Package ‘HDSpatialScan’

July 16, 2021

Type Package
Title Multivariate and Functional Spatial Scan Statistics
Version 1.0.2

Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp, parallel, purrr, matrixStats, SpatialNP, sp, DT, TeachingDemos, plotrix, fmsb, rgdal, swfscMisc, rgeos, graphics, stats, grDevices, methods
LinkingTo RcppArmadillo, Rcpp
Collate 'documentation_page.R' 'clusters.R' 'permutations.R'
 'gaussian_multi.R' 'wmw_multi.R' 'wmw_fonc.R' 'scan_fonc.R'
 'scan_multi.R' 'plot_map.R' 'RcppExports.R'
 'dfree_index_multi.R' 'pointwise_dfree.R'
 'pointwise_wmw_multi.R' 'pointwise_wmw_uni.R'
 'transform_data.R' 'data_fmulti_data.R' 'data_funi_data.R'
 'data_multi_data.R' 'data_map_sites.R' 'posteriori_filtering.R'
 'non_overlap.R' 'scan_uni.R' 'wmw_uni.R' 'dfree.R'
 'finalizing_scan_procedure.R' 'HDSpatialScan_plot.R'
R topics documented:

'HDSpatialScan_Classes.R' 'HDSpatialScan_plotCurves.R'
'HDSpatialScan_plotSummary.R' 'HDSpatialScan_print.R'
'HDSpatialScan_summary.R' 'InitScan.R' 'SpatialScan.R'

RoxygenNote 7.1.1
Suggests knitr, rmarkdown
NeedsCompilation yes
Author Camille FREVENT [aut, cre, cph],
 Mohamed-Salem AHMED [aut],
 Julien SOULA [aut],
 Zaineb SMIDA [aut],
 Lionel CUCALA [aut],
 Sophie DABO-NIANG [aut],
 Michaël GENIN [aut]
Maintainer Camille FREVENT <camille.frevent@univ-lille.fr>
Repository CRAN
Date/Publication 2021-07-16 15:10:10 UTC

R topics documented:

HDSpatialScan-package .. 3
clusters ... 4
DFFSS ... 5
dfree ... 6
dfree_index_multi ... 7
FinScan ... 7
fmulti_data .. 9
funi_data .. 9
InitScan ... 10
map_sites ... 11
MDFFSS ... 12
MG ... 13
MNP ... 14
MPFSS ... 15
MRBFSS .. 16
multi_data ... 17
multi_fWMW .. 17
multi_gaussian ... 18
multi_signs_matrix .. 18
multi_WMW .. 19
non_overlap .. 19
NPFSS ... 20
permutate .. 21
PFSS ... 21
plot.ResScanOutput .. 22
plotCurves ... 23
plotCurves.ResScanOutputMultiFunct 24
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plotCurves.ResScanOutputUniFunct</td>
<td>25</td>
</tr>
<tr>
<td>plotSummary</td>
<td>26</td>
</tr>
<tr>
<td>plotSummary.ResScanOutputMulti</td>
<td>27</td>
</tr>
<tr>
<td>plotSummary.ResScanOutputMultiFunct</td>
<td>28</td>
</tr>
<tr>
<td>plotSummary.ResScanOutputUniFunct</td>
<td>29</td>
</tr>
<tr>
<td>plot_map</td>
<td>30</td>
</tr>
<tr>
<td>plot_map2</td>
<td>31</td>
</tr>
<tr>
<td>plot_schema</td>
<td>32</td>
</tr>
<tr>
<td>pointwise_dfree</td>
<td>32</td>
</tr>
<tr>
<td>pointwise_wmw_multi</td>
<td>33</td>
</tr>
<tr>
<td>pointwise_wmw_uni</td>
<td>34</td>
</tr>
<tr>
<td>post_filt_area</td>
<td>34</td>
</tr>
<tr>
<td>post_filt_nb_sites</td>
<td>35</td>
</tr>
<tr>
<td>post_filt_radius</td>
<td>36</td>
</tr>
<tr>
<td>print.ResScanOutput</td>
<td>36</td>
</tr>
<tr>
<td>ResScanOutput</td>
<td>37</td>
</tr>
<tr>
<td>ResScanOutputMulti</td>
<td>38</td>
</tr>
<tr>
<td>ResScanOutputMultiFunct</td>
<td>40</td>
</tr>
<tr>
<td>ResScanOutputUni</td>
<td>41</td>
</tr>
<tr>
<td>ResScanOutputUniFunct</td>
<td>42</td>
</tr>
<tr>
<td>SpatialScan</td>
<td>44</td>
</tr>
<tr>
<td>summary.ResScanOutputMulti</td>
<td>47</td>
</tr>
<tr>
<td>summary.ResScanOutputMultiFunct</td>
<td>49</td>
</tr>
<tr>
<td>summary.ResScanOutputUni</td>
<td>50</td>
</tr>
<tr>
<td>summary.ResScanOutputUniFunct</td>
<td>51</td>
</tr>
<tr>
<td>transform_data</td>
<td>52</td>
</tr>
<tr>
<td>UG</td>
<td>53</td>
</tr>
<tr>
<td>uni_fWMW</td>
<td>53</td>
</tr>
<tr>
<td>uni_signs_matrix</td>
<td>54</td>
</tr>
<tr>
<td>UNP</td>
<td>54</td>
</tr>
<tr>
<td>URBFS</td>
<td>55</td>
</tr>
<tr>
<td>wmw_uni</td>
<td>56</td>
</tr>
</tbody>
</table>

Index

57

HDSpatialScan-package
Multivariate and Functional Spatial Scan Statistics

Description

Allows to detect spatial clusters of abnormal values on multivariate or functional data.
clusers

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>HDSpatialScan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0.2</td>
</tr>
<tr>
<td>Date</td>
<td>2021-07-16</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

FREVENT Camille, AHMED Mohamed-Salem, SOULA Julien, SMIDA Zaineb, CUCALA Lionel, DABO-NIANG Sophie and GENIN Michaël. Maintainer: FREVENT Camille <camille.frevent@univ-lille.fr>

References

Zaineb Smida and Lionel Cucala and Ali Gannoun. A Nonparametric Spatial Scan Statistic for Functional Data. Pre-print.

Camille Frévent and Mohamed-Salem Ahmed and Matthieu Marbac and Michaël Genin. Detecting Spatial Clusters in Functional Data: New Scan Statistic Approaches. Pre-print.

clusters

Creation of the matrix of potential clusters

Description

This function creates the matrix in which each column corresponds to a potential clusters, taking the value 1 when a site (or an individual) is in the potential cluster and 0 otherwise.

Usage

clusters(sites_coord, system, mini, maxi, type_minimaxi, sites_areas)
Arguments

- **sites_coord** numeric matrix. Matrix of the coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates). It has the same number of rows as the number of sites or individuals and 2 columns.
- **system** character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **mini** numeric. Minimum for the clusters (see type_minimaxi).
- **maxi** numeric. Maximum for the clusters (see type_minimaxi).
- **type_minimaxi** character. Type of minimum and maximum: "area": the minimum and maximum area of the clusters, "radius": the minimum and maximum radius, or "sites/indiv": the minimum and maximum number of sites or individuals in the clusters.
- **sites_areas** numeric vector. Areas of the sites. It must contain the same number of elements than the rows of sites_coord. If the data is on individuals and not on sites, there can be duplicated values. By default: NULL

Value

The list of the following elements:

- matrix_clusters: numeric matrix of 0 and 1
- centres: the coordinates of the centres of each cluster (numeric matrix)
- radius: the radius of the clusters in km if system = "WGS84" or in the coordinates unit otherwise (numeric vector)
- areas: the areas of the clusters (in same units as in sites_areas). Provided only if sites_areas is not NULL. Numeric vector
- system: the system of coordinates (character)

DFFSS scan procedure

Description

This function computes the DFFSS (Distribution-Free Functional scan statistic).

Usage

```R
DFFSS(  
data,  
MC = 999,  
typeI = 0.05,  
nbCPU = 1,  
times = NULL,  
initialization,  
permutations)
```
Arguments

```r
data          matrix. Matrix of the data, the rows correspond to the sites (or to the individuals if the observations are by individuals and not by sites) and each column represents an observation time. The times must be the same for each site/individual.
MC            numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
typeI         numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
nbCPU         numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.
times         numeric. Times of observation of the data. By default NULL.
initialization list. Initialization for the scan procedure (see InitScan for more details).
permutations  matrix. Indices of permutations of the data.
```

Value

An object of class ResScanOutputUniFunct.

