Description

Add a "branches" layer to a lifemap_obj object.

Usage

```r
lm_branches(
  data = NULL,
  color = NULL,
  var_color = NULL,
  size = 5,
  min = 2,
  max = 20,
  opacity = 0.5,
  FUN = NULL,
  legend = TRUE,
  legendPosition = c("topright", "bottomright", "bottomleft", "topleft")
)
```

Arguments

- `data`: A sub dataset to use, if NULL then all of the taxids from the lifemap object given to lifemap() will be used.
- `color`: Either a color for the branches or a palette if a variable is used to represent branches’ color.
- `var_color`: A column name of the original dataframe to represent this variable by the color of branches.
- `size`: Either a numeric for the branche’s thickness or a variable to be represented by the branche’s thickness.
- `min`: An integer indicating the minimal thickness of the branches if the size is a column name.
- `max`: An integer indicating the maximal thickness of the branches if the size is a column name.
- `opacity`: An integer indicating branche’s opacity.
- `FUN`: The function to be applied to infer values. If NULL values won’t be inferred
- `legend`: A logical indicating whether or not to display the legend.
- `legendPosition`: c("topright", "bottomright", "bottomleft", "topleft"), the position of the legend.

Value

An lm_branches object containing all aesthetics details for one layer of branches
Examples

```r
data(LM_eukaryotes)

lm_branches(var_color = "GC.", color = "Accent")

lm_branches(data = LM_eukaryotes$df[LM_eukaryotes$df$Group %in% "Plants",])
```

LM_eukaryotes

Transformation in a LifemapR format of NCBI information for 1000 eukaryotes

Description

A dataset containing NCBI information of 1000 eukaryotes. The variables are as follows:

Usage

```r
data(LM_eukaryotes)
```

Format

A lifemap object - a list containing the basemap used to fetch data and df, a data frame with 2760 rows and 26 variables:

- **X.Organism.Name** Organism name at the species level
- **taxid** NCBI taxid
- **BioProject.Accession** BioProject Accession number (from BioProject database)
- **BioProject.ID** BioProject ID
- **Group** Commonly used organism groups: Animals, Fungi, Plants, Protists
- **SubGroup** NCBI Taxonomy level below group: Mammals, Birds, Fishes, Flatworms, Insects, Amphibians, Reptiles, Roundworms, Ascomycetes, Basidiomycetes, Land Plants, Green Algae, Apicomplexans, Kinetoplasts
- **Size..Mb.** Total length of DNA submitted for the project
- **GC.** Percent of nitrogenous bases (guanine or cytosine) in DNA submitted for the project
- **Assembly.Accession** Name of the genome assembly (from NCBI Assembly database)
- **Replicons** Number of replicons in the assembly
- **WGS** Four-letter Accession prefix followed by version as defined in WGS division of GenBank/INSDC
- **Scaffolds** Number of scaffolds in the assembly
- **Genes** Number of Genes annotated in the assembly
- **Proteins** Number of Proteins annotated in the assembly
- **Release.Date** First public sequence release for the project
- **Modify.Date** Sequence modification date for the project
lm_markers

Status Highest level of assembly: Chromosomes: one or more chromosomes are assembled Scaffolds or contigs: sequence assembled but no chromosomes

Center Origin of the sample

BioSample.Accession BioSample Accession number

lon longitude of taxids on a specific basemap

lat latitude of taxids on a specific basemap

sci_name scientific name of taxids

zoom zoom of taxids on a specific basemap

ascend the list of all ancestors of taxids on a specific basemap

type either "requested" if the taxid was given, "ancestor" if gotten from the database

ancestor the direct ancestor of taxids on a specific basemap

lm_markers

add a "markers" layer to a lifemap_obj object.

Description

Adds a layer with circles that can represent data. The main parameters that can be used to represent data are the following:

- radius
- var_fillColor
- var_color (stroke’s color)

Usage

```r
lm_markers(
  data = NULL,
  radius = 10,
  min = 10,
  max = 40,
  fillColor = NULL,
  var_fillColor = NULL,
  fillOpacity = 0.8,
  stroke = FALSE,
  color = NULL,
  var_color = NULL,
  weight = 1,
  opacity = 0.8,
  legend = TRUE,
  legendPosition = c("topright", "bottomright", "bottomleft", "topleft"),
  legendOrientation = c("vertical", "horizontal"),
  legendOpacity = 0.5,
  FUN = NULL,
)```
lm_markers

```r
 display = c("auto", "requested", "all", "leaves"),
 popup = NULL,
 label = NULL
```

Arguments

- **data**
  A sub dataset to use, if NULL then all of the taxids from the lifemap object given to lifemap() will be used.

- **radius**
  Either a numerical value or a column name of the original dataframe to represent this variable by the size of markers.

- **min**
  An integer indicating the minimal size of the markers if radius is a column name.

- **max**
  An integer indicating the maximal size of the markers if radius is a column name.

- **fillColor**
  Either a color or a palette if the fillColor is represented by a variable.

- **var_fillColor**
  A column name of the original dataframe to represent this variable by the fillColor of markers.

- **fillOpacity**
  A numeric indicating the fill opacity.

- **stroke**
  A logical indicating whether to draw a border for markers.

- **color**
  The stroke color. Either a color or a palette if the stroke color is represented by a variable.

- **var_color**
  A column name of the original dataframe to represent this variable by the stroke color.

- **weight**
  The stroke width in pixels.

- **opacity**
  The stroke opacity.

- **legend**
  Whether to display the legend or not.

- **legendPosition**
  A string indicating how to display markers:
  - "auto" : the markers are displayed depending on the zoom level, by default, allow to have a lot of markers
  - "requested" : only displays the requested taxa, but all at the same time
  - "all" : displays all the taxa including all the ancestors to the root
  - "leaves" : displays only the latest (most recent) taxa
  (WARNING : "requested", "leaves" and "auto" shouldn’t be used to display more than 2000 markers as it may result in long computing time).

- **popup**
  A column name indicating what to display when clicking on a node.

- **label**
  A column name indicating what to display when hovering on a node.
**lm_piecharts**

*Add a "piecharts" layer to a lifemap_obj object.*

**Description**

Add a "piecharts" layer to a lifemap_obj object.

**Usage**

