Package ‘LPRelevance’

October 8, 2019

Type Package
Title Relevance-Integrated Statistical Inference Engine
Version 2.1
Date 2019-10-06
Author Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer Kaijun Wang <kwang2@fredhutch.org>
Description A framework of methods to perform customized inference at individual level by taking contextual covariates into account. Three main functions are provided in this package: (i) LASER(): it generates specially-designed artificial relevant samples for a given case; (ii) g2L.proc(): computes customized fdr(z|x); and (iii) rEB.proc(): performs empirical Bayes inference based on LASERs. The details can be found in Mukhopadhyay, S., and Wang, K (2019, Technical Report).
Imports leaps,locfdr,Bolstad2,reshape2,ggplot2,polynom
Depends R (>= 3.5.0), stats, BayesGOF
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-07 22:00:03 UTC

R topics documented:

LPRelevance-package ... 2
data.dti ... 2
funnel ... 3
g2L.proc ... 3
kidney ... 6
LASER ... 7
rEB.proc ... 8

Index 12
Description

How to individualize a global inference model? The goal of this package is to provide a systematic recipe for converting a classical global inference algorithm into a customized one. It provides methods that perform individual level inferences by taking contextually relevant covariates into account. At the heart of our solution is the concept of "artificially-designed relevant samples", a.k.a. LASER. LASERs pave the way to construct an inference mechanism that is simultaneously efficiently estimable and contextually relevant, thus works at both macroscopic (overall simultaneous) and microscopic (individual-level) scale.

Author(s)

Mukhopadhyay, S. and Wang, K.
Maintainer: Kaijun Wang <kwang2@fredhutch.org>

References

data.dti

DTI data.

Description

A diffusion tensor imaging study comparing brain activity of six dyslexic children versus six normal controls. Two-sample tests produced z-values at \(N = 15443 \) voxels (3-dimensional brain locations), with each \(z_i \sim N(0, 1) \) under the null hypothesis of no difference between the dyslexic and normal children.

Usage

data(data.dti)

Format

A data frame with 15443 observations on the following 4 variables.

coordsx A list of x coordinates
coordy A list of y coordinates
coordz A list of z coordinates
z The z-values.
funnel

Source

References

funnel

Simulation data set.

Description
A simulated heterogeneous data set.

Usage
data("funnel")

Format
A data frame with 3565 observations on the following 3 variables.

- **x** A list of covariate values.
- **z** A list of z-values.
- **tags** Binary vector of labels, 1 indicates a data point is a signal.

References

g2l.proc

Procedures for global and local inference.

Description
This function performs customized fdr analyses tailored to each individual cases.

Usage

g2l.proc(X, z, X.target = NULL, z.target = NULL, m = c(6, 8), alpha = 0.05, niter = NULL, nsample = length(z), approx.method = "direct", ngrid = 2000, centering = "LP", coef.smooth="BIC", fdr.method = "locfdr", plot = TRUE, rel.null = "custom", locfdr.df = 10, fdr.th.fixed = NULL, parallel = TRUE)
Arguments

\(X\)
A \(n\)-by-\(d\) matrix of covariate values

\(z\)
A length \(n\) vector containing observations of \(z\) values.

\(X\.\text{target}\)
A \(k\)-by-\(d\) matrix providing \(k\) sets of covariates for target cases to investigate. Set to NULL to investigate all cases and provide global inference results.

\(z\.\text{target}\)
A vector of length \(k\), providing the target \(z\) values to investigate

\(m\)
An ordered pair. First number indicates how many LP-nonparametric basis to construct for each \(X\), second number indicates how many to construct for \(z\). Default: \(m=\{6, 8\}\).

\(\alpha\)
Confidence level for determining signals.

\(\text{niter}\)
Number of iterations to use for each target case, each time a new set of relevance samples will be generated for analysis, and the resulting fdr curves are aggregated together by taking the mean values. Set to NULL to disable.

\(\text{nsample}\)
Number of relevance samples generated for each case.

\(\text{approx.method}\)
Method used to approximate customized fdr curve, default is "direct". When set to "indirect", the customized fdr is computed by modifying pooled fdr using comparison density.

