Package ‘InteRD’

August 12, 2022

Type Package
Title The Integrated and Robust Deconvolution
Version 0.1.1
Description We developed the Integrated and Robust Deconvolution algorithm to infer cell-type proportions from target bulk RNA-seq data. This package is able to effectively integrate deconvolution results from multiple scRNA-seq datasets and calibrates estimates from reference-based deconvolution by taking into account extra biological information as priors. Moreover, the proposed algorithm is robust to inaccurate external information imposed in the deconvolution system.
License Artistic-2.0
Encoding UTF-8
RoxygenNote 7.2.1
URL https://github.com/chencxxy28/InteRD
BugReports https://github.com/chencxxy28/InteRD/issues
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
biocViews
Imports Rcpp (>= 0.11.0), limSolve, cowplot, ggplot2, pheatmap, stats,DescTools, mgcv, reshape2
Depends R (>= 3.5.0), Biobase
Config/testthat/edition 3
NeedsCompilation no
Author Chixiang Chen [cre, aut],
Yuk Yee Leung [aut],
Matei Lonita [aut],
Li-San Wang [aut],
Mingyao Li [aut]
Maintainer Chixiang Chen <chencxxy@hotmail.com>
Repository CRAN
Date/Publication 2022-08-12 07:20:11 UTC
R topics documented:

- evaluate .. 2
- generateBulk 3
- InteRD.predict.prop 4
- InteRD1 ... 4
- InteRD2 ... 5
- pop.ct.prop.scRNA 6
- Ref_free ... 7

Index

<table>
<thead>
<tr>
<th>evaluate</th>
<th>Evaluation for estimated cell type proportions</th>
</tr>
</thead>
</table>

Description

Several evaluation metrics are provided, such as mean absolute deviance (‘MAD’), Kendall-tau correlation coefficient (‘Ken’), Pearson correlation coefficient (‘Cor’), given true cell type proportions.

Usage

```r
evaluate(est.prop,true.prop)
```

Arguments

- `est.prop` The estimated cell type proportions.
- `true.prop` The True cell type proportions

Value

Cell-type level evaluations based on MAD, Ken, and Pearson (‘cell.type.eva’), and overall evaluations based on averaged MAD, Ken, and Pearson (‘all.eva’).

Examples

```r
##read data
library(InteRD)
readRDSFromWeb<-function(ref) (readRDS(gzcon(url(ref)))))
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
true_p<-readRDSFromWeb(paste0(urlremote,"true_p.rds"))
SCDC_ENSEMBLE_MAD<-readRDSFromWeb(paste0(urlremote,"SCDC_ENSEMBLE_MAD_seger.rds"))
evaluate(SCDC_ENSEMBLE_MAD,true_p)$all.eva
```
generateBulk

Pseudo bulk data generation function

Description

This function generates a pseudo bulk samples by random sampled number of cells per subject.

Usage

\[
generateBulk(eset, ct.varname, sample, disease = NULL, ct.sub, prop_mat = NULL, nbulk = 50, samplewithRep = FALSE, low_s = 0.3, upp_s = 0.7)
\]

Arguments

- `eset` The 'ExpressionSet' object for single cells.
- `ct.varname` Variable name for 'cell types'.
- `sample` Variable name for subject/samples.
- `disease` Indicate the health condition of subjects.
- `ct.sub` A subset of cell types that are selected to construct pseudo bulk samples. If NULL, then all cell types are used.
- `prop_mat` Manually input the cell-type proportion for pseudo bulk samples.
- `nbulk` The number of pseudo bulk samples to be constructed.
- `samplewithRep` Logical, randomly sample single cells with replacement. Default is F.
- `low_s` Lower support a for uniform distribution U[a,b].
- `upp_s` Upper support b for uniform distribution U[a,b].

Value

Pseudo bulk samples in the format of ‘ExpressionSet’, and the true cell-type proportions.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
seger <- readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))

# generate a pseudo bulk data with two samples
set.seed(1234567)
pseudo.seger <- generateBulk(seger[["sc.eset.qc"]], ct.varname = "cluster", sample = "sample", ct.sub = c("alpha","beta","delta","gamma"), nbulk = 2, low_s = 0.3, upp_s = 0.7)
```
InteRD.predict.prop

Extract the estimated proportions from InteRD

Description

This function extract estimated cell type proportions via InteRD1 and InteRD2.

Usage

```r
InteRD.predict.prop(InteRD.output)
```

Arguments

- `InteRD.output`: An object from InteRD1 or InteRD2.

Value

Estimated cell type proportions from InteRD.

Examples