References

dfree

Index for the UG scan procedure

Description

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster and each permutation

Usage

```r
dfree(data, matrix_clusters)
```

Arguments

```r
data          numeric matrix. Matrix of the data. The rows correspond to the sites (or the individuals) and each column represents a permutation.
matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.
```

Value

numeric matrix.
dfree_index_multi Index for the MDFSS scan procedure

Description

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.

Usage

dfree_index_multi(data, matrix_clusters)

Arguments

data List. List of the data, each element of the list corresponds to a site (or an individual), for each element each row corresponds to a variable and each column represents an observation time.

matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

Value

numeric vector.

FinScan Finalization of the scan procedures

Description

This function finalizes the scan procedures.

Usage

FinScan(
index_clusters_temp,
index,
filtering_post,
type_minimaxi_post,
mini_post,
maxi_post,
 nb_sites,
matrix_clusters,
radius,
areas,


```r
centres,
pvals,
maximize = TRUE
)
```

Arguments

- **index_clusters_temp**
 - numeric vector. Indices of the significant clusters.

- **index**
 - numeric vector. Index of concentration for each potential cluster.

- **filtering_post**
 - logical. Is there an a posteriori filtering?

- **type_minimaxi_post**
 - character. Type of minimum and maximum a posteriori: by default "sites/indiv": the mini_post and maxi_post are on the number of sites or individuals in the significant clusters. Other possible values are "area": the minimum and maximum area of the clusters, or "radius": the minimum and maximum radius.

- **mini_post**
 - numeric. A minimum to filter the significant clusters a posteriori (see type_minimaxi_post).
 - The default NULL is for no filtering with a a posteriori minimum.

- **maxi_post**
 - numeric. A maximum to filter the significant clusters a posteriori (see type_minimaxi_post).
 - The default NULL is for no filtering with a a posteriori maximum.

- **nb_sites**
 - numeric. The number of considered sites or individuals.

- **matrix_clusters**
 - matrix. The matrix of potential clusters taking the value 1 at ligne i and column j if the cluster j contains the site i, 0 otherwise.

- **radius**
 - numeric vector. The radius of the potential clusters.

- **areas**
 - numeric vector. The areas of the potential clusters.

- **centres**
 - numeric matrix. The coordinates of the centres of each potential cluster.

- **pvals**
 - numeric vector. The pvalue of each potential cluster.

- **maximize**
 - logical. Should the index be maximized? By default TRUE. If FALSE it will be minimized.

Value

The list of the following elements:

- **pval_clusters**: pvalues of the selected clusters.
- **sites_clusters**: the indices of the sites of the selected clusters.
- **centres_clusters**: the coordinates of the centres of each selected cluster.
- **radius_clusters**: the radius of the selected clusters.
- **areas_clusters**: the areas of the selected clusters.
fmulti_data
Multivariate functional data

Description

Concentrations over the time of NO2, O3, PM10 and PM2.5 from 2020/05/01 to 2020/06/25 in each canton (administrative subdivision) of Nord-Pas-de-Calais (a region from France).

Usage

``` R
data("fmulti_data")
```

Format

A list of 169 elements. Each element corresponds to a canton and is a matrix of 56 columns (for the 56 days of observation) and 4 rows (4 variables, in the order NO2, O3, PM10 and PM2.5).

References

Data from the National Air Quality Forecasting Platform www.prevair.org

funi_data
Univariate functional data

Description

Concentration over the time of the pollutant NO2 from 2020/05/01 to 2020/06/25 in each canton (administrative subdivision) of Nord-Pas-de-Calais (a region from France).

Usage

``` R
data("funi_data")
```

Format

A matrix of 169 rows and 56 columns. Each row corresponds to a canton, and each column is an observation time (a day). The 56 observation times are thus equally spaced times.

References

Data from the National Air Quality Forecasting Platform www.prevair.org
InitScan

Initialization of the scan procedures by creating the matrix of potential clusters

Description

This function initializes the scan procedures by creating the matrix of potential clusters.

Usage

```r
InitScan(
  mini_post,
  maxi_post,
  type_minimaxi_post,
  sites_areas,
  sites_coord,
  system,
  mini,
  maxi,
  type_minimaxi
)
```

Arguments

- **mini_post** numeric. A minimum to filter the significant clusters a posteriori (see type_minimaxi_post). The default NULL is for no filtering with a a posteriori minimum.
- **maxi_post** numeric. A maximum to filter the significant clusters a posteriori (see type_minimaxi_post). The default NULL is for no filtering with a a posteriori maximum.
- **type_minimaxi_post** character. Type of minimum and maximum a posteriori: by default "sites/indiv": the mini_post and maxi_post are on the number of sites or individuals in the significant clusters. Other possible values are "area": the minimum and maximum area of the clusters, or "radius": the minimum and maximum radius.
- **sites_areas** numeric vector. Areas of the sites. It must contain the same number of elements than the rows of sites_coord. If the data is on individuals and not on sites, there can be duplicated values. By default: NULL
- **sites_coord** numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- **system** character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **mini** integer. A minimum for the clusters (see type_minimaxi). Changing the default value may bias the inference.
- **maxi** integer. A Maximum for the clusters (see type_minimaxi). Changing the default value may bias the inference.
map_sites

type_minimaxi character. Type of minimum and maximum: by default "sites/indiv": the mini and maxi are on the number of sites or individuals in the potential clusters. Other possible values are "area": the minimum and maximum area of the clusters, or "radius": the minimum and maximum radius.

Value

The list of the following elements:

- filtering_post: logical, is there an a posteriori filtering?
- matrix_clusters: the matrix of potential clusters
- centres: the coordinates of the centres of each potential cluster
- radius: the radius of the potential clusters in km if system = WGS84 or in the user units
- areas: the areas of the potential clusters (in the same units as sites_areas).
- sites_coord: coordinates of the sites
- system: system in which the coordinates are expressed
- mini_post: a minimum to filter the significant clusters a posteriori
- maxi_post: a maximum to filter the significant clusters a posteriori
- type_minimaxi_post: type of minimum and maximum a posteriori

map_sites Spatial object corresponding to the sites of the data of the package HDSpatialScan

Description

Spatial object corresponding to the sites (169 cantons) of the data of the package HDSpatialScan.

Usage

data("map_sites")

Format

A SpatialPolygonsDataFrame.
MDFFSS

MDFFSS scan procedure

Description

This function computes the MDFFSS (Multivariate Distribution-Free Functional scan statistic).

Usage

```r
MDFFSS(
  data,
  MC = 999,
  typeI = 0.05,
  nbCPU = 1,
  variable_names = NULL,
  times = NULL,
  initialization,
  permutations
)
```

Arguments

- `data` list of numeric matrices. List of \(nb_sites \) (or \(nb_individuals \) if the observations are by individuals and not by sites) matrices of the data, the rows correspond to the variables and each column represents an observation time. The times must be the same for each site/individual.
- `MC` numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
- `typeI` numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
- `nbCPU` numeric. Number of CPU. If \(nb_CPU > 1 \) parallelization is done. By default: 1.
- `variable_names` character. Names of the variables. By default NULL.
- `times` numeric. Times of observation of the data. By default NULL.
- `initialization` list. Initialization for the scan procedure (see `InitScan` for more details).
- `permutations` matrix. Indices of permutations of the data.

Value

An object of class `ResScanOutputMultiFunct`.

References

MG

MG scan procedure

Description

This function computes the MG (Multivariate Gaussian scan statistic).

Usage

```r
MG(
  data,
  MC = 999,
  typeI = 0.05,
  nbCPU = 1,
  variable_names = NULL,
  initialization,
  permutations
)
```

Arguments

data matrix. Matrix of the data, the rows correspond to the sites (or the individuals if the observations are by individuals and not by sites) and each column represents a variable.

MC numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.

typeI numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.

nbCPU numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.

variable_names character. Names of the variables. By default NULL.

initialization list. Initialization for the scan procedure (see InitScan for more details).

permutations matrix. Indices of permutations of the data.

