Package ‘HVT’

May 15, 2024

Type Package
Date 2024-05-13
Title Constructing Hierarchical Voronoi Tessellations and Overlay Heatmaps for Data Analysis
Version 24.5.2
Description Facilitates building topology preserving maps for rich multivariate data. Credits to Mu Sigma for their continuous support throughout the development of the package.
License Apache License 2.0
Encoding UTF-8
Imports MASS, deldir, grDevices, splancs, conf.design, stats, dplyr, purrr, magrittr, polyclip, ggplot2, tidyr, scales, cluster, reshape2, data.table, ggforce, plyr, rlang, gganimate, gifski, markovchain, methods
Depends R (>= 3.6.0)
BugReports https://github.com/Mu-Sigma/HVT/issues
URL https://github.com/Mu-Sigma/HVT
RoxygenNote 7.3.1
Suggests rmarkdown, testthat, geozoo, plotly, DT, patchwork, sp, Hmisc, gridExtra, gtable, htmlwidgets, installr, skimr, tibble, devtools, tidyverse, DataExplorer, htmltools, corrplot, knitr, kableExtra
VignetteBuilder knitr
NeedsCompilation no
Author Zubin Dowlaty [aut],
Mu Sigma, Inc. [cre]
Maintainer `"Mu Sigma, Inc." <ird.experienceLab@mu-sigma.com>
Repository CRAN
Date/Publication 2024-05-15 08:50:21 UTC
R topics documented:

- displayTable
- edaPlots
- getTransitionProbability
- plotAnimatedFlowmap
- plotHVT
- plotModelDiagnostics
- plotNovelCells
- plotQuantErrorHistogram
- plotStateTransition
- reconcileTransitionProbability
- removeNovelty
- scoreHVT
- scoreLayeredHVT
- trainHVT

Index

displayTable | Table for displaying summary

Description

This is the main function for displaying summary from model training and scoring

Usage

```r
displayTable(
  data, 
  columnName, 
  value, 
  tableType = "summary", 
  scroll = TRUE, 
  limit = 100
)
```

Arguments

- **data**: List. A listed object from trainHVT or scoreHVT
- **columnName**: Character. Name of the column that needs highlighting.
- **value**: Numeric. The value above will be highlighted in red or green.
- **tableType**: Character. Type of table to generate ("summary", "compression")
- **scroll**: Logical. A value to have a scroll or not in the table.
- **limit**: Numeric. A value to indicate how many rows to display. Applicable for summary tableType.
Description
 This is the main function that provides exploratory data analysis plots

Usage
 edaPlots(df, time_series = FALSE, time_column)

Arguments
 df Dataframe. A data frame object.
 time_series Logical. A value to indicate whether the dataset is time_series or not.
 time_column Character. The name of the time column in the data frame.

Value
 Five objects which include time series plots, data distribution plots, box plots, correlation plot and a descriptive statistics table.
getTransitionProbability

Description

This is the main function to create transition probabilities list. The transition probability table quantifies the likelihood of transitioning from one state to another. States: The table includes the current states and the possible next states. Probabilities: For each current state, it lists the probability of transitioning to each of the next possible states.

Usage

getTransitionProbability(df, cellid_column, time_column)

Arguments

df Data frame. The input data frame should contain two columns, cell ID from scoreHVT function and time stamp of that dataset.
cellid_column Character. Name of the column containing cell IDs.
time_column Character. Name of the column containing time stamps.

Value

Prints and stores a nested list of data frames with transition probabilities.

