Package ‘HoRM’

March 11, 2021

Type Package

Title Supplemental Functions and Datasets for “Handbook of Regression Methods”

Version 0.1.3

Date 2021-03-10

Depends R (>= 3.5.0)

Imports ggplot2, MASS, orthopolynom, quantmod, rsm, stats4

Description Supplement for the book “Handbook of Regression Methods” by D. S. Young. Some datasets used in the book are included and documented. Wrapper functions are included that simplify the examples in the textbook, such as code for constructing a regressogram and expanding ANOVA tables to reflect the total sum of squares.

URL https://github.com/dsy109/HoRM

License GPL (>= 2)

NeedsCompilation no

Author Derek S. Young [aut, cre]

Maintainer Derek S. Young <derek.young@uky.edu>

Repository CRAN

Date/Publication 2021-03-11 06:10:06 UTC

R topics documented:

HoRM-package ... 2
amit ... 3
auditory ... 4
Auto ... 4
BAC ... 5
cheese .. 6
chem .. 6
compasst ... 7
cracker ... 8
credloss .. 8
Description

Various wrapper functions and datasets to supplement examples for the book "Handbook of Regression Methods" by D. S. Young.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>HoRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>0.1.3</td>
</tr>
<tr>
<td>Date</td>
<td>2021-03-10</td>
</tr>
<tr>
<td>Imports</td>
<td>ggplot2, MASS, orthopolynom, quantmod, rsm, stats4</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>
Description

This dataset is from a study on the side effects of amitriptyline, which is a drug some physicians prescribe as an antidepressant.

Usage

data(amit)

Format

This data frame consists of 7 variables on 17 subjects:

- **TOT** The subject’s total TCAD plasma level.
- **AMI** The amount of amitriptyline present in the TCAD plasma level.
- **GEN** The subject’s gender, where 0 is for a male subject and 1 is for a female subject.
- **AMT** Amount of the drug taken at the time of overdose.
- **PR** The subject’s PR wave measurement.
- **DIAP** The subject’s diastolic blood pressure.
- **QRS** The subject’s QRS wave measurement.

Source

References

Description

This dataset is from a study to assess auditory differences between environmental sounds given several other factors.

Usage

data(auditory)

Format

This data frame consists of 3 variables on 20 subjects:

- `pre.test` The subject’s pre-test score.
- `gain` The gain in auditory score between the pre- and post-test administration of the treatment.
- `Culture` A cultural status indicator of individuals, where 1 means the subject is from a "culturally-nondeprived" group and 0 means the subject is from a "culturally-deprived" group.

Source

References

Format

This data frame consists of 20 categories (rows) and 6 variables (columns):

- Merit Merit rating of policyholder.
- Class Class rating of policyholder.
- Insured Earned car years under the policy.
- Premiums Earned premium at present rates (in 1000's of Canadian dollars).
- Claims Number of claims incurred.
- Cost Incurred losses (in 1000's of Canadian dollars).

Source

References

Young, D. S. (2017), Handbook of Regression Methods, CRC Press.

BAC

Blood Alcohol Concentration Dataset

Description

This dataset is from a study to compare the blood alcohol concentration (BAC) of subjects using two different methods.

Usage

data(BAC)

Format

This data frame consists of 2 variables measured on 15 subjects:

- breath BAC obtained using the Breathalyzer Model 5000.
- labtest BAC based on a breath estimate in a laboratory.

Source

References

Young, D. S. (2017), Handbook of Regression Methods, CRC Press.
Description

This dataset is from an experiment concerning the effect on taste of various cheese additives.

Usage

data(cheese)

Format

This data frame (36 rows by 3 columns) is a tabulation of the responses by 208 subjects to 4 different cheeses:

- Cheese The cheese additive used (four levels labeled A, B, C, and D).
- Response The response based on the 9-point hedonic scale.
- N The number of subjects who responded according to the value in Response for the cheese additive in Cheese.

Source

References

Young, D. S. (2017), Handbook of Regression Methods, CRC Press.

Description

This dataset is from an experiment that was designed to determine the effects of three factors in reducing the unpleasant odor in a chemical product being sold for household use.

Usage

data(chem)
Format

This data frame consists of 4 variables (stored in coded form) at 15 design points:

- **odor** A measure of the chemical’s odor.
- **temp** Temperature at time of measurement - uncoded units are 40, 80, and 120.
- **ratio** Gas-liquid ratio - uncoded units are 0.3, 0.5, and 0.7.
- **height** Packing height - uncoded units are 2, 4, and 6.

