Package ‘GlmSimulatoR’

February 22, 2021

Type Package
Title Creates Ideal Data for Generalized Linear Models
Version 0.2.4
Author Greg McMahan
Maintainer Greg McMahan <gmcmacran@gmail.com>
Description Have you ever struggled to find ``good data'' for a generalized linear model? Would you like to test how quickly statistics converge to parameters, or learn how picking different link functions affects model performance? This package creates ideal data for both common and novel generalized linear models so your questions can be empirically answered.
License GPL-3
Encoding UTF-8
LazyData true
Imports assertthat, stats, purrr, stringr, dplyr, statmod, magrittr, MASS, tweedie, ggplot2, cplm
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown, covr
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-22 15:20:02 UTC

R topics documented:

simulate_gaussian .. 2

Index 6
simulate_gaussian

Create ideal data for a generalized linear model.

Description

Create ideal data for a generalized linear model.

Usage

```r
simulate_gaussian(
  N = 10000,
  link = "identity",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 1
)

simulate_binomial(
  N = 10000,
  link = "logit",
  weights = c(0.1, 0.2),
  xrange = 1,
  unrelated = 0
)

simulate_gamma(
  N = 10000,
  link = "inverse",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 0.05
)

simulate_poisson(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  xrange = 1,
  unrelated = 0
)

simulate_inverse_gaussian(
  N = 10000,
  link = "1/mu^2",
  weights = 1:3,
)```
simulate_gaussian

  xrange = 1,
  unrelated = 0,
  ancillary = 0.3333
  
  simulate_negative_binomial(
    N = 10000,
    link = "log",
    weights = c(0.5, 1),
    xrange = 1,
    unrelated = 0,
    ancillary = 1
  )

  simulate_tweedie(
    N = 10000,
    link = "log",
    weights = 0.02,
    xrange = 1,
    unrelated = 0,
    ancillary = 1.15
  )

Arguments

N        Sample size. (Default: 10000)
link     Link function. See family for details.
weights  Betas in glm model.
xrange   range of x variables.
unrelated Number of unrelated features to return. (Default: 0)
ancillary Ancillary parameter for continuous families and negative binomial. See details.

Details

For many families, it is possible to pick weights that cause inverse link(X * weights) to be mathematically invalid. For example, the log link for binomial regression defines P(Y=1) as exp(X * weights) which can be above one. If this happens, the function will error with a helpful message.

The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In simulate_gaussian(link = "inverse", weights = 1:3), the model is (1/Y) = 1*X1 + 2*X2 + 3*X3 + 3.

links

• gaussian: identity, log, inverse
• binomial: logit, probit, cauchit, loglog, cloglog, log, logc, identity
• gamma: inverse, identity, log
• poisson: log, identity, sqrt
• inverse gaussian: 1/mu^2, inverse, identity, log
• negative binomial: log, identity, sqrt
• tweedie: log, identity, sqrt, inverse

The default link is the first link listed for each family.

ancillary parameter
• gaussian: standard deviation
• binomial: N/A
• gamma: scale parameter
• poisson: N/A
• inverse gaussian: dispersion parameter
• negative binomial: theta.
• tweedie: rho

Value
A tibble with a response variable and predictors.

Examples
library(GlmSimulatoR)
library(ggplot2)
library(MASS)

# Do glm and lm estimate the same weights? Yes
set.seed(1)
simdata <- simulate_gaussian()
linearModel <- lm(Y ~ X1 + X2 + X3, data = simdata)
glmModel <- glm(Y ~ X1 + X2 + X3, data = simdata, family = gaussian(link = "identity"))
summary(linearModel)
summary(glmModel)
rm(linearModel, glmModel, simdata)

# If the link is not identity, will the response
# variable still be normal? Yes
set.seed(1)
simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))

ggplot(simdata, aes(x = Y)) +
  geom_histogram(bins = 30)
rm(simdata)

# Is AIC lower for the correct link? For ten thousand data points, depends on seed!
set.seed(1)
simdata <- simulate_gaussian(N = 10000, link = "inverse", weights = 1)
glmCorrectLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "inverse"))
glmWrongLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "identity"))
summary(glmCorrectLink)$aic
summary(glmWrongLink)$aic
rm(simdata, glmCorrectLink, glmWrongLink)
# Does a stepwise search find the correct model for logistic regression? Yes
# 3 related variables. 3 unrelated variables.
set.seed(1)
simdata <- simulate_binomial(N = 10000, link = "logit", weights = c(.3, .4, .5), unrelated = 3)

scopeArg <- list(
  lower = Y ~ 1,
  upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3
)

startingModel <- glm(Y ~ 1, data = simdata, family = binomial(link = "logit"))
glmModel <- stepAIC(startingModel, scopeArg)
summary(glmModel)
rm(simdata, scopeArg, startingModel, glmModel)

# When the response is a gamma distribution, what does a scatter plot between X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
  geom_point()
rm(simdata)
Index

family, 3

simulate_binomial(simulate_gaussian), 2
simulate_gamma(simulate_gaussian), 2
simulate_gaussian, 2
simulate_inverse_gaussian
  (simulate_gaussian), 2
simulate_negative_binomial
  (simulate_gaussian), 2
simulate_poisson(simulate_gaussian), 2
simulate_tweedie(simulate_gaussian), 2