BugReports https://github.com/Mthrun/GeneralizedUmatrix/issues

Author Michael Thrun [aut, cre, cph] (<https://orcid.org/0000-0001-9542-5543>), Felix Pape [ctb, ctr], Tim Schreier [ctb, ctr], Luis Winckelman [ctb, ctr], Alfred Ultsch [ths]

Repository CRAN

Date/Publication 2021-01-12 19:30:02 UTC

R topics documented:

GeneralizedUmatrix-package .. 2
addRowWiseC .. 5
CalcUstarmatrix .. 5
Chainlink ... 6
DefaultColorSequence ... 7
Delta3DWeightsC .. 7
EsonNeuronsAsList ... 8
ExtendToroidalUmatrix ... 8
GeneralizedUmatrix ... 9
GeneratePmatrix .. 11
ListAsEsonNeurons ... 12
NormalizeUmatrix ... 13
plotTopographicMap .. 14
sESOM4BMUs ... 17
setdiffMatrix .. 18
TopviewTopographicMap .. 19
trainstepC ... 19
UmatrixColormap .. 21
upscaleUmatrix ... 22
XYcoords2LinesColumns .. 23

Index 24

GeneralizedUmatrix-package

Credible Visualization for Two-Dimensional Projections of Data

Description

Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] <DOI: 10.1007/978-3-658-20540-9>. This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By
means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-
dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection
Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-
3-658-20540-9> and the main algorithm called simplified self-organizing map for dimensionality

Details

For a brief introduction to GeneralizedUmatrix please see the vignette Introduction of the General-
ized Umatrix Package.

For further details regarding the generalized Umatrix see [Thrun, 2018], chapter 4-5, or [Thrun/Ultsch,
2020].

If you want to verify your clustering result externally, you can use Heatmap or SilhouettePlot of
the CRAN package DataVisualizations.

Index of help topics:

CalcUstarmatrix Calculate the U*matrix for a given Umatrix and
Pmatrix.
Chainlink Chainlink is part of the Fundamental Clustering
Problem Suit (FCPS) [Thrun/Ultsch, 2020].
DefaultColorSequence Default color sequence for plots
Delta3DWeightsC intern function
EsomNeuronsAsList Converts wts data (EsomNeurons) into the list
form
ExtendToroidalUmatrix Extend Toroidal Umatrix
GeneralizedUmatrix Generalized U-Matrix for Projection Methods
published in [Thrun/Ultsch, 2020]

GeneralizedUmatrix-package Credible Visualization for Two-Dimensional
Projections of Data
GeneratePmatrix Generates the P-matrix
ListAsEsomNeurons Converts List to WTS
NormalizeUmatrix Normalize Umatrix
TopviewTopographicMap Topview of Topographic Map ind 2D
UmatrixColormap U-Matrix colors
XYcoords2LinesColumns XYcoords2LinesColumns(X,Y) Converts points
given as x(i),y(i) coordinates to integer
coordinates Columns(i),Lines(i)
addRowWiseC intern function
plotTopographicMap Visualizes the Generalized U-matrix in 3D
sESOM4BMUs simplified ESOM
setdiffMatrix setdiffMatrix shortens Matrix2Curt by those
rows that are in both matrices.
trainstepC internal function for s-esom
upscaleUmatrix Upscale a Umatrix grid

Author(s)

Michal Thrun
Maintainer: Michael Thrun <mthrun@informatik.uni-marburg.de>

References

Examples

data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods
#see DatabionicSwarm for projection method without parameters or objective function
ProjectedPoints=DatabionicSwarm::Pswarm(Data)$ProjectedPoints
resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
plotTopographicMap(resUmatrix$Umatrix,resUmatrix$Bestmatches,Cls)
##Interactive Island Generation
from a tiled Umatrix (toroidal assumption)
Not run:
Imx = ProjectionBasedClustering::interactiveGeneralizedUmatrixIsland(resUmatrix$Umatrix,
resUmatrix$Bestmatches)
plotTopographicMap(resUmatrix$Umatrix,
resUmatrix$Bestmatches, Imx = Imx)