Value

An object of class ResScanOutputMulti.

References

MNP

MNP scan procedure

Description

This function computes the MNP (Multivariate Nonparametric scan statistic).

Usage

MNP(
 data,
 MC = 999,
 typeI = 0.05,
 nbCPU = 1,
 variable_names = NULL,
 initialization,
 permutations
)

Arguments

data matrix. Matrix of the data, the rows correspond to the sites (or the individuals if the observations are by individuals and not by sites) and each column represents a variable.

MC numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.

typeI numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.

nbCPU numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.

variable_names character. Names of the variables. By default NULL.

initialization list. Initialization for the scan procedure (see InitScan for more details).

permutations matrix. Indices of permutations of the data.

Value

An object of class ResScanOutputMulti.

References

This function computes the MPFSS (Parametric Multivariate Functional scan statistic).

Usage

\[
\text{MPFSS}(\text{data, MC = 999, typeI = 0.05, method = c("LH", "W", "P", "R"), nbCPU = 1, variable_names = NULL, times = NULL, initialization, permutations})
\]

Arguments

- **data**: list of numeric matrices. List of nb_sites (or nb_individuals if the observations are by individuals and not by sites) matrices of the data, the rows correspond to the variables and each column represents an observation time. The times must be equally spaced and the same for each site/individual.
- **MC**: numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
- **typeI**: numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
- **method**: character vector. The methods to compute the significant clusters. Options: "LH", "W", "P", "R" for respectively the Lawley-Hotelling trace test statistic, The Wilks lambda test statistic, the Pillai trace test statistic and the Roy's maximum root test statistic. By default all are computed.
- **nbCPU**: numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.
- **variable_names**: character. Names of the variables. By default NULL.
- **times**: numeric. Times of observation of the data. By default NULL.
- **initialization**: list. Initialization for the scan procedure (see InitScan for more details).
- **permutations**: matrix. Indices of permutations of the data.

Value

List of objects of class ResScanOutputMultiFunct (one element by method)
References

MRBFSS
MRBFSS scan procedure

Description
This function computes the MRBFSS (Multivariate Rank-Based Functional scan statistic).

Usage
MRBFSS(
 data,
 MC = 999,
 typeI = 0.05,
 nbCPU = 1,
 variable_names = NULL,
 times = NULL,
 initialization,
 permutations
)

Arguments
data list of numeric matrices. List of nb_sites (or nb_individuals if the observations are by individuals and not by sites) matrices of the data, the rows correspond to the variables and each column represents an observation time. The times must be the same for each site/individual.
MC numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
typeI numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
nbCPU numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.
variable_names character. Names of the variables. By default NULL.
times numeric. Times of observation of the data. By default NULL.
initialization list. Initialization for the scan procedure (see InitScan for more details).
permutations matrix. Indices of permutations of the data.

Value
An object of class ResScanOutputMultiFunct

multi_data

Multivariate non-functional data

Description

Average concentrations over the time of NO2, O3, PM10 and PM2.5 from 2020/05/01 to 2020/06/25 in each canton (administrative subdivision) of Nord-Pas-de-Calais (a region from France).

Usage

data("multi_data")

Format

A matrix of 169 rows and 4 columns. Each row corresponds to a canton, and each column is a concentration mean in the order NO2, O3, PM10 and PM2.5.

References

Data from the National Air Quality Forecasting Platform www.prevair.org

multi_fWMW

Index for the NPFSS scan procedure (multivariate functional case)

Description

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.

Usage

multi_fWMW(signs, matrix_clusters)

Arguments

- **signs**: list of numeric matrices. List of nb_sites (or nb_individuals) sign matrices, the rows correspond to the variables and each column represents an observation time.
- **matrix_clusters**: numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.
multi_gaussian

Index for the MG scan procedure

Description

This function returns the index we want to minimize on the set of potential clusters, for each potential cluster.

Usage

```
multi_gaussian(data, matrix_clusters)
```

Arguments

- `data` numeric matrix. Matrix of the data, the rows correspond to the sites (or individuals) and each column represents a variable.
- `matrix_clusters` numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

Value

numeric vector.

multi_signs_matrix

List of matrix of signs (multivariate functional data)

Description

This function returns the list of matrix of signs for the multivariate functional data.

Usage

```
multi_signs_matrix(data)
```

Arguments

- `data` list of numeric matrices. List of nb_sites (or nb_individuals) matrices of the data, the rows correspond to the variables and each column represents an observation time.

Value

list of numeric matrices.
multi_WMW

Index for the MNP scan procedure

Description
This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.

Usage
multi_WMW(rank_data, matrix_clusters)

Arguments

rank_data numeric matrix. Matrix of the ranks of the initial data, the rows correspond to the sites (or the individuals) and each column represents a variable.

matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

Value
numeric vector.

non_overlap

Return only the detected clusters with no overlapping in their order of detection

Description
This function allows to return only the detected clusters with no overlapping in their order of detection.

Usage
non_overlap(index_clusters, matrix_clusters)

Arguments

index_clusters numeric vector. The indices of the detected clusters.

matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. A value of 1 indicate that the site (or the individual) is in the cluster, 0 otherwise.

Value
The detecting clusters with no overlapping, in their order of detection.
NPFSS

NPFSS scan procedure (univariate functional or multivariate functional)

Description

This function computes the NPFSS (Nonparametric Functional scan statistic for multivariate or univariate functional data).

Usage

```r
NPFSS(
  data,
  MC = 999,
  typeI = 0.05,
  nbCPU = 1,
  variable_names = NULL,
  times = NULL,
  initialization,
  permutations
)
```

Arguments

- `data` list of numeric matrices or a matrix. List of `nb_sites` (or `nb_individuals` if the observations are by individuals and not by site) matrices of the data, the rows correspond to the variables and each column represents an observation time (multivariate case); or Matrix of the data, the rows correspond to the sites (or to the individuals) and each column represents an observation time (univariate case). The times must be equally spaced and the same for each site/individual.

- `MC` numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.

- `typeI` numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than `typeI`. By default: 0.05.

- `nbCPU` numeric. Number of CPU. If `nbCPU > 1` parallelization is done. By default: 1.

- `variable_names` character. Names of the variables. By default `NULL`. Ignored if the data is a matrix (univariate functional case).

- `times` numeric. Times of observation of the data. By default `NULL`.

- `initialization` list. Initialization for the scan procedure (see `InitScan` for more details).

- `permutations` matrix. Indices of permutations of the data.

Value

An object of class `ResScanOutputUniFunct` or `ResScanOutputMultiFunct` depending on the data
References

Zaineb Smida and Lionel Cucala and Ali Gannoun. A Nonparametric Spatial Scan Statistic for Functional Data. Pre-print <https://hal.archives-ouvertes.fr/hal-02908496>.

permutate

Permutates the data

Description

This function will permit to permute the data for the MC simulations

Usage

permutate(to_permute, nb_permu)

Arguments

to_permute vector. Vector of indices we want to permute.
nb_permu numeric. Number of permutations.

Value

matrix. Matrix of nb_permu rows and length(to_permute) columns.

PFSS

PFSS scan procedure

Description

This function computes the PFSS (Parametric Functional scan statistic).

Usage

PFSS(

data,
MC = 999,
typeI = 0.05,
nbCPU = 1,
times = NULL,
initialization,
permutations
)
Arguments

data: matrix. Matrix of the data, the rows correspond to the sites (or to the individuals if the observations are by individuals and not by sites) and each column represents an observation time. The times must be equally spaced and the same for each site/individual.

MC: numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.

typeI: numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default: 0.05.

nbCPU: numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.

times: numeric. Times of observation of the data. By default NULL.

initialization: list. Initialization for the scan procedure (see InitScan for more details).

permutations: matrix. Indices of permutations of the data.

Value

An object of class ResScanOutputUniFunct.

References

Description

This function plots a schema or a map of the sites and the clusters.

Usage

```r
## S3 method for class 'ResScanOutput'
plot(
  x,
  type = ,
  spobject = NULL,
  system_conv = NULL,
  colors = "red",
  only.MLC = FALSE,
  ...
)
```
plotCurves

Generic function to plot curves

Description

This function is a generic function to plot curves.