Source

References

compasst

Computer-Assisted Learning Dataset

Description

This dataset is from a study of computer-assisted learning by students in an effort to assess the cost of computer time.

Usage

`data(compasst)`

Format

This data frame consists of 2 variables measured on 12 students:

- **num.responses** Total number of responses in completing a lesson.
- **cost** Cost of the computer time (in cents).

Source

References

cracker

Cracker Dataset

Description
This dataset is from marketing research on the sales of crackers for a particular company.

Usage
```r
data(cracker)
```

Format
This data frame consists of 15 stores, each receiving a particular promotional strategy, with the following 4 variables (columns):

- `treat` An indicator for which of the three marketing strategies (treatment) was employed.
- `store` The store number within the particular treatment.
- `y` The number of cases of the crackers sold during the promotional period.
- `x` The store’s cracker sales during the preceding sales period.

Source

References

credloss

Credit Loss Dataset

Description
This dataset consists of credit portfolio loss data that were extracted from the Altman-NYU Salomon Center Corporate Bond Default Database for the years 1982 through 2005.

Usage
```r
data(credloss)
```
fiber

Format

This data frame consists of 5 variables over 24 years:

- year The year the statistics were collected.
- PD The probability of default.
- def's The number of defaults.
- LGD.mean The mean loss given default.
- LGD.vol A loss given default volatility measure.

Source

References

fiber

Fiber Strength Dataset

Description

This dataset is from a study about the strength of a particular type of fiber based on the amount of pressure applied.

Usage

data(fiber)

Format

This data frame consists of 30 samples with the following 2 variables measured:

- pressure The amount of water pressure applied (measured in bars); the unique levels are 60, 80, 100, 120, 150, and 200.
- tensile The tensile strength of fiber (measured in N/5 cm).

Source

References

Fruit Fly Dataset

Description

This dataset is from a study on the effects of temperature on development of the common fruit fly.

Usage

data(fly)

Format

This data frame consists of 23 batches with the following 8 variables measured:

- `temp` The experimental temperature (in degrees Celsius).
- `exp.no` The experiment number.
- `duration` The mean duration of the embryonic period (in hours).
- `dur.var` The standard deviation of the duration of the recorded embryonic period.
- `batch` The number of eggs in each batch.
- `batch.sd` The standard deviation of the number of eggs in each batch.
- `egg.temp` The temperature in which the eggs were laid (in degrees Celsius).
- `egg.dur` The duration the eggs remained in the given conditions (in hours).

Source

References

Natural Gas Prices Dataset

Description

This dataset is of the monthly observations of spot prices for natural gas from January 1988 to October 1991 for the states of Louisiana and Oklahoma.

Usage

data(gas)

Format

This data frame consists of a total of 46 (monthly) observations of spot prices for the 2 states stated above:

- OK Oklahoma spot prices for natural gas (dollars per million British thermal units).
- LA Louisiana spot prices for natural gas (dollars per million British thermal units).

Source

References

GOF.tests Summary of Goodness-of-Fit Tests

Description

A function that reports the Pearson statistic, the deviance statistic, and their respective p-values for goodness-of-fit testing based on a linear regression fit (lm) or a generalized linear regression fit (glm).

Usage

GOF.tests(out)

Arguments

out An object of class lm or glm.
Value

GOF.tests returns a data frame with rows corresponding to the goodness-of-fit test and columns corresponding to the respective test statistic and p-value.

References

See Also

glm, lm

Examples

```r
## Goodness-of-fit tests for the logistic regression fit to the
## menarche dataset.

data(menarche, package = "MASS")

glm.out = glm(cbind(Menarche, Total - Menarche) ~ Age,
                family = binomial, data = menarche)
GOF.tests(glm.out)
```

GRB
Gamma-Ray Burst Dataset

Description

This dataset consists of measurements on gamma-ray bursts, which are short, intense flashes of gamma-ray radiation that occur at (seemingly) random times and locations in space.

Usage

data(GRB)

Format

This data frame consists of 63 measurements of the following 2 variables:

- **TIME** Time of measurement (in seconds).
- **FLUX** X-ray flux measurement (in units of 10^{-11} erg/cm2/s, 2-10 keV).
hildreth.lu

Source

References

hildreth.lu

Hildreth-Lu Procedure

Description

Returns the linear regression fit for a given level of rho using the Hildreth-Lu procedure.