Author(s)

Vishwavani <vishwavani@mu-sigma.com>

See Also

trainHVT
scoreHVT
plotAnimatedFlowmap

Examples

dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
 DAX = EuStockMarkets[, "DAX"],
 SMI = EuStockMarkets[, "SMI"],
 CAC = EuStockMarkets[, "CAC"],
 FTSE = EuStockMarkets[, "FTSE"])

hvt.results <- trainHVT(dataset, n_cells = 60, depth = 1, quant.err = 0.1,
 distance_metric = "L1_Norm", error_metric = "max",
 normalize = TRUE, quant_method = "kmeans")

scoring <- scoreHVT(dataset, hvt.results)

hvt.results <- hvt.results[, 1:60]

scoring <- scoring[, 1:60]

cell_id <- scoring$scoredPredictedData$Cell.ID
time_stamp <- dataset$date
dataset <- data.frame(cell_id, time_stamp)
table <- getTransitionProbability(dataset, cellid_column = "cell_id", time_column = "time_stamp")

plotAnimatedFlowmap

Generating flow maps and animations based on transition probabilities

Description

This is the main function for generating flow maps and animations based on transition probabilities including self states and excluding self states. Flow maps are a type of data visualization used to represent the transition probability of different states. Animations are the gifs used to represent the movement of data through the cells.

Usage

plotAnimatedFlowmap(
 hvt_model_output,
 transition_probability_df,
 df,
 animation = NULL,
 flow_map = NULL,
 fps_time = 1,
 fps_state = 1,
 time_duration = 2,
 state_duration = 2,
 cellid_column,
 time_column
)

Arguments

hvt_model_output
 List. Output from a trainHVT function.

transition_probability_df
 List. Output from getTransitionProbability function.
`plotAnimatedFlowmap`

df: Data frame. The input dataframe should contain two columns, cell ID from `scoreHVT` function and time stamp of that dataset.

animation: Character. Type of animation ('state_based', 'time_based', 'All' or NULL)

flow_map: Character. Type of flow map ('self_state', 'without_self_state', 'All' or NULL)

fps_time: Numeric. A numeric value for the frames per second of the time transition gif. (Must be a numeric value and a factor of 100). Default value is 1.

fps_state: Numeric. A numeric value for the frames per second of the state transition gif. (Must be a numeric value and a factor of 100). Default value is 1.

time_duration: Numeric. A numeric value for the duration of the time transition gif. Default value is 2.

state_duration: Numeric. A numeric value for the duration of the state transition gif. Default value is 2.

cellid_column: Character. Name of the column containing cell IDs.

time_column: Character. Name of the column containing time stamps

Value

A list of flow maps and animation gifs.

Author(s)

PonAnuReka Seenivasan <ponanureka.s@mu-sigma.com>, Vishwavani <vishwavani@mu-sigma.com>

