Package ‘EDOtrans’

March 4, 2021

Type Package

Title Euclidean Distance-Optimized Data Transformation

Version 0.1.0

Author Jorn Lotsch[aut,cre], Alfred Ultsch[aut]

Maintainer Jorn Lotsch <j.loetsch@em.uni-frankfurt.de>

Description A data transformation method which takes into account the special property of scale non-invariance with a breakpoint at 1 of the Euclidean distance.

License GPL-3

Encoding UTF-8

LazyData true

Imports ABCanalysis, AdaptGauss, DistributionOptimization, ClusterR, DataVisualizations, ggplot2, grDevices, methods, stats, rlang

Depends R (>= 3.5.0)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-03-04 09:50:15 UTC

R topics documented:

EDOtrans ... 2
FlowcytometricData 3
GMMartificialData 3
GMMplotGG .. 4

Index 6
EDOtrans

Euclidean distance-optimized data transformation

Description
The package provides the necessary functions for performing the EDO data transformation.

Usage
EDOtrans(Data, Cls, Means, SDs, Weights, DO = FALSE, PlotGMM = FALSE)

Arguments
Data the data as a vector.
Cls the class information, if any, as a vector of similar length as instances in the data.
Means a list of mean values for a Gaussian mixture.
SDs a list of standard deviations for a Gaussian mixture.
Weights a list of weights for a Gaussian mixture.
DO whether to use the DistributionOptimization method for Gaussian mixture modeling.
PlotGMM whether to plot the obtained Gaussian mixture model.

Value
Returns a list of transformed data and class assignments.
DataEDO the EDO transformed data.
EDOfactor the factor by which each data point has been deivded.
Cls the class information for each data instance.

Author(s)
Jorn Lotsch and Alfred Ultsch

References

Examples
example 1
data(iris)
IrisEDOdata <- EDOtrans(as.vector(iris[,1]), as.integer(iris$Species), PlotGMM = TRUE)
FlowcytometricData
Example data of hematologic marker expression.

Description
Data set of 6 flow cytometry-based lymphoma makers from 55,843 cells from healthy subjects (class 1) and 55,843 cells from lymphoma patients (class 2).

Usage
```r
data("FlowcytometricData")
```

Details
Size 111686 x 6, stored in `FlowcytometricData$[Var_1,Var_2,Var_3,Var_4,Var_5,Var_6]`
Original classes 2, stored in `FlowcytometricData$OrigCls` GMM based classes, stored in `FlowcytometricData$[ClsVar_1,ClsVar_2,ClsVar_3,ClsVar_4,ClsVar_5,ClsVar_6]`
Downsample membership classes 2, stored in `FlowcytometricData$Downsample`

Examples
```r
data(FlowcytometricData)
str(FlowcytometricData)
```

GMMartificialData
Example data an artificial Gaussian mixture.

Description
Dataset of 3000 instances with 3 variables that are Gaussian mixtures and belong to classes Cls = 1, 2, or 3, with different means and standard deviations and equal weights of 0.7, 0.3, and 0.1, respectively.

Usage
```r
data("GMMartificialData")
```

Details
Size 3000 x 3, stored in `GMMartificialData$[Var1,Var2,Var3]`
Classes 3, stored in `GMMartificialData$Cls`

Examples
```r
data(GMMartificialData)
str(GMMartificialData)
```
GMMplotGG

Description
The function plots the components of a Gaussian mixture and superimposes them on a histogram of the data.

Usage
GMMplotGG(Data, Means, SDs, Weights, BayesBoundaries,
SingleGausses = TRUE, Hist = FALSE, Bounds = TRUE, SumModes = TRUE, PDE = TRUE)

Arguments
- **Data**: the data as a vector.
- **Means**: a list of mean values for a Gaussian mixture.
- **SDs**: a list of standard deviations for a Gaussian mixture.
- **Weights**: a list of weights for a Gaussian mixture.
- **BayesBoundaries**: a list of Bayesian boundaries for a Gaussian mixture.
- **SingleGausses**: whether to plot the single Gaussian components as separate lines.
- **Hist**: whether to plot a histogram of the original data.
- **Bounds**: whether to plot the Bayesian boundaries for a Gaussian mixture as vertical lines.
- **SumModes**: whether to plot the summed-up mixes.
- **PDE**: whether to use the Pareto density estimation instead of the standard R density function.

Value
Returns a ggplot2 object.

p1: the plot of Gaussian mixtures.

Author(s)
Jorn Lotsch and Alfred Ultsch

References
example 1

data(iris)
Means0 <- tapply(X = as.vector(iris[,1]), INDEX = as.integer(iris$Species), FUN = mean)
SDs0 <- tapply(X = as.vector(iris[,1]), INDEX = as.integer(iris$Species), FUN = sd)
Weights0 <- c(1/3, 1/3, 1/3)
GMM.Sepal.Length <- GMMplotGG(Data = as.vector(iris[,1]),
 Means = Means0,
 SDs = SDs0,
 Weights = Weights0,
 Hist = TRUE)
Index

* EDOtrans
 EDOtrans, 2
 GMMplotGG, 4
* GMMplotGG
 GMMplotGG, 4
* data transformation
 EDOtrans, 2
* data visualization
 GMMplotGG, 4

EDOtrans, 2

FlowcytometricData, 3

GMMartificialData, 3
GMMplotGG, 4