End(Not run)
#External Verification
Not run:
DataVisualizations::Heatmap(Data,Cls)
#if spherical cluster structure
DataVisualizations::SilhouettePlot(Data,Cls)
End(Not run)
addRowWiseC

Description

Adds the Vector DataPoint to every row of the matrix WeightVectors

Usage

addRowWiseC(WeightVectors, DataPoint)

Arguments

- **WeightVectors**: WeightVectors. n weights with m components each
- **DataPoint**: Vector with m components

Value

WeightVectors[1:m, 1:n]

CalcUstarmatrix

*Calculate the U*matrix for a given Umatrix and Pmatrix.*

Description

Calculate the U*matrix for a given Umatrix and Pmatrix.

Arguments

- **Umatrix[1:Lines, 1:Column]**: Local averages of distances at each point of the trainedGridWts[1:Lines, 1:Column, 1:variables] of ESOM or other SOM of same format
- **Pmatrix[1:Lines, 1:Column]**: Local densities at each point of the trainedGridWts[1:Lines, 1:Column, 1:variables] of ESOM or other SOM of same format

Value

UStarMatrix[1:Lines, 1:Column]

Author(s)

Michael Thrun

References

Chainlink

Chainlink is part of the Fundamental Clustering Problem Suit (FCPS) [Thrun/Ultsch, 2020].

Description

linear not separable dataset of two interwined chains.

Usage

data("Chainlink")

Details

Size 1000, Dimensions 3, stored in Chainlink$Data
Two clusters, stored in Chainlink$Cls
Published in [Ultsch et al.,1994] in German and [Ultsch 1995] in English.

References

Examples

data(Chainlink)
str(Chainlink)

Not run:
require(DataVisualizations)
DataVisualizations:::Plot3D(Chainlink$Data,Chainlink$Cls)

End(Not run)
DefaultColorSequence

Default color sequence for plots

Description

Defines the default color sequence for plots made within the Projections package.

Usage

```r
data("DefaultColorSequence")
```

Format

A vector with 562 different strings describing colors for plots.

Delta3DWeightsC

intern function

Description

Thr implementation of the main formula of SOM, ESOM, sESOM algorithms.

Usage

```r
Delta3DWeightsC(vx,Datasample)
```

Arguments

- `vx` array of weights [1:Lines,1:Columns,1:Weights]
- `Datasample` NumericVector of one Datapoint[1:n]

Details

Intern function in case of `ComputeInR==FALSE` in `GeneralizedUmatrix`

Value

Modified array of weights [1:Lines,1:Columns,1:Weights]

Author(s)

Michael Thrun

References

EsomNeuronsAsList

Converts wts data (EsomNeurons) into the list form

Description

Converts wts data into the list form

Arguments

EsomNeurons[1:Lines, 1:Columns, 1:Variables]

 high dimensional array with grid positions in the first two dimensions

Details

One could describe this function as a transformation or a special case of wide to long format, see also ListAsEsomNeurons

Value

TrainedNeurons[1:(Lines*Columns),1:Variables]

 List of Weights as a matrix (not list like in R) as matrix or two dimensional array

Author(s)

Michael Thrun, Florian Lerch

References

Ultsch, A. Maps for the visualization of high-dimensional data spaces. in Proc. Workshop on Self organizing Maps. 2003.

ExtendToroidalUmatrix

Extend Toroidal Umatrix

Description

Extends Umatrix by toroidal continuation of the given Umatrix defined by ExtendBorders in all four directions.

Usage

ExtendToroidalUmatrix(Umatrix, Bestmatches, ExtendBorders)
Generalized U-matrix

Arguments

- **Umatrix** [1:Lines,1:Columns] Matrix of Umatrix Heights
- **Bestmatches** [1:n, 1:2] Matrix with positions of Bestmatches for n datapoints, first column is the position in Lines and second column in Columns
- **ExtendBorders** number of lines and columns the umatrix should be extended with

Details

Function assumes that U-matrix is not planar (has no borders), i.e. is toroidal, and not tiled. Bestmatches are moved to new positions accordingly. Example is shown in conference talk of [Thrun et al., 2020].