```r
## read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
InteRD1.output <- readRDSFromWeb(paste0(urlremote,"InteRD1.output.rds"))
lambda_option <- 0
cell_type_unique <- c("alpha","beta","delta","gamma")
InteRD1 <- InteRD1.predict.prop(InteRD.output=InteRD1.output)
```

InteRD1

The InteRD1 estimate from reference ensemble

Description

This function provides a reference-based deconvolution by resembling all estimated cell-type proportions based on each reference set.

Usage

```r
InteRD1(bulk.data,list_marker,cell_type_unique,comb_used,
lambda_option,tol=1e-06)
```
InteRD2

The InteRD2 estimate

Description

This function provides a robust deconvolution framework to integrate information from scRNA-seq references, marker genes, and prior biological knowledge.

Usage

```
InteRD2(bulk.data, list_marker, cell_type_unique, comb_sampled, ave_est, ave_sd,
        lambda_option, tol=0.0005)
```
Arguments

- **bulk.data**: The `ExpressionSet` object for a target bulk data.
- **list_marker**: A list of pre-specified marker genes corresponding to each cell type.
- **cell_type_unique**: A list of cell types. It should match the order in `list.marker`.
- **comb_sampled**: A pre-specified cell type proportions for the target bulk data, which could be obtained from reference-based deconvolution approach.
- **ave_est**: A pre-specified population-level cell type proportions, which could be obtained from single-cell RNA-seq and external expression data from different studies, species, or data types.
- **ave_sd**: A pre-specified standard deviation for cell-type proportion estimation. The default is 1 for each cell type.
- **lambda_option**: A sequence of values for the tuning parameter.
- **tol**: A tolerance value for convergence. The default is 0.0005.

Value

A list containing estimated cell type proportions corresponding to each tuning value, named `est`; and a sequence of goodness-of-fit values corresponding to each tuning value, named `metrics`. The smaller the better.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger <- readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
InteRD1 <- readRDSFromWeb(paste0(urlremote,"InteRD1.rds"))
ave_est <- readRDSFromWeb(paste0(urlremote,"ave_est.rds"))
ave_sd <- readRDSFromWeb(paste0(urlremote,"ave_sd.rds"))
list_marker <- readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
lambda_option <- 0
cell_type_unique <- c("alpha","beta","delta","gamma")
lambda_option <- 1e+05
InteRD2.output <- InteRD2(bulk.data = pseudo.seger, list_marker, cell_type_unique,
comb_sampled = InteRD1, ave_est, ave_sd, lambda_option = lambda_option, tol = 0.01)
InteRD2 <- InteRD.predict.prop(InteRD.output = InteRD2.output)
```

pop.ct.prop.scRNA

Calculate the population-level cell type proportions from a single-cell data.

Description

Calculate population-level cell type proportions from single-cell data.
Ref_free

Usage

pop.ct.prop.scRNA(scRNA, cluster="cluster", sample="sample", cell_type_unique =)

Arguments

scRNA The ‘ExpressionSet’ object for single-cell data.
cluster The character string specifying the variable name for cell types. The default is "cluster".
sample The character string specifying the variable name for subject/samples. The default is "sample".
cell_type_unique A vector of cell types. It should match the order in list.marker.

Value

The population-level cell type proportions ('pop.ct.prop') and corresponding standard deviations ('pop.ct.sd').

Examples

##read data
library(InteRD)
readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))}
seger<-readRDSFromWeb(paste0(urlremote,"segerstolpe.rds"))
cell_type_unique<-c("alpha","beta","delta","gamma")
ave_est<-pop.ct.prop.scRNA(scRNA=seger["sc.eset.qc"],
cell_type_unique=cell_type_unique)$pop.ct.prop
ave_est

Ref_free

A reference-free deconvolution estimate

Description

This function provides a reference-free deconvolution estimate, given a list of marker genes

Usage

Ref_free(bulk.data, list_marker, cell_type_unique, tol=0.001)

Arguments

bulk.data The 'ExpressionSet' object for a target bulk data.
list_marker A list of pre-specified marker genes corresponding to each cell type.
cell_type_unique A list of cell types. It should match the order in 'list.marker'.
tol A tolerance value for convergence. The default is 0.001.
Value

The estimated cell type proportions, named ‘est’; and a goodness-of-fit value, named ‘metrics’. The smaller the better.

Examples

```r
# read data
library(InteRD)
readRDSFromWeb <- function(ref) {readRDS(gzcon(url(ref)))}
pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds"))
list_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds"))
cell_type_unique<-c("alpha","beta","delta","gamma")
ref_free.output<-Ref_free(bulk.data=pseudo.seger,list_marker=list_marker,
cell_type_unique=cell_type_unique,tol=0.01) # make tol=0.001
reffree<-InteRD.predict.prop(InteRD.output=ref_free.output)
```
Index

evaluate, 2

generateBulk, 3

InterRD.predict.prop, 4
InterRD1, 4
InterRD2, 5

pop.ct.prop.scRNA, 6

Ref_free, 7