Package ‘KEPTED’

April 13, 2024

Type Package
Title Kernel-Embedding-of-Probability Test for Elliptical Distribution
URL https://github.com/tyy20/KEPTED
BugReports https://github.com/tyy20/KEPTED/issues
Version 0.2.0
Maintainer Yin Tang <yqt5219@psu.edu>
Description Provides an implementation of a kernel-embedding of probability test for elliptical distribution. This is an asymptotic test for elliptical distribution under general alternatives, and the location and shape parameters are assumed to be unknown. Some side-products are posted, including the transformation between rectangular and polar coordinates and two product-type kernel functions. See Tang and Li (2024) <doi:10.48550/arXiv.2306.10594> for details.
Encoding UTF-8
License BSD_3_clause + file LICENSE
Imports expm, CompQuadForm, cubature, stats
RoxygenNote 7.3.1
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Yin Tang [aut, cre], Bing Li [cph, aut]
Repository CRAN
Date/Publication 2024-04-13 05:50:07 UTC

R topics documented:

EllKEPT ... 2
KEPTED .. 4
kerGauss .. 4
EllKEPT

Description

This function gives a test on whether the data is elliptically distributed based on kernel embedding of probability. See Tang and Li (2024) for details. Gaussian kernels and product-type inverse quadratic kernels are considered.

Usage

EllKEPT(
 X,
 eps = 1e-06,
 kerU = "Gaussian",
 kerTheta = "Gaussian",
 gamma.U = 0,
 gamma.Theta = 0
)

Arguments

X
 A matrix with n rows and d columns.
eps
 The regularization constant added to the diagonal to avoid singularity. Default value is 1e-6.
kernU
 The type of kernel function on U. Currently supported options are "Gaussian" and "PIQ".
kernTheta
 The type of kernel function on Theta. Currently supported options are "Gaussian" and "PIQ".
gamma.U
 The tuning parameter gamma in the kernel function k_U(u1,u2). If gamma.U=0, the recommended procedure of selecting tuning parameter will be applied. Otherwise, the value given in gamma.U will be directly used as the tuning parameter. Default value is gamma.U=0. See "Details" for more information.
gamma.Theta
 The tuning parameter gamma in the kernel function k_Theta(theta1,theta2). If gamma.Theta=0, the recommended procedure of selecting tuning parameter will be applied. Otherwise, the value given in gamma.Theta will be directly used as the tuning parameter. Default value is gamma.Theta=0. See "Details" for more information.
Details

The Gaussian kernel is defined as \(k(z_1, z_2) = \exp(-\gamma \|z_1 - z_2\|^2)\), and the Product-type Inverse-Quadratic (PIQ) kernel is defined as \(k(z_1, z_2) = \prod_j (1/(1 + \gamma (z_{1,j} - z_{2,j})^2))\). The recommended procedure of selecting tuning parameter is given as in the simulation section of Tang and Li (2023+), where we set \(1/\sqrt{\gamma} = (n(n-1)/2)^{-1} \sum_{1 \leq i < j \leq n} \|Z_i - Z_j\|\).

Value

A list of the following:

- **stat** The value of the test statistic.
- **pval** The p-value of the test.
- **lambda** The \(n\) eigenvalues in the approximated asymptotic distribution.
- **gamma.U** The tuning parameter \(\gamma_U\) used in the test. Same as the input if its input is nonzero.
- **gamma.Theta** The tuning parameter \(\gamma_{\Theta}\) used in the test. Same as the input if its input is nonzero.

Note

In the arguments, \(\epsilon\) refers to a regularization constant added to the diagonal. When the dimension is high, we recommend increasing \(\epsilon\) to avoid singularity.

References

Examples

```r
set.seed(313)
n=50
d=3

## Null Hypothesis
X=matrix(rnorm(n*d),nrow=n,ncol=d)
EllKEPT(X)

## Alternative Hypothesis
X=matrix(rchisq(n*d,2)-2,nrow=n,ncol=d)
EllKEPT(X)
```
Description

Provides an implementation of a kernel-embedding of probability test for elliptical distribution. This is an asymptotic test for elliptical distribution under general alternatives, and the location and shape parameters are assumed to be unknown. Some side-products are posted, including the transformation between rectangular and polar coordinates and two product-type kernel functions.