Value

- **Bestmatches** Array with positions of Bestmatches

Note

Currently can be only used if untiled U-Matrix (the default) is presented, but 4-tiled U-matrix does not work.

Author(s)

Michael Thrun

References

Examples

#ToDo

Description

Usage

```r
GeneralizedUmatrix(Data, ProjectedPoints,
PlotIt=FALSE, Cls=NULL, Toroid=TRUE, Tiled=FALSE, ComputeInR=FALSE)
```

Arguments

- **Data**

 `[1:n,1:d]` array of data: n cases in rows, d variables in columns

- **ProjectedPoints**

 `[1:n,2]` matrix containing coordinates of the Projection: A matrix of the fitted configuration.

- **PlotIt**

 Optional, bool, default=FALSE, if =TRUE: U-Marix of every current Position of Databots will be shown. However, the amount of details shown will be less than in `plotTopographicMap`.

- **Cls**

 Optional, For plotting, see `plotUmatrix` in package Umatrix

- **Toroid**

 Optional, Default=TRUE,
 ==FALSE planar computation with borders defined by projection method
 ==TRUE: toroid borderless (toroidal) computation, the four borders defined by projection method are ignored.

- **Tiled**

 Optional, For plotting see `plotUmatrix` in package Umatrix

- **ComputeInR**

 Optional, =T: Rcode, =F Cpp Code

Details

Introduced first in the PhD thesis in [Thrun, 2018, p.46]. Furthermore the two parts of the work were peer-reviewed and published in [Ultsch/Thrun, 2017, Thrun/Ultsch, 2020].

Value

List with

- **Umatrix**

 `[1:Lines,1:Columns] [1:Lines,1:Columns]` Umatrix to be plotted, numerical matrix storing the U-heights, see [Thrun, 2018] for definition.

- **EsomNeurons**

 `[1:Lines,1:Columns,1:weights]` 3-dimensional numeric array (wide format), not wts (long format)

- **Bestmatches**

 `[1:n,1:2]` Positions of GridConverted Projected Points on the Umatrix to the predefined Grid by Lines and Columns, First Columns has the content of the Line No and second Column of the Column number.

- **gplotres**

 output of ggplot2

Author(s)

Michael Thrun
References

Examples

data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
Not run:
Stress = ProjectionBasedClustering::KruskalStress(InputDistances, as.matrix(dist(ProjectedPoints)))
End(Not run)

resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
plotTopographicMap(resUmatrix$Umatrix,resUmatrix$Bestmatches,Cls)

GeneratePmatrix

Generates the P-matrix

Description

Generates a P-matrix too visualize only density based structures of high-dimensional data.

Arguments

Data [1:n,1:d], A [n,d] matrix containing the data
EsomNeurons [1:Lines,Columns,1:Weights] 3D array of weights given by ESOM or sESOM algorithm.
ListAsEsomNeurons

Radius
The radius for measuring the density within the hypersphere.

PlotIt
If set the Pmatrix will also be plotted

... If set the Pmatrix will also be plotted

Details
To set the Radius the ABCanalysis of high-dimensional distances can be used [Ultsch/Lötsch, 2015]. For a detailed definition and equation of automated density estimation (Radius) see Thrun et al. 2016.

Value
PMatrix[1:Lines,1:Columns]

Author(s)
Michael Thrun

References

ListAsEsomNeurons Converts List to WTS

Description
Converts wts data in list form into a 3 dimensional array

Arguments
wts_list[1:(Lines*Columns),1:Variables]
Matrix with weights in the 2nd dimension(not list() like in R)

Lines Lines/Height of the desired grid

Columns Columns/Width of the desired grid

Details
One could describe this function as a transformation or a special case of long to wide format, see also EsomNeuronsAsList
NormalizeUmatrix

Value

EsomNeurons[1:Lines,1:Columns,1:Variables]

3 dimensional array containing the weights of the neural grid. For a more general explanation see reference

Author(s)

Michael Thrun, Florian Lerch

References

NormalizeUmatrix Normalize Umatrix

Description

Normalizing the U-matrix using the abstact U-Matrix concept [Loetsch/Ultsch, 2014].