See Also

- `trainHVT`
- `scoreHVT`
- `getTransitionProbability`

Examples

```r
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
  DAX = EuStockMarkets[, "DAX"],
  SMI = EuStockMarkets[, "SMI"],
  CAC = EuStockMarkets[, "CAC"],
  FTSE = EuStockMarkets[, "FTSE"])

hvt.results <- trainHVT(dataset, n_cells = 60, depth = 1, quant.err = 0.1,
  distance_metric = "L1_Norm", error_metric = "max",
  normalize = TRUE, quant_method = "kmeans")

scoring <- scoreHVT(dataset, hvt.results)
cell_id <- scoring$scoredPredictedData$Cell.ID
time_stamp <- dataset$date
dataset <- data.frame(cell_id, time_stamp)

table <- getTransitionProbability(dataset, cellid_column = "cell_id",
time_column = "time_stamp")
plots <- plotAnimatedFlowmap(hvt_model_output = hvt.results,
  transition_probability_df = table,
)```
df = dataset, animation = 'All', flow_map = 'All', fps_time = 1, fps_state = 1, time_duration = 2,
state_duration = 2, cellid_column = "cell_id", time_column = "time_stamp"

plotHVT

Plot the hierarchical tessellations.

Description

This is the main plotting function to construct hierarchical voronoi tessellations in 1D,2D or Interactive surface plot.

Usage

plotHVT(
  hvt.results,
  line.width = 0.5,
  color.vec = "black",
  pch1 = 21,
  centroid.size = 1.5,
  title = NULL,
  maxDepth = NULL,
  child.level,
  hmap.cols,
  quant.error.hmap = NULL,
  cell_id = FALSE,
  n_cells.hmap = NULL,
  label.size = 0.5,
  sepration_width = 7,
  layer_opacity = c(0.5, 0.75, 0.99),
  dim_size = 1000,
  plot.type = "2Dhvt"
)

Arguments

hvt.results (2DProj/2Dhvt/2Dheatmap/surface_plot) List. A list containing the output of
trainHVT function which has the details of the tessellations to be plotted.

line.width (2Dhvt/2Dheatmap) Numeric Vector. A vector indicating the line widths of the
tessellation boundaries for each level.

color.vec (2Dhvt/2Dheatmap) Vector. A vector indicating the colors of the boundaries of
the tessellations at each level.

pch1 (2Dhvt/2Dheatmap) Numeric. Symbol of the centroids of the tessellations (parent levels). Default value is 21.

centroid.size (2Dhvt/2Dheatmap) Numeric. Size of centroids of first level tessellations.

title (2Dhvt) Character. Set a title for the plot. (default = NULL)
maxDepth (2Dhvt) Numeric. An integer indicating the number of levels. (default = NULL)

child.level (2Dheatmap/surface_plot) Numeric. Indicating the level for which the heat map is to be plotted.

hmap.cols (2Dheatmap/surface_plot) Numeric or Character. The column number or column name from the dataset indicating the variables for which the heat map is to be plotted.

quant.error.hmap (2Dheatmap) Numeric. A number indicating the quantization error threshold.

cell_id (2Dhvt) Logical. To indicate whether the plot should have Cell IDs or not for the first layer. (default = FALSE)

n_cells.hmap (2Dheatmap/surface_plot) Numeric. An integer indicating the number of cells/clusters per hierarchy (level)

label.size (2Dheatmap) Numeric. The size by which the tessellation labels should be scaled. (default = 0.5)

sepration_width (surface_plot) Numeric. An integer indicating the width between two levels

layer_opacity (surface_plot) Numeric. A vector indicating the opacity of each layer/level

dim_size (surface_plot) Numeric. An integer indicating the dimension size used to create the matrix for the plot

plot.type Character. An option to indicate which type of plot should be generated. Accepted entries are '1D','2Dproj','2Dhvt','2Dheatmap'and 'surface_plot'. Default value is '2Dhvt'.

Value

plot object containing the visualizations of reduced dimension(1D/2D) for the given dataset.

Author(s)

Shubhra Prakash <shubhra.prakash@mu-sigma.com>, Sangeet Moy Das <sangeet.das@mu-sigma.com>

See Also

trainHVT

Examples

data("EuStockMarkets")
hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1, distance_metric = "L1_Norm", error_metric = "max", normalize = TRUE,quant_method="kmeans")

#change the 'plot.type' argument to '2Dproj' or '2Dhvt' to visualize respective plots. plotHVT(hvt.results, plot.type = '1D')

#change the 'plot.type' argument to 'surface_plot' to visualize the Interactive surface plot plotHVT(hvt.results, child.level = 1, hmap.cols = "DAX", plot.type = '2Dheatmap')
plotModelDiagnostics

Make the diagnostic plots for hierarchical voronoi tessellations

Description

This is the main function that generates diagnostic plots for hierarchical voronoi tessellations models and scoring.

Usage

plotModelDiagnostics(model_obj)

Arguments

model_obj List. A list obtained from the trainHVT function or scoreHVT function

Value

For trainHVT, Minimum Intra-DataPoint Distance Plot, Minimum Intra-Centroid Distance Plot Mean Absolute Deviation Plot, Distribution of Number of Observations in Cells, for Training Data and Mean Absolute Deviation Plot for Validation Data are plotted. For scoreHVT Mean Absolute Deviation Plot for Training Data and Validation Data are plotted

Author(s)

Shubhra Prakash <shubhra.prakash@mu-sigma.com>

See Also

plotHVT

Examples

data("EuStockMarkets")
hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1, distance_metric = "L1_Norm", error_metric = "max", normalize = TRUE, quant_method="kmeans", diagnose = TRUE, hvt_validation = TRUE)
plotModelDiagnostics(hvt.results)
plotNovelCells

Plot the identified outlier cell(s) in the voronoi tessellation map.

Description

This is the main plotting function to construct hierarchical voronoi tessellations and highlight the outlier cells

Usage

plotNovelCells(
  plot.cells,  # Vector. A vector indicating the cells to be highlighted in the map
  hvt.map,    # List. A list containing the output of trainHVT function which has the details of the tessellations to be plotted
  line.width = c(0.6),  # Numeric Vector. A vector indicating the line widths of the tessellation boundaries for each level
  color.vec = c("#141B41"),  # Vector. A vector indicating the colors of the boundaries of the tessellations at each level
  pch = 21,  # Numeric. Symbol of the centroids of the tessellations (parent levels) Default value is 21.
  centroid.size = 0.5,  # Numeric. Size of centroids of first level tessellations. Default value is 0.5
  title = NULL,  # String. Set a title for the plot. (default = NULL)
  maxDepth = 1  # Numeric. An integer indicating the number of levels. (default = NULL)
)

Arguments

- plot.cells
- hvt.map
- line.width
- color.vec
- pch
- centroid.size
- title
- maxDepth

Value

Returns a ggplot object containing hierarchical voronoi tessellation plot highlighting the outlier cells

Author(s)

Shantanu Vaidya <shantanu.vaidya@mu-sigma.com>
plotQuantErrorHistogram

See Also

trainHVT
plotHVT

Examples

data("EuStockMarkets")
hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE, quant_method="kmeans")
#selected 55,58 are for demo purpose
plotNovelCells(c(55,58), hvt.results)

plotQuantErrorHistogram

Make the quantization error plots for training and scoring.

Description

This is the function that produces histograms displaying the distribution of Quantization Error (QE) values for both train and test datasets, highlighting mean values with dashed lines for quick evaluation.

Usage

plotQuantErrorHistogram(hvt.results, hvt.scoring)

Arguments

hvt.results List. A list of hvt.results obtained from the trainHVT function.
hvt.scoring List. A list of hvt.scoring obtained from the scoreHVT function.

Value

Returns the ggplot object containing the quantization error distribution plots for the given HVT results of training and scoring

Author(s)

Shubhra Prakash <shubhra.prakash@mu-sigma.com>

See Also

plotHVT
Examples