Usage

```
hildreth.lu(y, x, rho)
```

Arguments

- **y**: A vector of response values.
- **x**: A vector of predictor values. Must be the same length as y.
- **rho**: A value for the correlation assumed for the autoregressive structure of the errors.

Value

`hildreth.lu` returns an object of class `lm` using the transformed quantities calculated for the Hildreth-Lu procedure.

References

JamesBond

See Also

lm

Examples

Example using the natural gas dataset.

data(gas)

out.1 <- hildreth.lu(y = gas$OK, x = gas$LA, rho = 0.1)
out.2 <- hildreth.lu(y = gas$OK, x = gas$LA, rho = 0.5)

out.1
out.2

JamesBond

James Bond Dataset

Description

This dataset consists of various metrics pertaining to the officially-produced James Bond films.

Usage

data(JamesBond)

Format

This data frame consists of 18 variables measured on the 24 films:

• Year Year of the film’s theatrical release.
• Movie Title of the movie.
• Bond Actor who played James Bond.
• World_Gross The film’s worldwide gross (in U.S. dollars).
• World_Adj The film’s 2013-adjusted worldwide gross (in 1000’s of U.S. dollars).
• Budget The film’s budget (in U.S. dollars).
• Budget_Adj The film’s 2013-adjusted budget (in 1000’s of U.S. dollars).
• Film_Length Length of the theatrical release.
• Avg_User_IMDB The average user rating on IMDB (www.imdb.com).
• Avg_User_Rtn_Tom The average user rating on Rotten Tomatoes (www.rottentomatoes.com).
• Conquests The number of “conquests” by Bond in the film.
- **Martinis** The number of martinis Bond drank in the film.
- **BJB** The number of times Bond stated "Bond. James Bond." in the movie.
- **Kills_Bond** The number of people killed by Bond.
- **Kills_Others** The number of people killed in the film by people other than Bond.
- **Top_100** An indicator where a value of 1 means the title song within the top 100 on the UK Singles Chart and the U.S. Billboard Hot 100 and a value of 0 means it did not.

Source

References

light

Light Dataset

Description

This dataset is from an experiment where light was transmitted through a chemical solution and an optical reading was recorded.

Usage

```r
data(light)
```

Format

This data frame consists of 2 variables measured on 12 different instances:

- **reading** The optical reading.
- **concentration** The concentration of the chemical.

Source

References

Diagnostic Measures of Certain Regression Estimates

logdiag

Description
A function for computing various residual-based and influence-based quantities from a linear regression fit using \texttt{lm} or a generalized linear regression fit using \texttt{glm}.

Usage

\texttt{logdiag(out)}

Arguments

out
An object of class \texttt{lm} or \texttt{glm}.

Value

\texttt{logdiag} returns a data frame with the following columns:

- \texttt{r.i}: The raw residuals.
- \texttt{p.i}: The Pearson residuals.
- \texttt{d.i}: The deviance residuals.
- \texttt{stud.r.i}: The Studentized raw residuals.
- \texttt{stud.p.i}: The Studentized Pearson residuals.
- \texttt{stud.d.i}: The Studentized deviance residuals.
- \texttt{h.ii}: The leverage values.
- \texttt{C.i}: The Cook’s distance value.
- \texttt{C.i.bar}: The average Cook’s distance value when omitting observation \textit{i}.
- \texttt{DFDEV}: The change in the deviance statistic when omitting observation \textit{i}.
- \texttt{DFCHI}: The change in the Pearson’s chi-square statistic when omitting observation \textit{i}.
- \texttt{fit}: The estimated response (fitted) values.

References

See Also

\texttt{glm}, \texttt{lm}
Examples

```r
## Diagnostic summaries for the logistic regression fit to the
## menarche dataset.

data(menarche, package = "MASS")

glm.out = glm(cbind(Menarche, Total - Menarche) ~ Age,
              family = binomial, data = menarche)

logdiag(glm.out)
```

poly2form
Expands Design Matrix Based on Polynomials

Description
This function takes a list of objects having class `polynomial`, evaluates each polynomial as a function of `x`, then returns the results in a matrix.

Usage
```
poly2form(poly.out, x)
```

Arguments
- `poly.out`: A list whose objects are of class `polynomial`.
- `x`: A vector of values for which each polynomial in `poly.out` is to be evaluated.

Value
`poly.out` returns a matrix whose columns are the evaluation of each polynomial in `poly.out` using `x`.

