Package ‘EcoNetGen’

July 14, 2019

Version 0.2.3
Title Simulate and Sample from Ecological Interaction Networks
Description Randomly generate a wide range of interaction networks with specified size, average degree, modularity, and topological structure. Sample nodes and links from within simulated networks randomly, by degree, by module, or by abundance. Simulations and sampling routines are implemented in ‘FORTRAN’, providing efficient generation times even for large networks. Basic visualization methods also included. Algorithms implemented here are described in de Aguiar et al. (2017) <arXiv:1708.01242>.
License GPL-3
URL https://github.com/cboettig/EcoNetGen
BugReports https://github.com/cboettig/EcoNetGen/issues
Encoding UTF-8
LazyData true
ByteCompile true
RoxygenNote 6.1.1
Suggests spelling, testthat, covr, ggraph
Imports igraph, ggplot2
Language en-US
NeedsCompilation yes
Author Marcus de Aguiar [aut, cph] (<https://orcid.org/0000-0003-1379-7568>), Erica Newman [aut] (<https://orcid.org/0000-0001-6433-8594>), Mathias Pires [aut] (<https://orcid.org/0000-0003-2500-4748>), NIMBioS [fnd], Carl Boettiger [aut, cre] (<https://orcid.org/0000-0003-4580-091X>)
Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2019-07-13 23:30:14 UTC
**R topics documented:**

- adj_plot ................................................. 2
- netgen ................................................. 2
- netgen_v1 .............................................. 4
- netsampler ............................................. 5

**Description**

Plot network adjacency matrix

**Usage**

```
adj_plot(graph)
```

**Arguments**

- graph 
  an igraph object

**Examples**

```r
set.seed(12345)
graph <- netgen()
adj_plot(graph)
```

---

**netgen**

**Description**

Randomly generate a wide range of interaction networks

**Usage**

```
netgen(net_size = 50, ave_module_size = 10, min_module_size = 6,
min_submod_size = 1, net_type = c("mixed", "random", "scalefree",
"nested", "bi-partite nested", "bi-partite random",
"tri-trophic bipartite nested-random",
"tri-trophic bipartite nested-bipartite nested", "bn", "br", "tt-bn-r",
"tt-bn-bn"), ave_degree = 5, rewire_prob_global = 0.2,
rewire_prob_local = 0, mixing_probs = c(0.2, 0.2, 0.2, 0.2, 0, 0,
0), verbose = FALSE)
```
Arguments

net_size  network size (number of nodes)
ave_module_size  average module size
min_module_size  cutoff for the minimum modules size
min_submod_size  cutoff for submodules, used only for bipartite and tripartite networks
net_type  network type, see details
ave_degree  average degree of connection
rewire_prob_global  probability any given edge should be rewired
rewire_prob_local  probability that edges within a module should be rewire locally (within the module)
mixing_probs  module probabilities for first 7 types, used for constructing mixed networks
verbose  logical, default TRUE. Should a message report summary statistics?

Details

network type is one of

- mixed
- random
- scalefree
- nested
- bi-partite nested (or short-hand "bn")
- bi-partite random (or short-hand "br")
- tri-trophic bipartite nested-random. (Can use short-hand "ttbnr")
- tri-trophic bipartite nested-bipartite nested (Can use short-hand "ttbnbn")

Valid Parameter Ranges

Please note that not all combinations of parameters will create valid networks. If an invalid combination is requested, netgen() will error with an informative message. A list of these constraints is provided below for reference.

1. net_size >= ave_module_size. If ‘net_size = ave_module_size” the program generates a network with a single module.
2. ave_module_size > min_module_size
3. ave_degree >= 1. Preferably larger than 4, to ensure single component modules.
4. rewire_prob_global = 0 produces completely uncoupled modules. To ensure a single component network use rewire_prob_global > 0 and sufficiently large.
5. rewire_prob_local = 0 produces idealized modules. Use rewire_prob_local > 0 to add stochasticity to the modules.
6. For tripartite networks min_module_size > min_submod_size. This also implies \( \text{min\_module\_size} \geq 2 \).
7. For scalefree networks (or mixed networks involving scalefree modules) ave_degree < min_module_size.
8. For mixed networks mixing_probs need to sum to 1. If the sum is larger than one, only the first types, corresponding to \( \text{sum} \leq 1 \), will be sampled.