```r
data("EuStockMarkets")
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
 DAX = EuStockMarkets[, "DAX"],
 SMI = EuStockMarkets[, "SMI"],
 CAC = EuStockMarkets[, "CAC"],
 FTSE = EuStockMarkets[, "FTSE"])
rownames(EuStockMarkets) <- dataset$date
#Split in train and test
train <- EuStockMarkets[1:1302,]
test <- EuStockMarkets[1303:1860,]

hvt.results <- trainHVT(train, n_cells = 60, depth = 1, quant.err = 0.1,
 distance_metric = "L1_Norm", error_metric = "max",
 normalize = TRUE, quant_method = "kmeans")
scoring <- scoreHVT(test, hvt.results)
plotQuantErrorHistogram(hvt.results, scoring)
```

plotStateTransition  
Creating State Transition Plot

Description

This is the main function to create a state transition plot from a data frame. A state transition plot is a type of data visualization used to represent the changes or transitions in states over time for a given system. State refers to a particular condition or status of a cell at a specific point in time. Transition refers to the change of state for a cell from one condition to another over time.

Usage

```r
plotStateTransition(
 df,
 sample_size = NULL,
 line_plot = NULL,
 cellid_column,
 time_column
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Data frame. The Input data frame should contain two columns. Cell ID from scoreHVT function and time stamp of that dataset.</td>
</tr>
<tr>
<td>sample_size</td>
<td>Numeric. An integer indicating the fraction of the data frame to visualize in the plot. Default value is 0.2</td>
</tr>
<tr>
<td>line_plot</td>
<td>Logical. A logical value indicating to create a line plot. Default value is NULL.</td>
</tr>
<tr>
<td>cellid_column</td>
<td>Character. Name of the column containing cell IDs.</td>
</tr>
<tr>
<td>time_column</td>
<td>Character. Name of the column containing time stamps.</td>
</tr>
</tbody>
</table>
**reconcileTransitionProbability**

**Value**

A plotly object representing the state transition plot for the given data frame.