Usage

NormalizeUmatrix(Data, Umatrix, BestMatches)

Arguments

Data [1:n,1:d] numerical matrix of data with n cases and d variables

Umatrix [1:lines,1:Columns] matrix of U-heights

Details

see publication [Loetsch/Ultsch, 2014].

Value

Author(s)

Felix Pape, Michael Thrun

References

Examples

data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods

resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
Normalization
normalizedUmatrix=NormalizeUmatrix(Data,resUmatrix$Umatrix,resUmatrix$Bestmatches)
visualization
TopviewTopographicMap(GeneralizedUmatrix = normalizedUmatrix,resUmatrix$Bestmatches)

plotTopographicMap
Visualizes the Generalized U-matrix in 3D

Description

The generalized U-matrix is visualized as the topographic map with hypsometric tints. The topographic map represents high-dimensional distance and density-based structures in form of a 3D landscape.

Usage

plotTopographicMap(GeneralizedUmatrix, BestMatchingUnits,

Cls=NULL,ClsColors=NULL,Imx=NULL,Names=NULL,

BmSize=0.5,RenderingContourLines=TRUE,...)

Arguments

GeneralizedUmatrix
(1:Lines,1:Columns), [1:Lines,1:Columns] Umatrix to be plotted, numerical matrix storing the U-heights, see [Thrun, 2018] for definition.

BestMatchingUnits
(1:n,1:2), Positions of bestmatches to be plotted as spheres onto the topographic map

Cls
(1:n), numerical vector of classification of k clusters, one label for each best-match at that given point

ClsColors
Vector of colors that will be used to colorize the different clusters, default is GeneralizedUmatrix::DefaultColorSequence
plotTopographicMap

Imx a mask (Imx) that will be used to cut out the umatrix
Names If set: \[1:k\] character vector naming the k clusters for the legend. In this
 case, further parameters with the possibility to adjust are: NamesCex: (size);
 NamesPosition: Legend position; NamesTitle: title of legend; NamesColors:
 colors if ClsColors are not default (NULL), etc.
BmSize size(diameter) of the points in the visualizations. The points represent the Best-
 MatchingUnits
RenderingContourLines
 FALSE: disables plotting of contour lines resulting in a much faster plot.
 ... Besides the legend/names parameter the list of further parameters, use only of
 you know what you are doing:
 Tiled Should the Umatrix be drawn 4times?
 ShowAxis shall the axis be shown?
 NoLevels number of contour lines
 ExtendBorders scalar, extends Umatrix by toroidal continuation of the given
 Umatrix
 Colormap in the case of density p matrix...
 title same as main
 main same as title
 sub same as in plot
 xlab same as in plot
 ylab same as in plot
 zlab same as in plot
 NamesPosition same as in bgplot3d
 NamesColors same as col in bgplot3d
 NamesCex same as cex in bgplot3d
 NamesTitle same as title in bgplot3d
 NamesPch same as pch in bgplot3d

Details

The visualization of this function is a topographic map with hypsometric tints (Thrun, Lerch,
L?tsch, & Ultsch, 2016). "Hypsometric tints are surface colors that represent ranges of elevation
(Patterson and Kelso 2004). Here, contour lines are combined with a specific color scale. The color
scale is chosen to display various valleys, ridges, and basins: blue colors indicate small distances
(sea level), green and brown colors indicate middle distances (low hills), and white colors indicate
vast distances (high mountains covered with snow and ice). Valleys and basins represent clusters,
and the watersheds of hills and mountains represent the borders between clusters. In this 3D land-
 scape, the borders of the visualization are cyclically connected with a periodicity (L,C). The number
of clusters can be estimated by the number of valleys of the visualization. The clustering is valid
if mountains do not partition clusters indicated by colored points of the same color and colored
regions of points (see examples in section 4.1 and 4.2)."[Thrun/Ultsch, 2020].