Usage

plotCurves(x, ...)

Arguments

x ResScanOutput. Output of a scan function (UG, UNP, MG, MNP, PFSS, DFFSS, URBFSS, NPFSS, MPFSS, MDFFSS or MRFBS)
type character. Type of plot: "schema", "map" (the clusters are represented by circles) or "map2" (the clusters are colored on the map)
sObject SpatialObject with the same coordinates system the one used for the scan. Only considered if type is "map" or "map2"
system_conv character. System to convert the coordinates for the plot. Only considered if the system used in the scan was "WGS84" and if type is "schema". Else it will be ignored. Must be entered as in the PROJ.4 documentation
colors character. Colors of the clusters. If length(colors)=1 all the clusters will be in this color. Else it should be a vector of length the number of clusters to plot.
only.MLC logical. Should we plot only the MLC or all the significant clusters?
...

Value

No value returned, plots a schema or a map of the sites and the clusters.

Examples

library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)
res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plot(x = res_npfss, type = "schema", system_conv = "+init=epsg:2154")
plot(x = res_npfss, type = "map", spobject = map_sites)
plot(x = res_npfss, type = "map2", spobject = map_sites)
Arguments

- **x**: An object for which the curves are to be plotted.
- ...: Additional arguments affecting the output.

Value

No value returned, plots the curves.

See Also

`plotCurves.ResScanOutputUniFunct` and `plotCurves.ResScanOutputMultiFunct`

Examples

```r
library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)

res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plotCurves(x = res_npfss, add_mean = TRUE, add_median = TRUE)
```

plotCurves.ResScanOutputMultiFunct

Plots the curves in the clusters detected by the multivariate functional scan functions (MPFSS, NPFSS, MDFFSS or MRBFSS)

Description

This function plot the curves in the clusters detected by the multivariate functional scan functions (MPFSS, NPFSS, MDFFSS or MRBFSS).

Usage

```r
## S3 method for class 'ResScanOutputMultiFunct'
plotCurves(
  x,
  add_mean = FALSE,
  add_median = FALSE,
  colors = "red",
  only.MLC = FALSE,
  ...
)
```
Arguments

- `x`: ResScanOutputMultiFunct. Output of a multivariate functional scan function (MPFSS, NPFSS, MDFFSS or MRBFSS).
- `add_mean`: boolean. If TRUE it adds the global mean curve in black.
- `add_median`: boolean. If TRUE it adds the global median curve in blue.
- `colors`: character. The colors to plot the clusters’ curves. If length(colors)==1 then all the clusters will be plotted in this color. Else there must be the same number of elements in colors than the number of clusters.
- `only.MLC`: logical. Should we plot only the MLC or all the significant clusters?
- `...`: Further arguments to be passed to or from methods.

Value

No value returned, plots the curves.

Examples

```r
library(sp)
data("map_sites")
data("fmulti_data")
coords <- coordinates(map_sites)
res_npfss <- SpatialScan(method = "NPFSS", data = fmulti_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plotCurves(x = res_npfss, add_mean = TRUE, add_median = TRUE)
```

Description

This function plot the curves in the clusters detected by the univariate functional scan functions (PFSS, NPFSS, DFFSS or URBFSS).

Usage

```r
## S3 method for class 'ResScanOutputUniFunct'
plotCurves(
x,
  add_mean = FALSE,
)```
Arguments

x ResScanOutputUniFunct. Output of a univariate functional scan function (PFSS, NPFSS, DFFSS or URBFSS).

add_mean boolean. If TRUE it adds the global mean curve in black.

add_median boolean. If TRUE it adds the global median curve in blue.

colors character. The colors to plot the clusters’ curves. If length(colors)==1 then all the clusters will be plotted in this color. Else there must be the same number of elements in colors than the number of clusters

only.MLC logical. Should we plot only the MLC or all the significant clusters?

... Further arguments to be passed to or from methods.

Value

No value returned, plots the curves.

Examples

library(sp)
data("map_sites")data("funi_data")coords <- coordinates(map_sites)

res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plotCurves(x = res_npfss, add_mean = TRUE, add_median = TRUE)

plotSummary Generic function to plot a summary

Description

This function is a generic function to plot a summary.

Usage

plotSummary(x, ...)

plotSummary.ResScanOutputMulti

Arguments

x An object for which the summary is to be plotted.

... Additional arguments affecting the summary produced.

Value

No value returned, plots the summary.

See Also


Examples

library(sp)
data("map_sites")
data("multi_data")
coords <- coordinates(map_sites)

res_mnp <- SpatialScan(method = "MNP", data = multi_data, sites_coord = coords,
    system = "WGS84", mini = 1, maxi = nrow(coords)/2,
    variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MNP

plotSummary(x = res_mnp, type = "mean")
**Arguments**

- `x` ResScanOutputMulti. Output of a multivariate scan function (MG or MNP).
- `type` character. "mean" or "median". If "mean": the means in the clusters are plotted in solid lines, outside the cluster in dots, the global mean is in black. If "median": the medians in the clusters are plotted in solid lines, outside the cluster in dots, the global median is in black.
- `colors` character. The colors to plot the clusters’ summaries. If length(colors)==1 then all the clusters will be plotted in this color. Else there must be the same number of elements in colors than the number of clusters.
- `only.MLC` logical. Should we plot only the MLC or all the significant clusters?
- `...` Further arguments to be passed to or from methods.

**Value**

No value returned, plots the spider chart.

**Examples**

```r
library(sp)
data("map_sites")
data("multi_data")
coords <- coordinates(map_sites)
res_mnp <- SpatialScan(method = "MNP", data=multi_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2,
 variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MNP

plotSummary(x = res_mnp, type = "mean")
```

---

**plotSummary.ResScanOutputMultiFunct**

*Plots the mean or median curves in the clusters detected by a multivariate functional scan procedure (MPFSS, NPFSS, MDFFSS or MRBFSS)*

**Description**

This function plots the mean or median curves in the clusters detected by a multivariate functional scan procedure (MPFSS, NPFSS, MDFFSS or MRBFSS).

**Usage**

```r
S3 method for class 'ResScanOutputMultiFunct'
plotSummary(x, type = "mean", colors = "red", only.MLC = FALSE, ...)
```
**plotSummary.ResScanOutputUniFunct**

Plots the mean or median curves in the clusters detected by a univariate functional scan procedure (PFSS, NPFSS, DFFSS or URBFSS).

**Description**

This function plots the mean or median curves in the clusters detected by a univariate functional scan procedure (PFSS, NPFSS, DFFSS or URBFSS).

**Usage**

```r
S3 method for class 'ResScanOutputUniFunct'
plotSummary(x, type = "mean", colors = "red", only.MLC = FALSE, ...)
```

**Arguments**

- `x`: ResScanOutputMultiFunct. Output of a multivariate functional scan function (MPFSS, NPFSS, MDFFSS or MRBFSS).
- `type`: character. "mean" or "median". If "mean": the mean curves in the clusters are plotted in solid lines, outside the cluster in dots, the global mean curve is in black. If "median": the median curves in the clusters are plotted in solid lines, outside the cluster in dots, the global median curve is in black.
- `colors`: character. The colors to plot the clusters’ summary curves. If length(colors)==1 then all the clusters will be plotted in this color. Else there must be the same number of elements in colors than the number of clusters
- `only.MLC`: logical. Should we plot only the MLC or all the significant clusters?
- `...`: Further arguments to be passed to or from methods.

**Value**

No value returned, plots the curves.

**Examples**

```r
data("map_sites")
data("fmulti_data")
coords <- coordinates(map_sites)
res_npfss <- SpatialScan(method = "NPFSS", data = fmulti_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plotSummary(x = res_npfss, type = "median")
```
Arguments

- `x`: ResScanOutputUniFunct. Output of a univariate functional scan function (PFSS, NPFSS, DFFSS or URBFS).  
- `type`: character. "mean" or "median". If "mean": the mean curves in the clusters are plotted in solid lines, outside the cluster in dots, the global mean curve is in black. If "median": the median curves in the clusters are plotted in solid lines, outside the cluster in dots, the global median curve is in black.  
- `colors`: character. The colors to plot the clusters’ summary curves. If length(colors)==1 then all the clusters will be plotted in this color. Else there must be the same number of elements in colors than the number of clusters.  
- `only.MLC`: logical. Should we plot only the MLC or all the significant clusters?  
- `...`: Further arguments to be passed to or from methods.

Value

No value returned, plots the curves.

Examples