References

See Also
`legendre.polynomials`
Examples

```r
## Evaluating the order 5 Legendre polynomials.
require(orthopolynom)
px <- legendre.polynomials(n = 5, normalized = FALSE)
x <- poly2form(poly.out = px, x = 1:10)
x
```

```r
power.b
Power Functions for Tests of Simple Linear Regression Coefficients

Description

A function to calculate the power of the t-tests corresponding to tests on the intercept and slope coefficients in the simple linear regression model.

Usage

```r
power.b(x, y, alpha = 0.05, B0 = 0, B1 = 0)
```

Arguments

- `x`: A vector of predictor values. Must be the same length as `y`.
- `y`: A vector of response values. Must be the same length as `x`.
- `alpha`: Significance level of the test. Default level is 0.05.
- `B0`: Null value for the test about the intercept.
- `B1`: Null value for the test about the slope.

Value

`power.b` returns a matrix with the noncentrality parameters and power levels for the corresponding t-tests.

References


See Also

`power.F`
Examples

```r
Applied to the toy dataset.
data(toy)
power.b(x = toy$x, y = toy$y)
```

---

**power.F**  
*Power Function for the General Linear F-Test*

**Description**

A function to calculate the power of the general linear F-test.

**Usage**

```r
power.F(full, reduced, alpha = 0.05)
```

**Arguments**

- `full`: The full model (specified in the alternative hypothesis) in the general linear F-test. This is an object of class `lm`.
- `reduced`: The reduced model (specified in the null hypothesis) in the general linear F-test. This is an object of class `lm`.
- `alpha`: Significance level of the test. Default level is 0.05.

**Value**

`power.F` returns a single value (saved as a matrix) with the power for the corresponding general linear F-test.

**References**


**See Also**

`anova`, `lm`
## Examples

```r
Applied to the toy dataset.

data(toy)

full <- lm(y~x, data = toy)
reduced <- lm(y~1, data = toy)
power.F(full = full, reduced = reduced, alpha = 0.05)
```

### ppr_funs

**Ridge Functions for Projection Pursuit Regression**

The portion of the `plot.ppr` code that computes the ridge traces for projection pursuit regression.

#### Usage

```r
ppr_funs(obj)
```

#### Arguments

- `obj` A fit of class `ppr` as produced by the `ppr` function.

#### Details

This is just the segment of code in `plot.ppr`, which calculates the ridge traces.

#### Value

`ppr_funs` returns the evaluated ridge trace values based on output from the `ppr` function.

#### References


#### See Also

`ppr`, `plot.ppr`
psi.andrew

Examples

```r
Projection pursuit regression on the rock dataset.

data(rock)

ppr.out <- ppr(log(perm) ~ area + peri + shape,
 data = rock, nterms = 2, max.terms = 5)

obj <- ppr_funs(ppr.out)

obj
```

---

**psi.andrew**  
*Andrew’s Sine Function*

**Description**

Andrew’s sine function for use when fitting a linear model by robust regression using an M-estimator.

**Usage**

```r
psi.andrew(u, k=1.339, deriv=0)
```

**Arguments**

- **u**: Numeric vector of evaluation points.
- **k**: Tuning constant. The suggested default value is 1.339.
- **deriv**: 0 or 1: to compute values of this function or of its first derivative.

**Value**

`psi.andrew` returns a vector of points evaluated using Andrew’s sine function.

**References**


**See Also**

`rlm`
**Examples**

```r
Robust fit of the stackloss dataset.
require(MASS)
data(stackloss, package="datasets")
out <- rlm(stack.loss ~ ., data = stackloss,
 psi = psi.andrew)
out
```

---

**Description**

Calculate the ANOVA table for an object of class `lm`. The results are identical to those obtained from `anova`, but an extra line is included that prints the total degrees of freedom and the total sum of squares.

**Usage**

```r
reg.anova(lm.out)
```

**Arguments**

- `lm.out` An object of class `lm` (i.e., the results from the linear model fitting routine such that the `anova` function can act upon).

**Value**

`reg.anova` returns exactly the same output as the `anova` function applied to an object of class `lm`, but includes an extra line that summarizes the total source of variability.

**References**


**See Also**

`anova`, `lm`
Examples

```r
Applied to the toy dataset.

data(toy)

lm.out <- lm(y ~ x, data = toy)
anova(lm.out)
reg.anova(lm.out)
```

```r
Applied to the amit dataset.