A central problem in clustering is the correct estimation of the number of clusters. This is addressed
by the topographic map which allows assessing the number of clusters as the number of valleys
(Thrun et al., 2016). Please see chapter 5 of [Thrun, 2018] for further details.
Value

An object of class "htmlwidget" in mode invisible, please rglwidget for details.

Note

First version of algorithm was partly based on the Umatrix package.

Author(s)

Michael Thrun

References

See Also

GeneralizedUmatrix

Examples

data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods
resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
visualization
plotTopographicMap(GeneralizedUmatrix = resUmatrix$Umatrix,resUmatrix$Bestmatches)

Open window in specific resolution
#relevant if Names given
library(rgl)
r3Ddefaults$windowRect = c(0,0,1200,1200)
plotTopographicMap(GeneralizedUmatrix = resUmatrix$Umatrix,resUmatrix$Bestmatches)
sESOM4BMUs

Not run:
To save as STL for 3D printing
rgl::writeSTL("GenerelizedUmatrix_3d_model.stl")

Save the visualization as a picture with
library(rgl)
rgl.snapshot('test.png')

End(Not run)

Save interactive html file
Not run:
widgets=plotTopographicMap(GeneralizedUmatrix = resUmatrix$Umatrix,resUmatrix$Bestmatches)
if(requireNamespace("htmlwidgets"))
 htmlwidgets::saveWidget(widgets,file = "interactiveTopographicMap.html")

End(Not run)

sESOM4BMUs

simplified ESOM

Description

Internfunction for the simplified ESOM Algorithmus [Thrun/Ultsch, 2020] for fixed BestMatchingUnits

Usage

sESOM4BMUs(BMUs, Data, esom, toroid, CurrentRadius, ComputeInR)

Arguments

- **BMUs** [1:Lines,1:Columns], BestMAtingUnits generated by ProjectedPoints2Grid()
- **Data** [1:n,1:d] array of data: n cases in rows, d variables in columns
- **esom** [1:Lines,1:Columns,1:weights] array of NeuronWeights, see ListAsEsomNeurons()
- **toroid** TRUE/FALSE - topology of points
- **CurrentRadius** number betweeen 1 to x
- **ComputeInR** =T: Rcode, =F Cpp Codenumber betweeen 1 to x

Details

Algorithm is described in [Thrun, 2018, p. 48, Listing 5.1].
setdiffMatrix

Value
esom array [1:Lines,1:Columns,1:d], d is the dimension of the weights, the same as in the ESOM algorithm. modified esom neurons regarding a predefined neighborhood defined by a radius

Note
Usually not for separated usage!

Author(s)
Michael Thrun

References

See Also
GeneralizedUmatrix

Description
setdiffMatrix shortens Matrix2Curt by those rows that are in both matrices.

Arguments
Matrix2Curt[n,k] matrix, which will be shortened by x rows
Matrix2compare[m,k] matrix whose rows will be compared to those of Matrix2Curt x rows in Matrix2compare equal rows of Matrix2Curt (order of rows is irrelevant). Has the same number of columns as Matrix2Curt.

Value
V$CurtedMatrix[n-x,k] Shortened Matrix2Curt

Author(s)
Michael Thrun with the help of Catharina Lippmann
TopviewTopographicMap

Topview of Topographic Map ind 2D

Description

Fast Visualization of the Generalized U-matrix in 2D which visualizes high-dimensional distance and density based structures of the combination two-dimensional scatter plots (projections) with high-dimensional data.

Usage

TopviewTopographicMap(GeneralizedUmatrix, BestMatchingUnits,
Cls, ClsColors = NULL, Imx = NULL, Names = NULL, BmSize = 6, ...)