```r
library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)

res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

plotSummary(x = res_npfss, type = "median")
```

---

**plot_map**

*Map of circular clusters*

Description

This function plots a map of the sites and the circular clusters.

Usage

```r
plot_map(spobject, centres, radius, system, colors = "red")
```
plot_map2

Arguments

spobject SpObject. SpatialObject with the same coordinates system that centres (the same that sites_coord in the scan functions)

centres numeric matrix or vector if only one cluster was detected. Coordinates of the centres of each cluster.

radius numeric vector. Radius of each cluster in the user units if system = "Euclidean", or in km if system = "WGS84" (in the output of the scan functions)

system character. System in which the coordinates are expressed: "Euclidean" or "WGS84".

colors character. Colors of the clusters. If length(colors)=1 all the clusters will be in this color. Else it should be a vector of length the number of clusters to plot.

Value

No value returned, plots a map of the sites and the circular clusters.

Description

This function plots a map of the sites and the clusters

Usage

plot_map2(spobject, sites_coord, output_clusters, system, colors = "red")

Arguments

spobject SpObject. SpatialObject corresponding the sites.

sites_coord numeric matrix. Coordinates of the sites or the individuals, in the same order that the data for the cluster detection.

output_clusters list. List of the sites in the clusters: it is the sites_clusters of the output of NPFSS, PFSS, DFFSS, URBFSS, MDFFSS, MRBFSS, MG, MNP, UG or UNP, or the sites_clusters_LH/sites_clusters_W/sites_clusters_P/sites_clusters_R of the MPFSS.

system character. System in which the coordinates are expressed: "Euclidean" or "WGS84".

colors character. Colors of the clusters. If length(colors)=1 all the clusters will be in this color. Else it should be a vector of length the number of clusters to plot.

Value

No value returned, plots a map of the sites and the clusters.
plot_schema  

*Schema of the clusters*

**Description**

This function plots a schema of the sites and the clusters

**Usage**

```r
plot_schema(
 output_clusters,
 sites_coord,
 system,
 system_conv = NULL,
 colors = "red"
)
```

**Arguments**

- `output_clusters`: list. List of the sites in the clusters: it is the sites_clusters of the output of NPFSS, PFSS, DFFSS, URBFSS, MDFFSS, MRBFSS, MG, MNP, UG or UNP, or the sites_clusters_LH/sites_clusters_W/sites_clusters_P/sites_clusters_R of the MPFSS.
- `sites_coord`: numeric matrix. Coordinates of the sites, in the same order that the data for the cluster detection.
- `system`: character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
- `system_conv`: character. System to convert the coordinates for the plot. Only considered if system is "WGS84". Must be entered as in the PROJ.4 documentation.
- `colors`: character. Colors of the clusters. If length(colors)=1 all the clusters will be in this color. Else it should be a vector of length the number of clusters to plot.

**Value**

No value returned, plots a schema of the sites and the clusters.

---

**pointwise_dfree**  

*Index for the DFFSS scan procedure*

**Description**

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.
**Usage**

```r
pointwise_dfree(data, matrix_clusters)
```

**Arguments**

- `data` numeric matrix. Matrix of the data. The rows correspond to the sites (or the individuals) and each column represents an observation time.
- `matrix_clusters` numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

**Value**

numeric vector.

---

**Description**

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster

**Usage**

```r
pointwise_wmw_multi(transform_data, matrix_clusters)
```

**Arguments**

- `transform_data` List. List of the data transformed with the function `transform_data`, each element of the list corresponds to an observation time. Each row of each element is a site (or an individual), and each column represents a variable.
- `matrix_clusters` numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

**Value**

numeric vector.
pointwise_wmw_uni \quad Index for the URBFSS scan procedure

Description
This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.

Usage
pointwise_wmw_uni(rank_data, matrix_clusters)

Arguments
rank_data matrix. Matrix of the ranks of the data for each time. Each column corresponds to an observation time and each row corresponds to a site or an individual.
matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

Value
numeric vector.

post_filt_area \quad A posteriori filtering on the area

Description
This function allows the a posteriori filtering on the area.

Usage
post_filt_area(mini_post, maxi_post, areas_clusters, index_clusters_temp)

Arguments
mini_post numeric. A minimum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori minimum.
maxi_post numeric. A maximum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori maximum.
areas_clusters numeric vector. The areas of the clusters.
index_clusters_temp numeric vector. The indices of the detected clusters.
post_filt_nb_sites

Value

The detecting clusters with the a posteriori filtering.

Description

This function allows the a posteriori filtering on the number of sites/individuals.

Usage

post_filt_nb_sites(
  mini_post,
  maxi_post,
  nb_sites,
  index_clusters_temp,
  matrix_clusters
)

Arguments

mini_post numeric. A minimum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori minimum.

maxi_post numeric. A maximum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori maximum.

nb_sites numeric. The number of sites/individuals.

index_clusters_temp numeric vector. The indices of the detected clusters.

matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. A value of 1 indicate that the site (or the individual) is in the cluster, 0 otherwise.

Value

The detecting clusters with the a posteriori filtering.
Description

This function allows the a posteriori filtering on the radius.

Usage

post_filt_radius(mini_post, maxi_post, radius, index_clusters_temp)

Arguments

mini_post    numeric. A minimum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori minimum.
maxi_post    numeric. A maximum to filter the significant clusters a posteriori. The default NULL is for no filtering with a a posteriori maximum.
radius       numeric vector. The radius of each cluster.
index_clusters_temp
             numeric vector. The indices of the detected clusters.

Value

The detecting clusters with the a posteriori filtering.

print.ResScanOutput  
Prints a result of a scan procedure

Description

This function prints a result of a scan procedure.

Usage

## S3 method for class 'ResScanOutput'
print(x, ...)

Arguments

x             ResScanOutput. Output of a scan function (UG, UNP, MG, MNP, PFSS, DFFSS, URBFSS, NPFSS, MPFSS, MDFFSS or MRBFSS)
...           Further arguments to be passed to or from methods.

Value

No value returned, print the ResScanOutput object.
**Examples**

```r
library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)

res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

print(x = res_npfss)
```

---

**ResScanOutput**

*Constructor function for objects of the ResScanOutput class*

---

**Description**

This is the constructor function for objects of the ResScanOutput class.

**Usage**