data(amit)

fits <- manova(cbind(TOT, AMI) ~ ., data = amit)
out <- summary.aov(fits)
```

Description

Expands the MANOVA results from an object of class `summary.aov`. The results are identical to those obtained from `summary.aov`, but an extra line is included that prints the total degrees of freedom and the total sum of squares for each dimension of the response vector.

Usage

```r
reg.manova(AOV.out)
```

Arguments

- `AOV.out` An object of class `summary.aov`.

Value

`AOV.out` returns exactly the same output as the `summary.aov` function, but includes an extra line that summarizes the total source of variability for each dimension of the response vector.

References


See Also

`anova, reg.anova, summary.aov`

Examples

```r
Applied to the toy dataset.

data(toy)

lm.out <- lm(y ~ x, data = toy)
anova(lm.out)
reg.anova(lm.out)
```
mvreg.out <- lapply(out, reg.manova)
mvreg.out

<table>
<thead>
<tr>
<th>regressogram</th>
<th>Regressogram</th>
</tr>
</thead>
</table>

### Description

Computes and plots the regressogram for a single predictor and single response relationship. The regressogram is plotted using ggplot2.

### Usage

```r
regressogram(x, y, nbins = 10, show.bins = TRUE,
 show.means = TRUE, show.lines = TRUE,
 x.lab = "X", y.lab = "Y", main = "TITLE")
```

### Arguments

- `x` A vector of predictor values for the data. Must be the same length as `y`.
- `y` A vector of response values for the data. Must be the same length as `x`.
- `nbins` How many bins to use construction of the regressogram.
- `show.bins` A logical argument specifying if dashed vertical lines should be drawn at the boundaries of the bins. Default is `TRUE`.
- `show.means` A logical argument specifying if a large point should be overlayed at the midpoint of each bin and the respective mean of the response values within that bin. Default is `TRUE`.
- `show.lines` A logical argument specifying if a line should be drawn connecting the points determined by `show.means`. Default is `TRUE`.
- `x.lab` Label for the x-axis.
- `y.lab` Label for the y-axis.
- `main` Title for the regressogram.

### Value

`regressogram` returns a plotted regressogram using the ggplot2 package.

### References


### See Also

- `hist`
Examples

```r
Regressogram for the natural gas dataset.
data(gas)
regressogram(x = gas$LA, y = gas$OK, nbins = 6, x.lab = "LA",
 y.lab = "OK", main = "Regressogram")
```

repair

Computer Repair Dataset

Description

This dataset is from a random sample of service call records for a computer repair company.

Usage

data(repair)

Format

This data frame consists of a sample of 14 companies with the following 2 variables measured:

- **minutes** The length of service call (in minutes).
- **units** The number of components repaired or replaced during the service call.

Source


References

SSCP.fn

**Sums of Squares and Cross-Products Matrices for a MANOVA Table**

**Description**

Summarizes the MANOVA results based on the sum of squares and cross-products decomposition for the regression (SSCPR), the error (SSCPE), and the overall total (SSCPTO).

**Usage**

```r
SSCP.fn(fits)
```

**Arguments**

- `fits` An object of class `manova`.

**Value**

`SSCP.fn` returns a list of length 3 with the SSCPR, SSCPE, and SSCPTO.

**References**


**See Also**

- `manova`, `reg.manova`

**Examples**

```r
Applied to the amit dataset.

data(amit)

fits <- manova(cbind(TOT, AMI) ~ ., data = amit)
SSCP.fn(fits = fits)
```
**Description**

This dataset consists of the closing stock price of a share of Google stock during the trading days between February 7-th and July 7-th of 2005.

**Usage**

`data(stock)`

**Format**

This is an extensible time series (xts) object for the 105 trading days of interest:

- `GOOG.close` The closing stock price of a share of Google stock.

**Source**


**References**


**Examples**