\(\text{ngrid}\)
Number of gridpoints to use for computing customized fdr curve.

\(\text{centering}\)
Centering method for \(z\) with respect to covariates, default is LP, which uses LP regression; \(\text{lm}\) uses simple linear regression, and \(\text{spline}\) uses spline smoothing. Set to NULL to disable. Note: \(\text{spline}\) option only works for univariate \(X\).

\(\text{coef.smooth}\)
Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.

\(\text{fdr.method}\)
Method for controlling false discoveries (either "locfdr" or "BH"), default choice is "locfdr".

\(\text{plot}\)
Whether to include plots in the results, default is TRUE.

\(\text{rel.null}\)
Indicates how null hypothesis behaves with respect to \(X\): case-relevant (\text{custom}) or fixed standard normal (\text{th}). By default the hypothesis changes with different cases of \(X\).

\(\text{locfdr}\.\text{df}\)
Degrees of freedom to use for \text{locfdr}(\).

\(\text{fdr.th.fixed}\)
Use fixed fdr threshold for finding signals. Default set to NULL, which finds different thresholds for different cases.

\(\text{parallel}\)
Use parallel computing for obtaining the relevance samples, mainly used for very huge \text{nsample}, default if FALSE.

Value

A list containing the following items:

\(\text{macro}\)
Available when \(X\.\text{target}\) set to NULL, contains the following items:

\(\text{result}\)
A list of global inference results:

\(X\)
Matrix of covariates, same as input \(X\).
z Vector of observations, same as input z.
probnull A vector of length n, indicating how likely the observed z belongs to local null.
signal A binary vector of length n, discoveries are indicated by 1.

plots A list of plots for global inference:
signal_x A plot of signals discovered, marked in red
dps_xz A scatterplot of z on x, colored based on the discovery propensity scores, only available when fdr.method = "locfdr".
dps_x A scatterplot of discovery propensity scores on x, only available when fdr.method = "locfdr".

micro Available when X.target are provided with values, contains the following items:
result Customized estimates for null probabilities for target X and z
global Pooled global estimates for null probabilities for target X and z
plots Customized fdr plots for the target cases.

m.lp Same as input m

Author(s)
Mukhopadhyay, S. and Wang, K.
Maintainer: Kaijun Wang <kwang2@fredhutch.org>

References

Examples
##Toy data
set.seed(20)
x<-rep(c(1:10),rep(50,10))
sig<-sapply(x,FUN=function(x){min(x,5)})
z<-rnorm(500,0,sig)
out<-rnorm(10,10,.1)
x<-c(x,rep(1,10))
z<-c(z,out);z<-z/sd(z)

##macro inference
g2l_macro<-g2l.proc(x,z,niter=NULL,alpha=.05, nsample=500, centering=NULL, fdr.method = 'locfdr',parallel=FALSE)
g2l_macro$macro$plots

#micro-inference at x=1,z=2.3:
x.target=1
z.target=2.3
G2L_micro<-G2L.proc(x,z,x.target,z.target,niter = 10,m=c(4,8),alpha=.05,
centering=NULL,parallel=FALSE)
G2L_micro$micro$result
G2L_micro$micro$global

data(funnel)
X<-funnel$x
z<-funnel$z
##macro-inference using locfdr and LASER:
G2L_macro<-G2L.proc(X,z,m=c(4,8),niter=NULL,alpha=.05,
fdr.method = 'locfdr',parallel=FALSE)
G2L_macro$macro$plots

##micro-inference on point (30,4.09), using 10 iterations:
X.target=30
z.target=4.09
G2L_micro<-G2L.proc(X,z,X.target,z.target,niter = 10,m=c(4,8),alpha=.05,parallel=FALSE)
G2L_micro$micro$result
G2L_micro$micro$global
G2L_micro$micro$plots

kidney

Kidney data.

Description
This data set records age and kidney function of \(N = 157 \) volunteers. Higher scores indicates better function.

Usage
data(kidney)

Format
A data frame with 157 observations on the following 2 variables.

\[
x \quad \text{A list of patients' age.}
\]
\[
z \quad \text{A list of kidney scores.}
\]

Source
References

LASER

Generates Artificial RELevance Samples.

