Package ‘FunnelPlotR’

November 30, 2020

Type Package
Title Funnel Plots for Comparing Institutional Performance
Version 0.3.2
Maintainer Chris Mainey <chris.mainey@uhb.nhs.uk>
Language en-GB
License MIT + file LICENSE
URL https://chrismainey.github.io/FunnelPlotR/,
https://github.com/chrismainey/FunnelPlotR
BugReports https://github.com/chrismainey/FunnelPlotR/issues
Encoding UTF-8
LazyData true
Imports dplyr, ggrepel, ggplot2, scales
RoxygenNote 7.1.1
Suggests testthat (>= 2.1.0), knitr, rmarkdown, COUNT, tidyr, covr, Cairo
VignetteBuilder knitr
NeedsCompilation no
Author Chris Mainey [aut, cre] (<https://orcid.org/0000-0002-3018-6171>),
Matthew Bass [ctb]
Repository CRAN
Date/Publication 2020-11-30 16:20:02 UTC
funnel_clean

R topics documented:

funnel_clean ... 2
funnel_grey .. 3
funnel_plot ... 3
limits .. 6
new_funnel_plot ... 7
outliers ... 7
phi ... 8
source_data .. 8
tau2 ... 8
validate_funnel_plot 9

Index

funnel_clean

funnel_clean A clean funnel plot theme

Description

A ggplot theme function for clean looking funnel plots. Try funnel_grey if you like the old one.

Usage

funnel_clean()

Value

a list of ggplot theme items

See Also

funnel_grey

Examples

Not run: funnel_plot(theme=funnel_clean())
funnel_grey

Description
A classic ggplot theme function for funnel plots. Try funnel_clean if you don’t like the grey background.

Usage
funnel_grey()

Value
a list of ggplot theme items

See Also
funnel_clean

Examples
Not run: funnel_plot(theme=funnel_grey())

funnel_plot
Funnel plots for comparing institutional performance

Description
An implementation of funnel plots for indirectly standardised ratios, as described by Spiegelhalter (2005) <https://doi.org/10.1002/sim.1970>. There are several parameters for the input, with the assumption that you will want smooth, overdispersed, funnel control limits. Limits may be inflated for overdispersion based on the methods of DerSimonian & Laird (1986), buy calculating a between unit standard deviation (τ) and constructing an additive random effects models, originally used for meta-analyses of clinical trials data.

Usage
funnel_plot(
 numerator,
 denominator,
 group,
 data_type = "SR",
 limit = 99,
 label_outliers = TRUE,
 Poisson_limits = FALSE,
OD_adjust = TRUE,
sr_method = "SHMI",
trim_by = 0.1,
title = "Untitled Funnel Plot",
multiplier = 1,
x_label = "Expected",
y_label,
xrange = "auto",
yrange = "auto",
plot_cols = c("#FF7F0EFF", "#1F77B4FF", "#9467BDFF", "#2CA02CFF"),
theme = funnel_clean()
)

Arguments

numerator A vector of the numerator (observed events/counts) values. Used as numerator of the Y-axis
denominator A vector of denominator (predicted/population etc.) Used as denominator of the Y-axis and the scale of the x-axis
group A vector of group names as character or factor. Used to aggregate and group points on plots
data_type A string identifying the type of data used for in the plot, the adjustment used and the reference point. One of: "SR" for indirectly standardised ratios, such SHMI, "PR" for proportions, or "RC" for ratios of counts. Default is "SR".
limit Plot limits, accepted values are: 95 or 99, corresponding to 95% or 99.8% quantiles of the distribution. Default=99, and applies to OD limits if both OD and Poisson are used.
label_outliers Logical (TRUE or FALSE) for adding outlier labels to the plot.
Poisson_limits Draw exact Poisson limits, without overdispersion adjustment. (default=FALSE)
OD_adjust Draw overdispersed limits using hierarchical model, assuming at group level, as described in Spiegelhalter (2012). It calculates a second variance component τ for the 'between' standard deviation (σ), that is added to the 'within' standard deviation (sigma) (default=TRUE)
sr_method Method for adjustment when using indirectly standardised ratios (type="SR") Either "CQC" or "SHMI" (default). There are a few methods for standardisation. "CQC"/Spiegelhalter uses a square-root transformation and Winsorises (rescales the outer most values to a particular percentile). SHMI, instead, uses log-transformation and doesn’t Winsorise, but truncates the distribution before assessing overdispersion. Both methods then calculate a dispersion ratio (ϕ) on this altered dataset. This ratio is then used to scale the full dataset, and the plot is drawn for the full dataset.
trim_by Proportion of the distribution for winsorisation/truncation. Default is 10% (0.1). Note, this is applied in a two-sided fashion, e.g. 10% refers to 10% at each end of the distribution (20% winsorised/truncated)
title Plot title
multiplier Scale relative risk and funnel by this factor. Default to 1, but 100 sometime used, e.g. in some hospital mortality ratios.