Arguments

GeneralizedUmatrix
(1:Lines,1:Columns), [1:Lines,1:Columns] Umatrix to be plotted, numerical matrix storing the U-heights, see [Thrun, 2018] for definition.

BestMatchingUnits
(1:n,1:2), Positions of bestmatches to be plotted onto the Umatrix

Cls
(1:n), numerical vector of classification of k classes for the bestmatch at the given point

ClsColors
Vector of colors that will be used to colorize the different classes

Imx
a mask (Imx) that will be used to cut out the umatrix

Names
If set: [1:k] character vector naming the k classes for the legend. In this case, further parameters with the possibility to adjust are: NamesCex: (size); NamesPosition: Legend position; NamesTitle: title of legend; NamesColors: colors if ClsColors are not default (NULL).

BmSize
size(diameter) of the points in the visualizations. The points represent the Best-MatchingUnits

... Tiled Should the Umatrix be drawn 4times?
main set specific title in plot

ExtendBorders scalar, extends Umatrix by toroidal continuation of the given Umatrix

Details

Please see plotTopographicMap. This function is currently still experimental because not all functionality is fully tested yet.

Value

plotly handler
trainstepC

trainstepC

internal function for s-esom

Description

Does the training for fixed bestmatches in one epoch of the sESOM.

Usage

trainstepC(vx, vy, DataSampled, BMUsampled, Lines, Columns, Radius, toroid)
Arguments

vx array (1:Lines,1:Columns,1:Weights), WeightVectors that will be trained, internally transformed from NumericVector to cube
vy array (1:Lines,1:Columns,1:2), meshgrid for output distance computation
DataSampled NumericMatrix, n cases shuffled Dataset[1:n,1:d] by sample
BMUsampled NumericMatrix, n cases shuffled BestMatches[1:n,1:2] by sample in the same way as DataSampled
Lines double, Height of the grid
Columns double, Width of the grid
Radius double, The current Radius that should be used to define neighbours to the bm
toroid bool, Should the grid be considered with cyclically connected borders?

Details

Algorithm is described in [Thrun, 2018, p. 48, Listing 5.1].

Value

WeightVectors, array[1:Lines,1:Columns,1:weights] with the adjusted Weights

Note

Usually not for separated usage!

Author(s)

Michael Thrun

References

UmatrixColormap U-Matrix colors

Description

Defines the default color sequence for plots made for Umatrix

Usage

data("UmatrixColormap")

Format

Returns the vectors for a (heat) colormap.
upscaleUmatrix Upscale a Umatrix grid

Description

Use linear interpolation to increase the size of a umatrix. This can be used to produce nicer ggplot plots in plotTopographicMap and is going to be used for further normalization of the umatrix.

Usage

upscaleUmatrix(Umatrix, Factor = 2,BestMatches, Imx)

Arguments

Umatrix The umatrix which should be upscaled
BestMatches The BestMatches which should be upscaled
Factor Optional: The factor by which the axes will be scaled. Be aware that the size of the matrix will grow by Factor squared. Default: 2
Imx Optional: Island cutout of the umatrix. Should also be scaled to the new size of the umatrix.

Value

A List consisting of:

Umatrix A matrix representing the upscaled umatrix.
BestMatches If BestMatches was given as parameter: The rescaled BestMatches for an island cutout. Otherwise: NULL
Imx If Imx was given as parameter: The rescaled matrix for an island cutout. Otherwise: NULL

Author(s)

Felix Pape
XYcoords2LinesColumns

Description

XYcoords2LinesColumns(X,Y) Converts points given as x(i),y(i) coordinates to integer coordinates Columns(i),Lines(i)

Arguments

- **X(1:n), Y(1:n)** coordinates: x(i),y(i) is the i-th point on a plane
- **minNeurons** minimal size of the corresponding grid i.e max(Lines)*max(Columns) >= MinGridSize, default MinGridSize = 4096 defined by the number of neurons
- **MaxDifferentPoints** TRUE: the discretization error is minimal FALSE: number of Lines and Columns is minimal
- **PlotIt** Plots the result

Details

Details are written down in [Thrun, 2018, p. 47].