```r
ResScanOutput(
 sites_clusters,
 pval_clusters,
 centres_clusters,
 radius_clusters,
 areas_clusters,
 system,
 sites_coord,
 data,
 method
)
```

**Arguments**

- `sites_clusters` list. List of the indices of the sites of the selected clusters.
- `pval_clusters` numeric vector. The pvalues of the selected clusters.
- `centres_clusters` numeric matrix. Coordinates of the centres of the selected clusters.
- `radius_clusters` numeric vector. Radius of the selected clusters.
- `areas_clusters` numeric vector. Areas of the selected clusters.
- `system` character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
sites_coord numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
data list of numeric matrices or a matrix or a vector. List of nb_sites (or nb_individuals if the observations are by individuals and not by site) matrices of the data, the rows correspond to the variables and each column represents an observation time (multivariate functional case); or Matrix of the data, the rows correspond to the sites (or to the individuals) and each column represents an observation time (univariate functional case) or a variable (multivariate case); or Vector of the data, the elements correspond to the sites (or to the individuals) (univariate case).
method character. The scan procedure used.

Value

An object of class ResScanOutput which is a list of the following elements:

- sites_clusters: List of the indices of the sites of the selected clusters.
- pval_clusters: The pvalues of the selected clusters.
- centres_clusters: Coordinates of the centres of the selected clusters.
- radius_clusters: Radius of the selected clusters.
- areas_clusters: Areas of the selected clusters.
- system: System in which the coordinates are expressed: "Euclidean" or "WGS84".
- sites_coord: Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- data: List of numeric matrices or a matrix or a vector.
- method: The scan procedure used.

ResScanOutputMulti Constructor function for objects of the ResScanOutputMulti class

Description

This is the constructor function for objects of the ResScanOutputMulti class which inherits from class ResScanOutput.

Usage

ResScanOutputMulti(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system,
variable_names = NULL,
sites_coord,
data,
method
)

Arguments

sites_clusters list. List of the indices of the sites of the selected clusters.
pval_clusters numeric vector. The pvalues of the selected clusters.
centres_clusters numeric matrix. Coordinates of the centres of the selected clusters.
radius_clusters numeric vector. Radius of the selected clusters.
areas_clusters numeric vector. Areas of the selected clusters.
system character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
variable_names character. Names of the variables. By default NULL.
sites_coord numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
data matrix. Matrix of the data, the rows correspond to the sites (or to the individuals) and each column represents a variable.
method character. The scan procedure used.

Value

An object of class ResScanOutputMulti which is a list of the following elements:

- sites_clusters: List of the indices of the sites of the selected clusters.
- pval_clusters: The pvalues of the selected clusters.
- centres_clusters: Coordinates of the centres of the selected clusters.
- radius_clusters: Radius of the selected clusters.
- areas_clusters: Areas of the selected clusters.
- system: System in which the coordinates are expressed: "Euclidean" or "WGS84".
- sites_coord: Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- data: Matrix.
- variable_names: names of the variables.
- method: The scan procedure used.
ResScanOutputMultiFunct

Constructor function for objects of the ResScanOutputMultiFunct class

Description

This is the constructor function for objects of the ResScanOutputMultiFunct class which inherits from class ResScanOutput.

Usage

ResScanOutputMultiFunct(
  sites_clusters,
  pval_clusters,
  centres_clusters,
  radius_clusters,
  areas_clusters,
  system,
  times = NULL,
  variable_names = NULL,
  sites_coord,
  data,
  method
)

Arguments

  sitesClusters  list. List of the indices of the sites of the selected clusters.
  pval_clusters  numeric vector. The pvalues of the selected clusters.
  centres_clusters  numeric matrix. Coordinates of the centres of the selected clusters.
  radius_clusters  numeric vector. Radius of the selected clusters.
  areas_clusters  numeric vector. Areas of the selected clusters.
  system  character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
  times  numeric. Times of observation of the data. By default NULL.
  variable_names  character. Names of the variables. By default NULL.
  sites_coord  numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
  data  list of numeric matrices. List of nb_sites (or nb_individuals if the observations are by individuals and not by site) matrices of the data, the rows correspond to the variables and each column represents an observation time.
  method  character. The scan procedure used.
ResScanOutputUni

Value

An object of class ResScanOutputMultiFunct which is a list of the following elements:

- sites_clusters: List of the indices of the sites of the selected clusters.
- pval_clusters: The pvalues of the selected clusters.
- centres_clusters: Coordinates of the centres of the selected clusters.
- radius_clusters: Radius of the selected clusters.
- areas_clusters: Areas of the selected clusters.
- system: System in which the coordinates are expressed: "Euclidean" or "WGS84".
- sites_coord: Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- data: list of numeric matrices.
- times: times of observation of the data.
- variable_names: names of the variables.
- method: the scan procedure used.

ResScanOutputUni Constructor function for objects of the ResScanOutputUni class

Description

This is the constructor function for objects of the ResScanOutputUni class which inherits from class ResScanOutput.

Usage

ResScanOutputUni(
    sites_clusters,
    pval_clusters,
    centres_clusters,
    radius_clusters,
    areas_clusters,
    system,
    sites_coord,
    data,
    method
)
Arguments

- **sites_clusters** list. List of the indices of the sites of the selected clusters.
- **pval_clusters** numeric vector. The pvalues of the selected clusters.
- **centres_clusters** numeric matrix. Coordinates of the centres of the selected clusters.
- **radius_clusters** numeric vector. Radius of the selected clusters.
- **areas_clusters** numeric vector. Areas of the selected clusters.
- **system** character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **sites_coord** numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- **data** vector. Vector of the data, the elements correspond to the sites (or to the individuals).
- **method** character. The scan procedure used.

Value

An object of class ResScanOutputUni which is a list of the following elements:

- **sites_clusters**: List of the indices of the sites of the selected clusters.
- **pval_clusters**: The pvalues of the selected clusters.
- **centres_clusters**: Coordinates of the centres of the selected clusters.
- **radius_clusters**: Radius of the selected clusters.
- **areas_clusters**: Areas of the selected clusters.
- **system**: System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **sites_coord**: Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- **data**: Vector.
- **method**: The scan procedure used.

---

**ResScanOutputUniFunct**  
*Constructor function for objects of the ResScanOutputUniFunct class*

Description

This is the constructor function for objects of the ResScanOutputUniFunct class which inherits from class ResScanOutput.
**Usage**

\[
\text{ResScanOutputUniFunct}(\text{sites\_clusters}, \text{pval\_clusters}, \text{centres\_clusters}, \text{radius\_clusters}, \text{areas\_clusters}, \text{system}, \text{times} = \text{NULL}, \text{sites\_coord}, \text{data}, \text{method})
\]

**Arguments**

- **sites\_clusters**: list. List of the indices of the sites of the selected clusters.
- **pval\_clusters**: numeric vector. The pvalues of the selected clusters.
- **centres\_clusters**: numeric matrix. Coordinates of the centres of the selected clusters.
- **radius\_clusters**: numeric vector. Radius of the selected clusters.
- **areas\_clusters**: numeric vector. Areas of the selected clusters.
- **system**: character. System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **times**: numeric. Times of observation of the data. By default NULL.
- **sites\_coord**: numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- **data**: matrix. Matrix of the data, the rows correspond to the sites (or to the individuals) and each column represents an observation time.
- **method**: character. The scan procedure used.

**Value**

An object of class `ResScanOutputUniFunct` which is a list of the following elements:

- **sites\_clusters**: List of the indices of the sites of the selected clusters.
- **pval\_clusters**: The pvalues of the selected clusters.
- **centres\_clusters**: Coordinates of the centres of the selected clusters.
- **radius\_clusters**: Radius of the selected clusters.
- **areas\_clusters**: Areas of the selected clusters.
- **system**: System in which the coordinates are expressed: "Euclidean" or "WGS84".
- **sites\_coord**: Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).
- **data**: Matrix.
- **times**: times of observation of the data.
- **method**: the scan procedure used
SpatialScan

Spatial scan procedure

Description

This function computes the different scan procedures available in the package.

Usage

SpatialScan(
  method,            # character vector. The scan procedures to apply on the data. Possible values are:
  data,              #
  sites_coord = NULL, #
  system = NULL,     #
  mini = 1,          #
  maxi = nrow(sites_coord)/2, #
  type_minimaxi = "sites/indiv", #
  mini_post = NULL,  #
  maxi_post = NULL,  #
  type_minimaxi_post = "sites/indiv", #
  sites_areas = NULL, #
  MC = 999,          #
  typeI = 0.05,      #
  nbCPU = 1,         #
  variable_names = NULL, #
  times = NULL)      #
)

Arguments

- method: character vector. The scan procedures to apply on the data. Possible values are:
  - Univariate scan procedures: "UG" (univariate gaussian, see UG), "UNP" (univariate nonparametric, see UNP)
  - Multivariate scan procedures: "MG" (multivariate gaussian, see MG), "MNP" (multivariate nonparametric, see MNP)
  - Univariate functional scan procedures: "NPFSS" (nonparametric functional scan statistic, see NPFSS), "PFSS" (parametric functional scan statistic, see PFSS), "DFFSS" (distribution-free functional scan statistic, see DFFSS), "URBFSS" (univariate rank-based functional scan statistic, see URBFS)
  - Multivariate functional scan procedures: "NPFSS" (nonparametric functional scan statistic, see NPFSS), "MDFFSS" (multivariate distribution-free functional scan statistic, see MDFFSS), "MRBFSS" (multivariate rank-based functional scan statistic, see MRBFSS), "MPFSS", "MPFSS-LH", "MPFSS-W", "MPFSS-P" and "MPFSS-R" (parametric multivariate functional scan statistic; "LH", "W", "P", "R" correspond respectively to the Lawley-Hotelling trace test statistic, The Wilks lambda test statistic, the Pillai trace
test statistic and the Roy’s maximum root test statistic, see MPFSS). Note that "MPFSS" computes "MPFSS-LH", "MPFSS-W", "MPFSS-P" and "MPFSS-R".

data list of numeric matrices or a matrix or a vector:
  • Univariate case: Vector of the data, each element corresponds to a site (or an individual if the observations are by individuals and not by sites).
  • Multivariate case: Matrix of the data, the rows correspond to the sites (or the individuals if the observations are by individuals and not by sites) and each column represents a variable.
  • Univariate functional case: Matrix of the data, the rows correspond to the sites (or to the individuals if the observations are by individuals and not by sites) and each column represents an observation time. The times must be the same for each site/individual. Depending on the scan procedure they also need to be equally-spaced.
  • Multivariate functional case: List of nb_sites (or nb_individuals if the observations are by individuals and not by sites) matrices of the data, the rows correspond to the variables and each column represents an observation time. The times must be the same for each site/individual. Depending on the scan procedure they also need to be equally-spaced.

sites_coord numeric matrix. Coordinates of the sites (or the individuals, in that case there can be many individuals with the same coordinates).

system character. System in which the coordinates are expressed: "Euclidean" or "WGS84".

mini numeric. A minimum for the clusters (see type_minimaxi). Changing the default value may bias the inference.

maxi numeric. A Maximum for the clusters (see type_minimaxi). Changing the default value may bias the inference.

type_minimaxi character. Type of minimum and maximum: by default "sites/indiv": the mini and maxi are on the number of sites or individuals in the potential clusters. Other possible values are "area": the minimum and maximum area of the clusters, or "radius": the minimum and maximum radius.

mini_post numeric. A minimum to filter the significant clusters a posteriori (see type_minimaxi_post). The default NULL is for no filtering with a a posteriori minimum.

maxi_post numeric. A maximum to filter the significant clusters a posteriori (see type_minimaxi_post). The default NULL is for no filtering with a a posteriori maximum.

type_minimaxi_post character. Type of minimum and maximum a posteriori: by default "sites/indiv": the mini_post and maxi_post are on the number of sites or individuals in the significant clusters. Other possible values are "area": the minimum and maximum area of the clusters, or "radius": the minimum and maximum radius.

sites_areas numeric vector. Areas of the sites. It must contain the same number of elements than the rows of sites Coord. If the data is on individuals and not on sites, there can be duplicated values. By default: NULL

MC numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
 SpatialScan

typeI numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
nbCPU numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1. Ignored for "UG" and "UNP"
variable_names character. Names of the variables. By default NULL. Ignored for the univariate and univariate functional scan procedures.
times numeric. Times of observation of the data. By default NULL. Ignored for the univariate and multivariate scan procedures.

Value

A list of objects of class ResScanOutput:

- Univariate case (UG, UNP): A list of objects of class ResScanOutputUni
- Multivariate case (MG, MNP): A list of objects of class ResScanOutputMulti
- Univariate functional case (NPFSS, PFSS, DFFSS, URBFSS): A list of objects of class ResScanOutputUniFunct
- Multivariate functional case (NPFSS, MPFSS, MDFSS, MRBFSS): A list of objects of class ResScanOutputMultiFunct

References

For univariate scan statistics:


For multivariate scan statistics:


For functional scan statistics:

- Zaineb Smida and Lionel Cucala and Ali Gannoun. A Nonparametric Spatial Scan Statistic for Functional Data. Pre-print <https://hal.archives-ouvertes.fr/hal-02908496>.
See Also

`ResScanOutput`, `ResScanOutputUni`, `ResScanOutputMulti`, `ResScanOutputUniFunct` and `ResScanOutputMultiFunct`

Examples