x_label Title for the funnel plot x-axis. Usually expected deaths, readmissions, incidents etc.

y_label Title for the funnel plot y-axis. Usually a standardised ratio.

xrange Manually specify the y-axis min and max, in form c(min, max), e.g. c(0, 200). Default, "auto", allows function to estimate range.

yrange Manually specify the y-axis min and max, in form c(min, max), e.g. c(0.7, 1.3). Default, "auto", allows function to estimate range.

plot_cols A vector of 4 colours for funnel limits, in order: 95% Poisson, 99.8% Poisson, 95% OD-adjusted, 99.8% OD-adjusted. Default has been chosen to avoid red and green which can lead to subconscious value judgements of good or bad. Default is hex colours: c("#FF7F0EFF","#1F77B4FF","#9467BDFF","#2CA02CFF")

theme a ggplot theme function. This can be a canned theme such as theme_bw(), a theme() with arguments, or your own custom theme function. Default is new funnel_clean(), but funnel_classic() is original format.

Details
Outliers are marked based on the grouping, and the limits chosen, corresponding to either 95% or 99.8% quantiles of the normal distribution.
Labels can be turned on or of using the ‘label_outliers’ argument.
Overdispersion can be factored in based on the methods in Spiegelhalter et al. (2012), set ‘OD_adjust’ to FALSE to suppress this.
To use Poisson limits set ‘Poisson_limits=TRUE’.
The plot colours deliberately avoid red-amber-green colouring, but you could extract this from the ggplot object and change manually if you like. Future versions of ‘funnelplotr’ may allow users to change this.

Value
A fitted ‘funnelplot’ object. A ‘funnelplot’ object is a list containing the following components:

print Prints the number of points, outliers and whether the plot has been adjusted, and prints the plot
plot A ggplot object with the funnel plot and the appropriate limits
limits_lookup A lookup table with selected limits for drawing a plot in software that requires limits.
aggregated_data A data.frame of the the aggregated dataset used for the plot.
outlier A data frame of outliers from the data.
tau2 The between-groups standard deviation, \(\tau^2 \).
phi The dispersion ratio, \(\phi \).
OD_adjust Whether overdispersion-adjusted limits were used.
Poisson_limits Whether unadjusted Poisson limits were used.
References

Examples

We will use the 'medpar' dataset from the 'COUNT' package.
Little reformatting needed

library(COUNT)
data(medpar)
medpar$provnum<-factor(medpar$provnum)
medpar$los<-as.numeric(medpar$los)

mod<- glm(los ~ hmo + died + age80 + factor(type), family="poisson", data=medpar)

Get predicted values for building ratio
medpar$prds<- predict(mod, type="response")

Draw plot, returning just the plot object
fp<-funnel_plot(denominator=medpar$prds, numerator=medpar$los, group = medpar$provnum, limit=95, title="An example funnel plot")

Methods for viewing/extracting
print(fp)
plot(fp)
summary(fp)
limits(fp)
outliers(fp)
source_data(fp)
phi(fp)
tau2(fp)
Description
Limits class for funnel plots

Usage
limits(x)

Arguments
x object of class funnel plot

new_funnel_plot
Constructor for new funnel plot object

Description
Constructor for new funnel plot object

Usage
new_funnel_plot(x = list())

Arguments
x List of objects to convert to class

outliers
Funnel plot outliers

Description
Outliers class for funnel plots

Usage
outliers(x)

Arguments
x object of class funnel plot
Phi class for funnel plots

Usage

phi(x)

Arguments

x object of class funnel plot

Source data class for funnel plots

Usage

source_data(x)

Arguments

x object of class funnel plot

Tau2 class for funnel plots

Usage

tau2(x)

Arguments

x object of class funnel plot
validate_funnel_plot Validator for new funnel plot object

Description
Validator for new funnel plot object

Usage
validate_funnel_plot(funnelplot)

Arguments
funnelplot object of class funnelplot
Index

funnel_clean, 2
funnel_grey, 3
funnel_plot, 3

limits, 6
new_funnel_plot, 7
outliers, 7
phi, 8
source_data, 8
tau2, 8
validate_funnel_plot, 9