**Author(s)**

PonAnuReka Seenivasan <ponanureka.s@mu-sigma.com>

**See Also**

`trainHVT`

`scoreHVT`

**Examples**

```r
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
DAX = EuStockMarkets[, "DAX"],
SMI = EuStockMarkets[, "SMI"],
CAC = EuStockMarkets[, "CAC"],
FTSE = EuStockMarkets[, "FTSE"])

hvt.results <- trainHVT(dataset, n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE, quant_method = "kmeans")

scoring <- scoreHVT(dataset, hvt.results)
cell_id <- scoring$scoredPredictedData$Cell.ID
time_stamp <- dataset$date
dataset <- data.frame(cell_id, time_stamp)

plotStateTransition(dataset, sample_size = 1, cellid_column = "cell_id", time_column = "time_stamp")
```

**reconcileTransitionProbability**

Reconciliation of Transition Probability

**Description**

This is the main function for creating reconciliation plots and tables which helps in comparing the transition probabilities calculated manually and from markovchain function

**Usage**

```r
reconcileTransitionProbability(
 df,
 hmap_type = NULL,
 cellid_column,
 time_column
)
```
Arguments

- **df**
  - Data frame. The input data frame should contain two columns, cell ID from scoreHVT function and timestamp of that dataset.

- **hmap_type**
  - Character. ('self_state', 'without_self_state', or 'All')

- **cellid_column**
  - Character. Name of the column containing cell IDs.

- **time_column**
  - Character. Name of the column containing timestamps

Value

- A list of plotly heatmap objects and tables representing the transition probability heatmaps.

Author(s)

- PonAnuReka Seenivasan <ponanureka.s@mu-sigma.com>, Vishwavani <vishwavani@mu-sigma.com>

See Also

- trainHVT
- scoreHVT

Examples

```r
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
 DAX = EuStockMarkets[, "DAX"],
 SMI = EuStockMarkets[, "SMI"],
 CAC = EuStockMarkets[, "CAC"],
 FTSE = EuStockMarkets[, "FTSE"])

hvt.results <- trainHVT(dataset, n_cells = 60, depth = 1, quant.err = 0.1,
 distance_metric = "L1_Norm", error_metric = "max",
 normalize = TRUE, quant_method = "kmeans")

scoring <- scoreHVT(dataset, hvt.results)

hvt.results <- trainHVT(dataset, n_cells = 60, depth = 1, quant.err = 0.1,
 distance_metric = "L1_Norm", error_metric = "max",
 normalize = TRUE, quant_method = "kmeans")

scoring <- scoreHVT(dataset, hvt.results)

reconcileTransitionProbability(dataset, hmap_type = "All",
 cellid_column = "cell_id", time_column = "time_stamp")
```

---

**removeNovelty**

*Remove identified novelty cell(s)*

Description

This function is used to remove the identified novelty cells.
Usage

removeNovelty(outlier_cells, hvt_results)

Arguments

outlier_cells  Vector. A vector with the cell number of the identified novelty

hvt_results  List. A list having the results of the compressed map i.e. output of trainHVT function

Value

A list of two items

[[1]]  Dataframe of novelty cell(s)

[[2]]  Dataframe without the novelty cell(s) from the dataset used in model training

Author(s)

Shantanu Vaidya <shantanu.vaidya@mu-sigma.com>

See Also

trainHVT

scoreLayeredHVT

Examples

data("EuStockMarkets")
hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE, quant_method="kmeans")
identified_Novelty_cells <<- c(2, 10)
output_list <- removeNovelty(identified_Novelty_cells, hvt.results)
data_with_novelty <- output_list[[1]]
data_without_novelty <- output_list[[2]]
Usage

scoreHVT(
  data, 
  hvt.results.model, 
  child.level = 1, 
  mad.threshold = 0.2, 
  line.width = c(0.6, 0.4, 0.2), 
  color.vec = c("navyblue", "slateblue", "lavender"), 
  normalize = TRUE, 
  seed = 300, 
  distance_metric = "L1_Norm", 
  error_metric = "max", 
  yVar = NULL 
)