Author(s)

Yin Tang <yqt5219@psu.edu> Bing Li <bxl9@psu.edu>

References

kerGauss

Gaussian kernel computation

Description

Computing the values of Gaussian kernel functions.

Usage

kerGauss(gamma, z1, z2)

Arguments

- **gamma**: A number, the bandwidth parameter in the Gaussian kernel.
- **z1** : A vector, the first input of the Gaussian kernel.
- **z2** : A vector, the second input of the Gaussian kernel.

Details

The Gaussian kernel is defined as \(k(z_1, z_2) = \exp(-\gamma \|z_1 - z_2\|^2) \).
Value

A number, the value of the Gaussian kernel function.

Examples

gamma=0.02
z1=c(3,1,3)
z2=c(8,1,9)
kerGauss(gamma,z1,z2)

kerPIQ

Product-type Inverse-Quadratic (PIQ) kernel computation

Description

Computing the values of Product-type Inverse-Quadratic (PIQ) kernel functions.

Usage

kerPIQ(gamma, z1, z2)

Arguments

gamma A number, the bandwidth parameter in the PIQ kernel.
z1 A vector, the first input of the PIQ kernel.
z2 A vector, the second input of the PIQ kernel.

Details

The Product-type Inverse-Quadratic (PIQ) kernel is defined as \(k(z1,z2) = \prod_j \frac{1}{1 + \gamma (z1_j - z2_j)^2} \).

Value

A number, the value of the PIQ kernel function.

Examples

gamma=0.02
z1=c(3,1,3)
z2=c(8,1,9)
kerPIQ(gamma,z1,z2)
Polar2Rec

Polar to rectangular coordinates

Description

Given a polar coordinate representation \((R, \Theta)\) of a \(d\)-dimensional vector \(X\), where \(R\) is the length of \(X\) and the \((d-1)\)-dimensional vector \(\Theta\) contains the \(d-1\) angles of \(X\), this function compute \(X\) in its rectangular coordinate representation.

Usage

\[
Polar2Rec(R, \Theta)
\]

Arguments

- **R**
 - The length of \(X\).
- **Theta**
 - A vector of length \(d-1\), containing the angles of \(X\).

Details

The formula corresponds to \(v=\rho(\theta)\) as in Lemma 1 of Tang and Li (2024). See also Anderson (2003). Note that when \(d=2\), \(V\) will be \((\sin(\Theta), \cos(\Theta))\).

Value

A list of the following:

- **X**
 - A vector in rectangular coordinate.
- **V**
 - The directional vector of \(X\). Note that \(V\) is always on the unit sphere.

References

Examples

\[
R=2
Theta=c(pi/6, pi/3)
Polar2Rec(R, Theta)
\]
PolarDerivative

Derivative of the polar coordinate transformation

Description

This function computes the Jacobian matrix of the polar transformation \(\theta = g(v) \), i.e., the transformation from the rectangular coordinate representation of the directional vector to its angular representation.

Usage

PolarDerivative(v)

Arguments

- \(v \) A \(d \)-dimensional directional vector of length 1.

Details

See Lemma 3 of Tang and Li (2024).

Value

The Jacobian matrix of the polar transformation \(\theta = g(v) \), with \(d-1 \) rows and \(d \) columns.

References

Examples

```r
X=c(3,1,3)
V=X/sqrt(sum(X^2))
PolarDerivative(V)
```
Rec2Polar

Rectangular to polar coordinates

Description

Given a d-dimensional vector X in rectangular coordinate, this function compute its polar coordinate (R, Θ), where R is the length of X and the $(d-1)$-dimensional vector Θ contains the $d-1$ angles of X.

Usage

Rec2Polar(X)

Arguments

- **X**
 A vector in rectangular coordinate. Suppose the dimension of X is d.

Details

The formula corresponds to $\theta=g(v)$ as in Lemma 1 of Tang and Li (2024). See also Anderson (2003). Note that when $d=2$, V will be $(\sin(\Theta), \cos(\Theta))$.

Value

A list of the following:

- **R**
 The length of X.

- **Theta**
 A vector of length $d-1$, containing the angles of X.

References

Examples

X=c(3,1,3)
Rec2Polar(X)
Index

E11KEPT, 2
KEPTED, 4
kerGauss, 4
kerPIQ, 5
Polar2Rec, 6
PolarDerivative, 7
Rec2Polar, 8