Value

GridConvertedPoints[1:Columns,1:Lines,2] IntegerPositions on a grid corresponding to x,y

Author(s)

Michael Thrun

References

Examples

data("Chainlink")
Data=Chainlink$Data
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
GridConvertedPoints=XYcoords2LinesColumns(ProjectedPoints[,1],ProjectedPoints[,2],PlotIt=FALSE)
Index

* AU-Matrix
 NormalizeUmatrix, 13
* Chainlink
 Chainlink, 6
* DR
 GeneralizedUmatrix-package, 2
* DimensionalityReduction
 GeneralizedUmatrix-package, 2
* ESOM
 sESOM4BMUs, 17
* Extend Toroidal U-matrix
 ExtendToroidalUmatrix, 8
* Extend Toroidal Umatrix
 ExtendToroidalUmatrix, 8
* ExtendToroidalUmatrix
 ExtendToroidalUmatrix, 8
* FCPS
 Chainlink, 6
* Generalized U-matrix
 GeneralizedUmatrix, 9
 plotTopographicMap, 14
 TopviewTopographicMap, 19
 upscaleUmatrix, 22
* GeneralizedUmatrix
 GeneralizedUmatrix, 9
 GeneralizedUmatrix-package, 2
 plotTopographicMap, 14
 TopviewTopographicMap, 19
* GeneratePswarmVisualization
 sESOM4BMUs, 17
* P-Matrix
 GeneratePmatrix, 11
* P-matrix
 GeneratePmatrix, 11
* Pmatrix
 GeneratePmatrix, 11
* Projection
 GeneralizedUmatrix-package, 2
* U*-Matrix
 CalcUstarmatrix, 5
* U*-matrix
 CalcUstarmatrix, 5
* U*matrix
 CalcUstarmatrix, 5
* U-Matrix
 GeneralizedUmatrix-package, 2
 plotTopographicMap, 14
 TopviewTopographicMap, 19
* U-matrix
 GeneralizedUmatrix-package, 2
 upscaleUmatrix, 22
* Umatrix
 ExtendToroidalUmatrix, 8
 GeneralizedUmatrix, 9
 GeneralizedUmatrix-package, 2
 plotTopographicMap, 14
 TopviewTopographicMap, 19
* Ustar-Matrix
 CalcUstarmatrix, 5
* Ustar-matrix
 CalcUstarmatrix, 5
* Ustarmatrix
 CalcUstarmatrix, 5
* Visualization
 GeneralizedUmatrix-package, 2
* abstract U-matrix
 NormalizeUmatrix, 13
* datasets
 Chainlink, 6
* map
 plotTopographicMap, 14
 TopviewTopographicMap, 19
* topographic map
 plotTopographicMap, 14
 TopviewTopographicMap, 19
 upscaleUmatrix, 22
* topographic
plotTopographicMap, 14
TopviewTopographicMap, 19

* visualization
 GeneralizedUmatrix, 9
 plotTopographicMap, 14
 TopviewTopographicMap, 19

addRowWiseC, 5

bgplot3d, 15
CalcUstarmatrix, 5
calcUstarmatrix (CalcUstarmatrix), 5
Chainlink, 6

DefaultColorSequence, 7
Delta3DWeightsC, 7

EsomNeuronsAsList, 8, 12
ExtendToroidalUmatrix, 8

GeneralizedUmatrix, 7, 9, 16, 18
GeneralizedUmatrix-package, 2
GeneratePmatrix, 11
getUmatrix4Projection
 (GeneralizedUmatrix), 9

list, 8
ListAsEsomNeurons, 8, 12

NormalizeUmatrix, 13

plot, 15
plotTopographicMap, 10, 14, 19, 20, 22

rglwidget, 16

sESOM4BMUs, 17
setdiffMatrix, 18

TopviewTopographicMap, 19
trainstepC, 20

UmatrixColormap, 21
upscaleUmatrix, 22

XYcoords2LinesColumns, 23