```r
Univariate scan statistics
library(sp)
data("map_sites")
data("multi_data")
uni_data <- multi_data[,1]
coords <- coordinates(map_sites)
res <- SpatialScan(method = c("UG", "UNP"), data = uni_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)

Multivariate scan statistics
library(sp)
data("map_sites")
data("multi_data")
coords <- coordinates(map_sites)
res <- SpatialScan(method = c("MG", "MNP"), data = multi_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)

Univariate functional scan statistics
library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)
res <- SpatialScan(method = c("NPFSS", "PFSS", "DFFSS", "URBFSS"), data = funi_data,
 sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)

Multivariate functional
library(sp)
data("map_sites")
data("fmulti_data")
coords <- coordinates(map_sites)
res <- SpatialScan(method = c("NPFSS", "MPFSS", "MDFFSS", "MRBFSS"), data = fmulti_data,
 sites_coord = coords, system = "WGS84", mini = 1, maxi = nrow(coords)/2)
```

**summary.ResScanOutputMulti**

Summary of the clusters obtained with a multivariate scan function (MG or MNP).
**Description**

This function gives a summary of the clusters in a table.

**Usage**

```r
S3 method for class 'ResScanOutputMulti'
summary(
 object,
 type_summ = "param",
 digits = 3,
 quantile.type = 7,
 only.MLC = FALSE,
 ...
)
```

**Arguments**

- `object`: ResScanOutputMulti. Output of a multivariate scan function (MG or MNP).
- `type_summ`: character. "param" or "nparam". "param" gives the mean and the sd for each variable in the clusters, outside, and globally and "nparam" gives the Q25, Q50 and Q75 quantiles for each variables in the clusters, outside, and globally.
- `digits`: integer. Number of decimals in output.
- `quantile.type`: An integer between 1 and 9 (see function quantile). Ignored if type_summ is "param".
- `only.MLC`: logical. Should we summarize only the MLC or all the significant clusters?
- `...`: Further arguments to be passed to or from methods.

**Value**

No value returned, displays the results in the console.

**Examples**

```r
library(sp)
data("map_sites")
data("multi_data")
coords <- coordinates(map_sites)
res_mg <- SpatialScan(method = "MG", data=multi_data, sites_coord = coords,
system = "WGS84", mini = 1, maxi = nrow(coords)/2)$MG
summary(object = res_mg)
```
Summary of the clusters obtained with a multivariate functional scan function (MPFSS, NPFSS, MDFFSS or MRBFSS).

Description

This function gives a summary of the clusters in a table.

Usage

```r
S3 method for class 'ResScanOutputMultiFunct'
summary(
 object,
 type_summ = "param",
 digits = 3,
 quantile.type = 7,
 only.MLC = FALSE,
 ...
)
```

Arguments

- `object` ResScanOutputMultiFunct. Output of a multivariate functional scan function (MPFSS, NPFSS, MDFFSS or MRBFSS).
- `type_summ` character. "param" or "nparam". "param" gives the mean and the sd for each variable in the clusters, outside, and globally and "nparam" gives the Q25, Q50 and Q75 quantiles for each variable in the clusters, outside, and globally.
- `digits` integer. Number of decimals in the output.
- `quantile.type` An integer between 1 and 9 (see function quantile). Ignored if `type_summ` is "param".
- `only.MLC` logical. Should we summarize only the MLC or all the significant clusters?
- `...` Further arguments to be passed to or from methods.

Value

No value returned, displays the results in the console.

Examples

```r
library(sp)
data("map_sites")
data("fmulti_data")
coords <- coordinates(map_sites)
```
res_npfss <- SpatialScan(method = "NPFSS", data = fmulti_data, sites_coord = coords, 
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

summary(object = res_npfss, type_summ = "nparam")

---

summary.ResScanOutputUni

*Summary of the clusters obtained with a univariate scan function (UG or UNP).*

**Description**

This function gives a summary of the clusters in a table.

**Usage**

```r
S3 method for class 'ResScanOutputUni'
summary(
 object,
 type_summ = "param",
 digits = 3,
 quantile.type = 7,
 only.MLC = FALSE,
 ...
)
```

**Arguments**

- `object`: ResScanOutputUni. Output of a univariate scan function (UG or UNP).
- `type_summ`: character. "param" or "nparam". "param" gives the mean and the sd for each variable in the clusters, outside, and globally and "nparam" gives the Q25, Q50 and Q75 quantiles for each variables in the clusters, outside, and globally.
- `digits`: integer. Number of decimals in the output.
- `quantile.type`: An integer between 1 and 9 (see function quantile). Ignored if type_summ is "param".
- `only.MLC`: logical. Should we summarize only the MLC or all the significant clusters?
- `...`: Further arguments to be passed to or from methods.

**Value**

No value returned, displays the results in the console.
**Examples**