Arguments

data Data frame. A data frame containing the test dataset.
hvt.results.model List. A list obtained from the trainHVT function
child.level Numeric. A number indicating the depth for which the heat map is to be plotted.
mad.threshold Numeric. A numeric value indicating the permissible Mean Absolute Deviation.
line.width Vector. A vector indicating the line widths of the tessellation boundaries for each layer.
color.vec Vector. A vector indicating the colors of the tessellation boundaries at each layer.
normalize Logical. A logical value indicating if the dataset should be normalized. When set to TRUE, the data (testing dataset) is standardized by ‘mean’ and ‘sd’ of the training dataset referred from the trainHVT(). When set to FALSE, the data is used as such without any changes.
seed Numeric. Random Seed to preserve the repeatability
distance_metric Character. The distance metric can be L1_Norm(Manhattan) or L2_Norm(Euclidean). L1_Norm is selected by default. The distance metric is used to calculate the distance between an n dimensional point and centroid. The distance metric can be different from the one used during training.
error_metric Character. The error metric can be mean or max. max is selected by default. max will return the max of m values and mean will take mean of m values where each value is a distance between a point and centroid of the cell.
yVar Character. A character or a vector representing the name of the dependent variable(s)

Value

Dataframe containing scored data, plots and summary
scoreLayeredHVT

**Author(s)**
Shubhra Prakash <shubhra.prakash@mu-sigma.com>, Sangeet Moy Das <sangeet.das@mu-sigma.com>

**See Also**
trainHVT
plotHVT

**Examples**

data("EuStockMarkets")
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
  DAX = EuStockMarkets[, "DAX"],
  SMI = EuStockMarkets[, "SMI"],
  CAC = EuStockMarkets[, "CAC"],
  FTSE = EuStockMarkets[, "FTSE"])
rownames(EuStockMarkets) <- dataset$date
# Split in train and test
train <- EuStockMarkets[1:1302, ]
test <- EuStockMarkets[1303:1860, ]
#model training
hvt.results<- trainHVT(train,n_cells = 60, depth = 1, quant.err = 0.1,
  distance_metric = "L1_Norm", error_metric = "max",
  normalize = TRUE,quant_method = "kmeans")
scored <- scoreHVT(test, hvt.results)
data_scored <- scored$scoredPredictedData

---

**Description**

This function scores the cell and corresponding layer for each data point in a test dataset using three hierarchical vector quantization (HVT) models (Map A, Map B, Map C) and returns a data frame containing the scored layer output. The function incorporates the scored results from each map and merges them to provide a comprehensive result.

**Usage**

scoreLayeredHVT(
  data,
  hvt_mapA,
  hvt_mapB,
  hvt_mapC,
  mad.threshold = 0.2,
  normalize = TRUE,
  seed = 300,
scoreLayeredHVT

distance_metric = "L1_Norm",
error_metric = "max",
child.level = 1,
yVar = NULL
)

Arguments

data Data Frame. A data frame containing test dataset. The data frame should have all the variable(features) used for training.
hvt_mapA A list of hvt.results.model obtained from trainHVT function while performing trainHVT() on train data
hvt_mapB A list of hvt.results.model obtained from trainHVT function while performing trainHVT() on data with novelty(s)
hvt_mapC A list of hvt.results.model obtained from trainHVT function while performing trainHVT() on data without novelty(s)
mad.threshold Numeric. A number indicating the permissible Mean Absolute Deviation
normalize Logical. A logical value indicating if the dataset should be normalized. When set to TRUE, the data (testing dataset) is standardized by 'mean' and 'sd' of the training dataset referred from the trainHVT(). When set to FALSE, the data is used as such without any changes. (Default value is TRUE).
seed Numeric. Random Seed.
distance_metric Character. The distance metric can be L1_Norm(Manhattan) or L2_Norm(Eucledian). L1_Norm is selected by default. The distance metric is used to calculate the distance between an n dimensional point and centroid. The distance metric can be different from the one used during training.
error_metric Character. The error metric can be mean or max. max is selected by default. max will return the max of m values and mean will take mean of m values where each value is a distance between a point and centroid of the cell.
child.level Numeric. A number indicating the level for which the heat map is to be plotted.
yVar Character. A character or a vector representing the name of the dependent variable(s)