```r
lm_piecharts(
 data = NULL,
 param,
 type = c("pie", "bar", "polar-area", "polar-radius", "auto"),
 width = 30,
 height = 30,
 opacity = 1,
 showLabels = FALSE,
 pal = "Accent",
 legend = TRUE,
 legendPosition = c("topright", "bottomright", "bottomleft", "topleft"),
 display = c("auto", "requested", "all", "leaves")
)
```

**Arguments**

- `data`: A sub dataset to use, if NULL then all of the taxids from the lifemap object given to lifemap() will be used.
- `param`: A column name indicating the discret variable to be represented.
- `type`: The type of chart to draw.
- `width`: The maximal width of the charts.
- `height`: The maximal height of the charts.
- `opacity`: The chart’s opacity.
- `showLabels`: A boolean indicating whether to display the values directly on the chart or not.

**Value**

An lm_markers object containing all aesthetics details for one layer of markers.

**Examples**

```r
data(LM_eukaryotes)

lm_markers(data = LM_eukaryotes$df[LM_eukaryotes$df$Group %in% "Plants",])

lm_markers(radius = "GC.", var_fillColor = "Genes")
```
make_newick

Create a newick for the given dataset.

Description

Create a newick for the given dataset.

Usage

make_newick(df)

Arguments

df

A dataframe either enriched with by the build_Lifemap function or containing at least two columns:

• "taxid" containing NCBI format taxids
• "ancestor" containing for each taxid, it’s direct ancestor in the phylogeny

Value

A character string.
**pass_infos**

Infer numerical values to nodes.

**Description**

Infer numerical values to nodes.

**Usage**

```r
pass_infos(M, FUN, value)
```

**Arguments**

- **M**: The dataframe returned by `create_matrix`.
- **FUN**: The function to be applied when inferring the values.
- **value**: The column name to which the function applies.

**Value**

An array of values.

**Examples**

```r
data(LM_eukaryotes)

infos <- create_matrix(LM_eukaryotes$df, c("GC.", "Genes"))
inferred_values <- pass_infos(M = infos, FUN = mean, value = "GC.")
```

---

**pass_infos_discret**

Infer discret values to nodes for `lm_piecharts` function.

**Description**

Infer discret values to nodes for `lm_piecharts` function.

**Usage**

```r
pass_infos_discret(M, value)
```

**Arguments**

- **M**: The dataframe returned by `create_matrix`.
- **value**: The column name represented as piecharts.
Value

A dataframe containing the TaxIDs and as many columns as there are distinct values.

Examples

```r
data(LM_eukaryotes)

infos <- create_matrix(LM_eukaryotes$df, "Status")
inferred_values <- pass_infos_discret(M = infos, value = "Status")
```

print.lifemap_obj

Method to print lifemap_obj objects.

Description

Method to print lifemap_obj objects.

Usage

```r
S3 method for class 'lifemap_obj'
print(x, ...)
```

Arguments

- `x` An lifemap_obj.
- `...` Further arguments passed to or from other methods.

Value

Either a description of the dataframe and basemap used for the lm_obj object, or a shiny application if aesthetics are furnished

Examples

```r
Only run examples in interactive R sessions
if (interactive()) {
 data(LM_eukaryotes)
 print(LM_eukaryotes)
}
```
request_database

Request one of the core of the solr database corresponding to the basemap choosen with the TaxIDs wanted.

Description
Request one of the core of the solr database corresponding to the basemap choosen with the TaxIDs wanted.

Usage
request_database(taxids, basemap, core)

Arguments

- **taxids**: A vector of TaxIDs to be requested.
- **basemap**: The name of the basemap on which the data is represented (can be "ncbi", "fr", "base" or "virus").
- **core**: The core to be requested either "taxo" (for position details) or "addi" (for ascendance details).

Value
A dataframe containing all the pieces of information requested from the database.

url_verification

Check if the URL is working

Description
Check if the URL is working

Usage
url_verification(basemap_url, t = 20)

Arguments

- **basemap_url**: The url corresponding to the basemap interrogated.
- **t**: The time before timeout.

Value
A logical.
Index

* datasets
  eukaryotes_1000, 9
  eukaryotes_80, 10
  gen_res, 11
  kraken_res, 14
  LM_eukaryotes, 16
  +.lifemap_obj, 2
add_lm_branches, 3
add_lm_markers, 4
add_lm_piecharts, 4

build_Lifemap, 5
create_matrix, 6
create_value_range, 6
display_map, 7
display_option, 7
draw_Lifemap, 8
eukaryotes_1000, 9
eukaryotes_80, 10
gen_res, 11
gene_tree, 11
gene_tree, 11
get_direct_ancestor, 11

is.lifemap_obj, 12
is.lm_branches, 12
is.lm_markers, 13
is.lm_piecharts, 13

kraken_res, 14
lifemap, 14
lm_branches, 15
LM_eukaryotes, 16
lm_markers, 17
lm_piecharts, 19
make_newick, 20

pass_infos, 21
pass_infos_discret, 21
print.lifemap_obj, 22
request_database, 23
url_verification, 23