Description

This function generates the artificial relevance samples (LASER) by nonparametrically modeling the conditional density \(f(z | X = x) \).

Usage

\[
\text{LASER}(\text{nsample} = \text{length}(z), X, z, X.\text{target}, m = c(6, 8), \text{centering} = \text{'}LP\text{'}, \text{coef.smooth}=\text{'}BIC\text{'}, \text{parallel} = \text{FALSE})
\]

Arguments

- `nsample`: Number of relevance samples to generate for each case.
- `X`: A \(n \)-by-\(d \) matrix of covariate values.
- `z`: A length \(n \) vector containing observations of \(z \) values.
- `X.target`: A \(k \)-by-\(d \) matrix providing \(k \) sets of target points for which the LASERs are required.
- `m`: An ordered pair. First number indicates how many LP-nonparametric basis to construct for each \(X \), second number indicates how many to construct for \(z \). Default: \(m = c(6, 8) \).
- `centering`: Centering method for \(z \) with respect to covariates, default is LP, which uses LP regression; \(\text{lm} \) uses simple linear regression, and \(\text{spline} \) uses spline smoothing. Set to \text{NULL} to disable. Note: \text{spline} option only works for univariate \(X \).
- `coef.smooth`: Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.
- `parallel`: Use parallel computing for obtaining the relevance samples, mainly used for very huge `nsample`, default if FALSE.

Value

A list containing the following items:

- `data`: The relevance sample points generated for `X.target`.
- `LPcoef`: The LP coefficient values for \(z \) given \(x \).
Author(s)

Mukhopadhyay, S. and Wang, K.

Maintainer: Kaijun Wang <kwang2@fredhutch.org>

References

Examples

```r
##Toy data:
set.seed(20)
x<-rep(c(1:10),rep(50,10))
sig<-sapply(x,FUN=function(x){min(x,5)})
z<-rnorm(500,0,sig)
out<-rnorm(10,10,.1)
x<-c(x,rep(1,10))
z<-c(z,out);z<-z/sd(z)

##LASER samples at x=1
sample.x<-LASER(X=x,z=z,X.target=1,m=c(4,8),centering=NULL,parallel=FALSE)$data
hist(sample.x,50)

data(funnel)
X<-funnel$x
z<-funnel$stat
sample.x30<-LASER(X,z,X.target=30,m=c(4,8))$data
hist(sample.x30,50)
```

rEB.proc
Relevance-Integrated Empirical Bayes Inference

Description

Performs custom-tailored empirical Bayes inference with relevant samples.

Usage

```r
rEB.proc(X, z, X.target, z.target, m = c(6, 8), niter = NULL, centering = 'LP',
         coef.smooth='BIC',nsample = length(z), theta.set.prior = NULL,
         theta.set.post = NULL, LP.type = "L2", g.method = "DL",
         sd0 = NULL, m.EB = 8, parallel = FALSE, avg.method = "mean",
         post.curve = "HPD", post.alpha = 0.8, color = "red")
```
Arguments

- **X**: A \(n \times d\) matrix of covariate values
- **z**: A length \(n\) vector containing observations of target random variable.
- **X.target**: A length \(d\) vector providing the set of covariates for the target case.
- **z.target**: the target \(z\) to investigate
- **m**: An ordered pair. First number indicates how many LP-nonparametric basis to construct for each \(X\), second number indicates how many to construct for \(z\).
- **n.iter**: Number of iterations to use for Finite Bayes, set to NULL to disable.
- **centering**: Centering method for \(z\) with respect to covariates, default is LP, which uses LP regression; lm uses simple linear regression, and spline uses spline smoothing. Set to NULL to disable. Note: spline option only works for univariate \(X\).
- **coef.smooth**: Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.
- **nsample**: Number of relevance samples generated for the target case.
- **theta.set.prior**: This indicates the set of grid points to compute prior density.
- **theta.set.post**: This indicates the set of grid points to compute posterior density.
- **LP.type**: User selects either "L2" for LP-orthogonal series representation of comparison density \(d\) or "MaxEnt" for the maximum entropy representation. Default is L2.
- **g.method**: Determines the method to find \(\tau^2\): "DL" uses Dersimonian and Lard technique, "SJ" uses Sidik-Jonkman
- **sd0**: Fixed standard error for \(z|\theta\). Default is NULL, the standard error will be calculated from data.
- **m.EB**: The truncation point reflecting the concentration of true nonparametric prior density \(\pi\) around known prior distribution \(g\)
- **parallel**: Use parallel computing for obtaining the relevance samples, mainly used for very huge nsample, default if FALSE.
- **avg.method**: For Finite Bayes, this specifies how the results from different iterations are aggregated. ("mean" or "median".)
- **post.curve**: For plotting, this specifies what to show on posterior curve, "HPD" provides HPD interval, "band" gives confidence band.
- **post.alpha**: Confidence level to use when plotting posterior confidence band, or the alpha level for HPD interval.
- **color**: The color of the plots.