Value

Dataframe containing scored layer output

Author(s)

Shubhra Prakash <shubhra.prakash@mu-sigma.com>, Sangeet Moy Das <sangeet.das@mu-sigma.com>, Shantanu Vaidya <shantanu.vaidya@mu-sigma.com>, Somya Shambhawi <somya.shambhawi@mu-sigma.com>

See Also

trainHVT
plotHVT
Examples

data("EuStockMarkets")
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
  DAX = EuStockMarkets[, "DAX"],
  SMI = EuStockMarkets[, "SMI"],
  CAC = EuStockMarkets[, "CAC"],
  FTSE = EuStockMarkets[, "FTSE"])
rownames(EuStockMarkets) <- dataset$date

train <- EuStockMarkets[1:1302, ]
test <- EuStockMarkets[1303:1860, ]

###MAP-A
hvt_mapA <- trainHVT(train, n_cells = 150, depth = 1, quant.err = 0.1,
  distance_metric = "L1_Norm", error_metric = "max",
  normalize = TRUE, quant_method = "kmeans")

identified_Novelty_cells <- c(127, 55, 83, 61, 44, 35, 27, 77)
output_list <- removeNovelty(identified_Novelty_cells, hvt_mapA)
data_with_novelty <- output_list[[1]]
data_with_novelty <- data_with_novelty[, -c(1, 2)]

### MAP-B
hvt_mapB <- trainHVT(data_with_novelty, n_cells = 10, depth = 1, quant.err = 0.1,
  distance_metric = "L1_Norm", error_metric = "max",
  normalize = TRUE, quant_method = "kmeans")
data_without_novelty <- output_list[[2]]

### MAP-C
hvt_mapC <- trainHVT(data_without_novelty, n_cells = 135,
  depth = 1, quant.err = 0.1, distance_metric = "L1_Norm",
  error_metric = "max", quant_method = "kmeans",
  normalize = TRUE)

##SCORE LAYERED
data_scored <- scoreLayeredHVT(test, hvt_mapA, hvt_mapB, hvt_mapC)

---

**trainHVT**  
*Constructing Hierarchical Voronoi Tessellations*

**Description**

This is the main function to construct hierarchical voronoi tessellations. This is done using hierarchical vector quantization (hvq). The data is represented in 2D coordinates and the tessellations are plotted using these coordinates as centroids. For subsequent levels, transformation is performed on the 2D coordinates to get all the points within its parent tile. Tessellations are plotted using these transformed points as centroids.
Usage

```r
trainHVT(
 dataset,
 min_compression_perc = NA,
 n_cells = NA,
 depth = 1,
 quant.err = 0.2,
 projection.scale = 10,
 normalize = FALSE,
 seed = 279,
 distance_metric = c("L1_Norm", "L2_Norm"),
 error_metric = c("mean", "max"),
 quant_method = c("kmeans", "kmedoids"),
 scale_summary = NA,
 diagnose = FALSE,
 hvt_validation = FALSE,
 train_validation_split_ratio = 0.8
)
```

Arguments

dataset  Data frame. A data frame, with numeric columns (features) will be used for training the model.

min_compression_perc  Numeric. An integer, indicating the minimum compression percentage to be achieved for the dataset. It indicates the desired level of reduction in dataset size compared to its original size.

n_cells  Numeric. An integer, indicating the number of cells per hierarchy (level).

depth  Numeric. An integer, indicating the number of levels. A depth of 1 means no hierarchy (single level), while higher values indicate multiple levels (hierarchy).

quant.err  Numeric. A number indicating the quantization error threshold. A cell will only breakdown into further cells if the quantization error of the cell is above the defined quantization error threshold.

projection.scale  Numeric. A number indicating the scale factor for the tessellations to visualize the sub-tessellations well enough. It helps in adjusting the visual representation of the hierarchy to make the sub-tessellations more visible.