```r
Not run:
How the data were accessed (1/26/17).
require(quantmod)
getSymbols("GOOG", src = "yahoo",
 from = "2005-02-07", to = "2005-07-07")
stock <- GOOG[,4]
End(Not run)
```
Tortoise Eggs Dataset

Description
This dataset is from a study on the number of eggs in female gopher tortoises in southern Florida.

Usage
data(tortoise)

Format
This data frame consists of 2 variables measured on 18 tortoises:
- length The carapace length (in millimeters).
- clutch The number of eggs (clutch size).

Source

References

Toy Dataset

Description
A made-up (toy) dataset.

Usage
data(toy)

Format
This data frame consists of 2 made-up variables for a sample of size 5:
- x The made-up x values.
- y The made-up y values.
Source


References


---

<table>
<thead>
<tr>
<th>wood</th>
<th><em>Pulp Property Dataset</em></th>
</tr>
</thead>
</table>

Description

This dataset is from a study about the pulp properties of wood density of the Australian blackwood tree.

Usage

data(wood)

Format

This data frame consists of 2 variables measured on 7 samples:

- `pulp` The percentage of pulp yield.
- `Kappa` The Kappa number, which is a measurement of standard potassium permanganate solution that the pulp will consume.

Source


References

Yarn Fiber Dataset

Description

This dataset is from a mixture experiment regarding a fiber blend that is spun into yarn to make draperies.

Usage

data(yarn)

Format

This data frame consists of 4 variables measured at 15 design points for a \(\{3,2\}\) simplex lattice design:

- \(x_1\) The proportion of the polyethylene component.
- \(x_2\) The proportion of the polystyrene component.
- \(x_3\) The proportion of the polypropylene component.
- \(y\) The measurement of yarn elongation.

Source


References

# Index

* **datasets**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>amit</td>
<td>3</td>
</tr>
<tr>
<td>auditory</td>
<td>4</td>
</tr>
<tr>
<td>Auto</td>
<td>4</td>
</tr>
<tr>
<td>BAC</td>
<td>5</td>
</tr>
<tr>
<td>cheese</td>
<td>6</td>
</tr>
<tr>
<td>chem</td>
<td>6</td>
</tr>
<tr>
<td>compasst</td>
<td>7</td>
</tr>
<tr>
<td>cracker</td>
<td>8</td>
</tr>
<tr>
<td>credloss</td>
<td>8</td>
</tr>
<tr>
<td>fiber</td>
<td>9</td>
</tr>
<tr>
<td>fly</td>
<td>10</td>
</tr>
<tr>
<td>gas</td>
<td>11</td>
</tr>
<tr>
<td>GRB</td>
<td>12</td>
</tr>
<tr>
<td>JamesBond</td>
<td>14</td>
</tr>
<tr>
<td>light</td>
<td>15</td>
</tr>
<tr>
<td>repair</td>
<td>25</td>
</tr>
<tr>
<td>stock</td>
<td>27</td>
</tr>
<tr>
<td>tortoise</td>
<td>28</td>
</tr>
<tr>
<td>toy</td>
<td>28</td>
</tr>
<tr>
<td>wood</td>
<td>29</td>
</tr>
<tr>
<td>yarn</td>
<td>30</td>
</tr>
</tbody>
</table>

* **file**

<table>
<thead>
<tr>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOF.tests</td>
<td>11</td>
</tr>
<tr>
<td>hildreth.lu</td>
<td>13</td>
</tr>
<tr>
<td>logdiag</td>
<td>16</td>
</tr>
<tr>
<td>poly2form</td>
<td>17</td>
</tr>
<tr>
<td>power.b</td>
<td>18</td>
</tr>
<tr>
<td>power.F</td>
<td>19</td>
</tr>
<tr>
<td>ppr_funs</td>
<td>20</td>
</tr>
<tr>
<td>psi.andrew</td>
<td>21</td>
</tr>
<tr>
<td>reg.anova</td>
<td>22</td>
</tr>
<tr>
<td>reg.manova</td>
<td>23</td>
</tr>
<tr>
<td>regressogram</td>
<td>24</td>
</tr>
<tr>
<td>SSCP.fn</td>
<td>26</td>
</tr>
</tbody>
</table>

amit	3
anova	19, 22, 23
auditory	4
Auto	4
BAC	5
cheese	6
chem	6
compasst	7
cracker	8
credloss	8
fiber	9
fly	10
gas	11
glm	12, 16
GOF.tests	11
GRB	12
hildreth.lu	13
hist	24
HoRM (HoRM-package)	2
HoRM-package	2
JamesBond	14
legendre.polynomials	17
light	15
lm	12, 14, 16, 19, 22
logdiag	16
manova	26
plot.ppr	20
poly2form	17
power.b	18
power.F	18, 19
ppr	20
ppr_funs	20
psi.andrew	21
reg.anova	22, 23
reg.manova	23, 26
regressogram	24
repair, 25
rlm, 21
SSCP.fn, 26
stock, 27
summary.aov, 23
tortoise, 28
toy, 28
wood, 29
yarn, 30