Value

an igraph object

Examples

```r
library(EcoNetGen)

set.seed(12345)
net <- netgen()
adj_plot(net)
```

Description

netgen function

Usage

```r
netgen_v1(n_modav = c(50, 10), cutoffs = c(3, 0), net_type = 1,
net_degree = 10, net_rewire = c(0.3, 0), mod_probs = c(0.2, 0.2,
0.2, 0.2, 0.2, 0, 0), verbose = FALSE)
```

Arguments

- `n_modav`: network size and average module size (integer vector, length 2)
- `cutoffs`: module and submodule minimum sizes (integer vector, length 2). (submodules are used only for bipartite and tripartite networks)
- `net_type`: integer indicating type, see details
- `net_degree`: average degree of connection
- `net_rewire`: global and local network rewiring probabilities
- `mod_probs`: module probabilities for types 1 to 51, used for constructing mixed networks, net_type = 0
- `verbose`: logical, default TRUE. Should a message report summary statistics?
netsampler

Details

network type

- 0 = mixed
- 1 = random
- 2 = scalefree
- 3 = nested
- 41 = bi-partite nested
- 42 = bi-partite random
- 51 = tri-trophic bipartite nested-random "ttbnr"
- 52 = tri-trophic bipartite nested-bipartite nested "ttbnnb"

Value

an igraph object

netsampler | Network Sampling Routine

Description

Network Sampling Routine

Usage

netsampler(network_in, key_nodes_sampler = c("random", "lognormal", "Fisher log series", "exponential", "degree", "module"), neighbors_sampler = c("random", "exponential"), n_key_nodes = 10, n_neighbors = 0.5, hidden_modules = NULL, module_sizes = NULL, cluster_fn = igraph::cluster_edge_betweenness)

Arguments

- network_in: input network (as igraph object)
- key_nodes_sampler: sampling criteria for key nodes. See details.
- neighbors_sampler: sampling criteria for neighbors. See details.
- n_key_nodes: number of key nodes to sample.
- n_neighbors: number of first neighbors or fraction of first neighbors. See details.
- hidden_modules: list of the modules to exclude (max 10 modules; only the first numb_hidden are used)
- module_sizes: integer vector giving the size of each module. See details.
- cluster_fn: a clustering function, from igraph::cluster_. Default is igraph::cluster_edge_betweenness. Only used to compute module sizes if not provided.
Details

Algorithm first samples \( n_{\text{key\_nodes}} \) according the the requested \( \text{key\_nodes\_sampler} \) criterion. For each key node, the requested number or fraction of neighbors is then sampled according to the \( \text{neighbors\_sampler} \) criterion. Optionally, a list of modules can be designated as "hidden" and will be excluded from sampling.

If \( n_{\text{neighbors}} \) is greater than 1, assumes this is the number to sample. If \( n_{\text{neighbors}} \) is between 0 and 1, assumes this is the fraction of neighbors to sample. To sample 1 neighbor, use an explicit integer (or as integer(1)).

Provide \( \text{module\_sizes} \) list to improve performance. If not provided, this will be calculated based on \texttt{igraph::cluster\_edge\_betweenness}. Be sure to provide a \( \text{module\_sizes} \) vector whenever calling \texttt{netsampler} repeatedly on the same network to avoid unnecessary performance hit from recalculating modules every time. See examples.

Value

the original input network (as an \texttt{igraph} network object), with the attribute label added to the edges and vertices indicating if that edge or vertex was sampled or unsampled.

Examples

```r
set.seed(12345)
net <- netgen()
sample <- netsampler(net)

## Precompute 'module\_sizes' for replicate sampling of the same network:
library(igraph)
modules <- cluster_edge_betweenness(as.undirected(net))
module_sizes <- vapply(igraph::groups(modules), length, integer(1))
sample <- netsampler(net, module_sizes = module_sizes)
```
Index

adj_plot, 2
netgen, 2
netgen_v1.4
netsampler, 5