normalize  Logical. A logical value indicating if the dataset should be normalized. When set to TRUE, scales the values of all features to have a mean of 0 and a standard deviation of 1 (Z-score).

seed  Numeric. A Random Numeric Seed to preserve the repeatability.

distance_metric  Character. The distance metric can be L1_Norm(Manhattan) or L2_Norm(Eucledian). L1_Norm is selected by default. The distance metric is used to calculate the distance between an n dimensional point and centroid.
error_metric  Character. The error metric can be mean or max. max is selected by default. max will return the max of m values and mean will take mean of m values where each value is a distance between a point and centroid of the cell.

quant_method  Character. The quantization method can be kmeans or kmedoids. Kmeans uses means (centroids) as cluster centers while Kmedoids uses actual data points (medoids) as cluster centers. kmeans is selected by default.

scale_summary  List. A list with user-defined mean and standard deviation values for all the features in the dataset. Pass the scale summary when normalize is set to FALSE.

diagnose  Logical. A logical value indicating whether user wants to perform diagnostics on the model. Default value is FALSE.

hvt_validation  Logical. A logical value indicating whether user wants to holdout a validation set and find mean absolute deviation of the validation points from the centroid. Default value is FALSE.

train_validation_split_ratio  Numeric. A numeric value indicating train validation split ratio. This argument is only used when hvt_validation has been set to TRUE. Default value for the argument is 0.8

Value

A Nested list that contains the hierarchical tessellation information. This list has to be given as input argument to plot the tessellations.

[[1]]  A list containing information related to plotting tessellations. This information will include coordinates, boundaries, and other details necessary for visualizing the tessellations

[[2]]  A list containing information related to Sammon’s projection coordinates of the data points in the reduced-dimensional space.

[[3]]  A list containing detailed information about the hierarchical vector quantized data along with a summary section containing no of points, Quantization Error and the centroids for each cell.

[[4]]  A list that contains all the diagnostics information of the model when diagnose is set to TRUE. Otherwise NA.

[[5]]  A list that contains all the information required to generates a Mean Absolute Deviation (MAD) plot, if hvt_validation is set to TRUE. Otherwise NA

[[6]]  A list containing detailed information about the hierarchical vector quantized data along with a summary section containing no of points, Quantization Error and the centroids for each cell which is the output of ‘hvq’

[[7]]  model info: A list that contains model-generated timestamp, input parameters passed to the model and the validation results

Author(s)

Shubhra Prakash <shubhra.prakash@mu-sigma.com>, Sangeet Moy Das <sangeet.das@mu-sigma.com>, Shantanu Vaidya <shantanu.vaidya@mu-sigma.com>
See Also

plotHVT

Examples

data("EuStockMarkets")

hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1,
                         distance_metric = "L1_Norm", error_metric = "max",
                         normalize = TRUE, quant_method = "kmeans")
Index

* **Diagnostics_or_Validation**
  - plotModelDiagnostics, 9
  - plotQuantErrorHistogram, 11
  - reconcileTransitionProbability, 13

* **EDA**
  - displayTable, 2
  - edaPlots, 3

* **Novelty_or_Outliers**
  - plotNovelCells, 10
  - removeNovelty, 14

* **Scoring**
  - scoreHVT, 15
  - scoreLayeredHVT, 17

* **Tessellation_and_Heatmap**
  - plotHVT, 7

* **Training_or_Compression**
  - trainHVT, 19

* **Transition_or_Prediction**
  - getTransitionProbability, 4
  - plotAnimatedFlowmap, 5
  - plotStateTransition, 12

  displayTable, 2
  edaPlots, 3
  getTransitionProbability, 4, 6
  plotAnimatedFlowmap, 5
  plotHVT, 7, 9, 11, 17, 18, 22
  plotModelDiagnostics, 9
  plotNovelCells, 10
  plotQuantErrorHistogram, 11
  plotStateTransition, 12
  reconcileTransitionProbability, 13
  removeNovelty, 14
  scoreHVT, 4, 6, 13, 14, 15
  scoreLayeredHVT, 15, 17
  trainHVT, 3, 4, 6, 8, 11, 13–15, 17, 18, 19

23