```r
library(sp)
data("map_sites")
data("multi_data")
uni_data <- multi_data[,1]
coords <- coordinates(map_sites)
res_unp <- SpatialScan(method = "UNP", data=uni_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)$UNP

summary(object = res_unp, type_summ = "nparam")
```

---

**summary.ResScanOutputUniFunct**

Summary of the clusters obtained with a univariate functional scan function (PFSS, NPFSS, DFFSS or URBFSS).

**Description**

This function gives a summary of the clusters in a table

**Usage**

```r
S3 method for class 'ResScanOutputUniFunct'
summary(
 object,
 type_summ = "param",
 digits = 3,
 quantile.type = 7,
 only.MLC = FALSE,
 ...
)
```

**Arguments**

- **object**  
  ResScanOutputUniFunct. Output of a univariate functional scan function (PFSS, NPFSS, DFFSS or URBFSS).
- **type_summ**  
  character. "param" or "nparam". "param" gives the mean and the sd for each variable in the clusters, outside, and globally and "nparam" gives the Q25, Q50 and Q75 quantiles for each variables in the clusters, outside, and globally.
- **digits**  
  integer. Number of decimals in the output.
- **quantile.type**  
  An integer between 1 and 9 (see function quantile). Ignored if type_summ is "param"
- **only.MLC**  
  logical. Should we summarize only the MLC or all the significant clusters?
- **...**  
  Further arguments to be passed to or from methods.
transform_data

Value

No value returned, displays the results in the console

Examples

```r
library(sp)
data("map_sites")
data("funi_data")
coords <- coordinates(map_sites)

res_npfss <- SpatialScan(method = "NPFSS", data = funi_data, sites_coord = coords,
 system = "WGS84", mini = 1, maxi = nrow(coords)/2)$NPFSS

summary(object = res_npfss, type_summ = "nparam")
```

transform_data  

Computation of the multivariate functional ranks

Description

This function computes the multivariate ranks of the data for each observation time

Usage

```r
transform_data(data)
```

Arguments

data  
List. List of the data, each element of the list corresponds to a site (or an individual), each row corresponds to a variable and each column represents an observation time.

Value

List
**UG scan procedure**

**Description**

This function computes the UG (Univariate Gaussian scan statistic).

**Usage**

```r
UG(data, MC = 999, typeI = 0.05, initialization, permutations)
```

**Arguments**

- `data` vector. Vector of the data, each element corresponds to a site (or an individual if the observations are by individuals and not by sites).
- `MC` numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
- `typeI` numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than `typeI`. By default 0.05.
- `initialization` list. Initialization for the scan procedure (see `InitScan` for more details).
- `permutations` matrix. Indices of permutations of the data.

**Value**

An object of class `ResScanOutputUni`.

**References**


---

**uni_fWMW**

*Index for the NPFSS scan procedure (univariate functional case)*

**Description**

This function returns the index we want to maximize on the set of potential clusters, for each potential cluster.

**Usage**

```r
uni_fWMW(signs, matrix_clusters)
```
### Arguments

- **signs**: numeric matrix. Matrix of signs of the data, the rows correspond to the sites (or the individuals) and each column represents an observation time.

- **matrix_clusters**: numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

### Value

numeric vector.

---

#### uni_signs_matrix

*Computation of the matrix of signs*

---

### Description

This function returns the matrix of signs of the data.

### Usage

`uni_signs_matrix(data)`

### Arguments

- **data**: numeric matrix. Matrix of the data, the rows correspond to the sites (or the individuals) and each column represents an observation time.

### Value

numeric matrix.

---

#### UNP

*UNP scan procedure*

---

### Description

This function computes the UNP (Univariate Nonparametric scan statistic).

### Usage

`UNP(data, MC = 999, typeI = 0.05, initialization, permutations)`
**URBFSS**

**Arguments**

- **data**
  - Vector of the data, each element corresponds to a site (or an individual if the observations are by individuals and not by sites).

- **MC**
  - Numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.

- **typeI**
  - Numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.

- **initialization**
  - List. Initialization for the scan procedure (see `InitScan` for more details).

- **permutations**
  - Matrix. Indices of permutations of the data.

**Value**

An object of class `ResScanOutputUni`.

**References**


---

**URBFSS**  
**URBFSS scan procedure**

**Description**

This function computes the URBFSS (Univariate Rank-Based Functional scan statistic).

**Usage**

```r
URBFSS(
 data,
 MC = 999,
 typeI = 0.05,
 nbCPU = 1,
 times = NULL,
 initialization,
 permutations
)
```

**Arguments**

- **data**
  - Matrix. Matrix of the data, the rows correspond to the sites (or to the individuals if the observations are by individuals and not by sites) and each column represents an observation time. The times must be the same for each site/individual.

- **MC**
  - Numeric. Number of Monte-Carlo permutations to evaluate the statistical significance of the clusters. By default: 999.
typeI numeric. The desired type I error. A cluster will be evaluated as significant if its associated p-value is less than typeI. By default 0.05.
nbCPU numeric. Number of CPU. If nbCPU > 1 parallelization is done. By default: 1.
times numeric. Times of observation of the data. By default NULL.
initialization list. Initialization for the scan procedure (see InitScan for more details).
permutations matrix. Indices of permutations of the data.

Value
An object of class ResScanOutputUniFunct.

See Also
MRBFSS which is the multivariate version of the URBFSS

wmw_uni

Index for the UNP scan procedure

Description
This function returns the index we want to maximize on the set of potential clusters, for each potential cluster, and each permutation

Usage
wmw_uni(rank_data, matrix_clusters)

Arguments
rank_data matrix. Matrix of the ranks of the data for all permutations. Each column corresponds to a permutation and each row corresponds to a site or an individual.
matrix_clusters numeric matrix. Matrix in which each column represents a potential cluster. It is the result of the "clusters" function.

Value
numeric matrix.
Index

* datasets
  fmulti_data, 9
  funi_data, 9
  map_sites, 11
  multi_data, 17

* package
  HDSpatialScan-package, 3
  HDSpatialScan (HDSpatialScan-package), 3
  HDSpatialScan-package, 3

clusters, 4

DFFSS, 5, 44
dfree, 6
dfree_index_multi, 7

FinScan, 7
fmulti_data, 9
funi_data, 9

HDSpatialScan (HDSpatialScan-package), 3
HDSpatialScan-package, 3

InitScan, 6, 10, 12–16, 20, 22, 53, 55, 56

map_sites, 11
MDFFSS, 12, 44
MG, 13, 44
MNP, 14, 44
MPFSS, 15, 45
MRBFSS, 16, 44, 56
multi_data, 17
multi_fWMW, 17
multi_gaussian, 18
multi_signs_matrix, 18
multi_WMW, 19

non_overlap, 19

NPFSS, 20, 44

permutate, 21
PFSS, 21, 44
plot.ResScanOutput, 22
plot_map, 30
plot_map2, 31
plot_schema, 32
plotCurves, 23
plotCurves.ResScanOutputMultiFunct, 24,
  24
plotCurves.ResScanOutputUniFunct, 24,
  25
plotSummary, 26
plotSummary.ResScanOutputMulti, 27, 27
plotSummary.ResScanOutputMultiFunct,
  27, 28
plotSummary.ResScanOutputUniFunct, 27,
  29
pointwise_dfree, 32
pointwise_wmw_multi, 33
pointwise_wmw_uni, 34
post_filt_area, 34
post_filt_nb_sites, 35
post_filt_radius, 36
print.ResScanOutput, 36

ResScanOutput, 37, 47
ResScanOutputMulti, 38, 47
ResScanOutputMultiFunct, 40, 47
ResScanOutputUni, 41, 47
ResScanOutputUniFunct, 42, 47

SpatialScan, 44
summary.ResScanOutputMulti, 47
summary.ResScanOutputMultiFunct, 49
summary.ResScanOutputUni, 50
summary.ResScanOutputUniFunct, 51

transform_data, 52

UG, 44, 53
uni_fWMW, 53
uni_signs_matrix, 54
UNP, 44, 54

57
URBFSS, 44, 55

wmw_uni, 56