Value

A list containing the following items:

- **result**: contains the results for prior and posterior density:
 - **prior**: Prior results:
 - **g.par**: Parameters for \(g\).
LP.coef reports the LP coefficient values for z given x.

posterior Posterior results:
post.mean Posterior mean for $\pi(\theta|x)$.
post.mean.sd Standard error for the posterior mean. Only available for Finite Bayes.
HPD.interval The HPD interval for posterior $\pi(\theta|x)$.
post.alpha same as input post.alpha.

plots The plots for prior and posterior density.

Author(s)
Mukhopadhyay, S. and Wang, K.
Maintainer: Kaijun Wang <kwang2@fredhutch.org>

References

Examples
```r
##Toy data:
set.seed(20)
x<-rep(c(1:5),rep(50,5))
sig<-sapply(x,FUN=function(x){min(x,5)})
z<-rnorm(250,0,sig)
out<-rnorm(5,5,.1)
x<-c(x,rep(1.5))
z<-c(z,out);z<-z/sd(z)
x.target=1
z.target=2.3
rEB.out<-rEB.proc(x,z,x.target,z.target,m=c(4,8),nsample=50,coef.smooth=’Var’,centering=NULL,m.EB=4,parallel=FALSE)
rEB.out$plots$rEB.prior
rEB.out$plots$rEB.post

data(funnel)
X<-funnel$x
z<-funnel$stat
X.target=30
z.target=4.09
rEB.out<-rEB.proc(X,z,X.target,z.target,m=c(4,8),theta.set.prior=seq(-2,2,length.out=200),theta.set.post=seq(-2,5,length.out=200),centering=TRUE,m.EB=6,parallel=FALSE)
rEB.out$plots$rEB.post
```
rEB.proc

rEB.out$plots$rEB.prior
Index

Main Functions
- `g2l.proc`, 3
- LASER, 7
- `rEB.proc`, 8

datasets
- `data.dti`, 2
- funnel, 3
- kidney, 6

package
- `LPRelevance-package`, 2

<table>
<thead>
<tr>
<th>dataset</th>
<th>package</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.dti</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>eLP.poly</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>eLP.univar</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>fdr.thresh</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>Finite.rEB</code></td>
<td><code>rEB.proc</code></td>
<td>8</td>
</tr>
<tr>
<td><code>funnel</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>g2l.infer</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>g2l.proc</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>g2l.sampler</code></td>
<td><code>LASER</code></td>
<td>7</td>
</tr>
<tr>
<td><code>get_bh_threshold</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>getNullProb</code></td>
<td><code>g2l.proc</code></td>
<td>3</td>
</tr>
<tr>
<td><code>kidney</code></td>
<td><code>g2l.proc</code></td>
<td>6</td>
</tr>
<tr>
<td><code>LASER</code></td>
<td><code>g2l.proc</code></td>
<td>7</td>
</tr>
<tr>
<td><code>LP.post.conv</code></td>
<td><code>rEB.proc</code></td>
<td>8</td>
</tr>
<tr>
<td><code>LP.smooth</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>LP.cden</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>LP.regression</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>LPRelevance</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>Predict.LP.poly</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
<tr>
<td><code>rEB.proc</code></td>
<td><code>LPRelevance-package</code></td>
<td>2</td>
</tr>
</tbody>
</table>

`t`