Package ‘DrugUtilisation’

April 2, 2024

Title Summarise Patient-Level Drug Utilisation in Data Mapped to the OMOP Common Data Model

Version 0.5.3

Description Summarise patient-level drug utilisation cohorts using data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model. New users and prevalent users cohorts can be generated and their characteristics, indication and drug use summarised.

License Apache License (>= 2)

Encoding UTF-8

RoxygenNote 7.3.1

Suggests covr, testthat (>= 3.1.5), odbc, here, RPostgres, duckdb, CodelistGenerator, knitr, PaRe, rmarkdown, DT, magick, DiagrammerRsvg, ggplot2, cowplot, plotly, tibble

Config/testthat/edition 3

Imports CDMConnector (>= 1.3.0), checkmate, DBI, dbplyr, dplyr, glue, lubridate, tidyr, RJSONIO, cli, PatientProfiles (>= 0.7.0), magrittr, purrr, tictoc, omopgenerics (>= 0.0.2), visOmopResults, lifecycle

Depends R (>= 2.10)

LazyData true

URL https://darwin-eu-dev.github.io/DrugUtilisation/

Config/testthat/parallel true

NeedsCompilation no

Author Marti Catala [aut, cre] (<https://orcid.org/0000-0003-3308-9905>), Mike Du [aut] (<https://orcid.org/0000-0002-9517-8834>), Yuchen Guo [aut] (<https://orcid.org/0000-0002-0847-4855>), Kim Lopez-Guell [aut] (<https://orcid.org/0000-0002-8462-8668>), Edward Burn [ctb] (<https://orcid.org/0000-0002-9286-1128>), Xintong Li [ctb] (<https://orcid.org/0000-0002-6872-5804>), Marta Alcalde-Herraiz [ctb] (<https://orcid.org/0009-0002-4405-1814>)

Maintainer Marti Catala <marti.catalasabate@ndoms.ox.ac.uk>
addDailyDose

add daily dose information to a drug_exposure table

Description

add daily dose information to a drug_exposure table

Usage

```r
addDailyDose(
  drugExposure,
  cdm = attr(drugExposure, "cdm_reference"),
  ingredientConceptId
)
```
addDrugUse

Arguments

- **drugExposure** drugExposure it must contain drug_concept_id, quantity, drug_exposure_start_date and drug_exposure_end_date as columns
- **cdm** A `cdm` reference
- **ingredientConceptId** ingredientConceptId for which to filter the drugs of interest

Value

same input table

Examples

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm[["drug_exposure"]]
  filter(drug_concept_id == 2905077)
  addDailyDose(ingredientConceptId = 1125315)
```

addDrugUse
Add new columns with drug use related information

Description

Add new columns with drug use related information

Usage

```r
addDrugUse(
  cohort,
  cdm = lifecycle::deprecated(),
  ingredientConceptId,
  conceptSet = NULL,
  duration = TRUE,
  quantity = TRUE,
  dose = TRUE,
  gapEra = 0,
  eraJoinMode = "zero",
  overlapMode = "sum",
  sameIndexMode = "sum",
  imputeDuration = "none",
```
addDrugUse

imputeDailyDose = "none",
durationRange = c(1, Inf),
dailyDoseRange = c(0, Inf)
)

Arguments

cohort Cohort in the cdm
cdm deprecated
ingredientConceptId Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.
conceptSet List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.
duration Whether to add duration related columns.
quantity Whether to add quantity related columns.
dose Whether to add dose related columns.
gapEra Number of days between two continuous exposures to be considered in the same era.
eraJoinMode How two different continuous exposures are joined in an era. There are four options: "zero" the exposures are joined considering that the period between both continuous exposures the subject is treated with a daily dose of zero. The time between both exposures contributes to the total exposed time. "join" the exposures are joined considering that the period between both continuous exposures the subject is treated with a daily dose of zero. The time between both exposures does not contribute to the total exposed time. "previous" the exposures are joined considering that the period between both continuous exposures the subject is treated with the daily dose of the previous subexposure. The time between both exposures contributes to the total exposed time. "subsequent" the exposures are joined considering that the period between both continuous exposures the subject is treated with the daily dose of the subsequent subexposure. The time between both exposures contributes to the total exposed time.
overlapMode How the overlapping between two exposures that do not start on the same day is solved inside a subexposure. There are five possible options: "previous" the considered daily_dose is the one of the earliest exposure. "subsequent" the considered daily_dose is the one of the new exposure that starts in that subexposure. "minimum" the considered daily_dose is the minimum of all of the exposures in the subexposure. "maximum" the considered daily_dose is the maximum of all of the exposures in the subexposure. "sum" the considered daily_dose is the sum of all the exposures present in the subexposure.
sameIndexMode How the overlapping between two exposures that start on the same day is solved inside a subexposure. There are three possible options: "minimum" the considered daily_dose is the minimum of all of the exposures in the subexposure. "maximum" the considered daily_dose is the maximum of all of the exposures in the subexposure. "sum" the considered daily_dose is the sum of all the exposures present in the subexposure.
addIndication

imputeDuration
Whether/how the duration should be imputed "none", "median", "mean", "mode" or a number

imputeDailyDose
Whether/how the daily_dose should be imputed "none", "median", "mean", "mode" or a number

durationRange
Range between the duration must be comprised. It should be a numeric vector of length two, with no NAs and the first value should be equal or smaller than the second one. It must not be NULL if imputeDuration is not "none". If NULL no restrictions are applied.

dailyDoseRange
Range between the daily_dose must be comprised. It should be a numeric vector of length two, with no NAs and the first value should be equal or smaller than the second one. It must not be NULL if imputeDailyDose is not "none". If NULL no restrictions are applied.

Value
The same cohort with the added columns.

Examples

```r
library(DrugUtilisation)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()
cdm <- generateDrugUtilisationCohortSet(cdm, "dus_cohort", getDrugIngredientCodes(cdm, name = "acetaminophen")

# Add drug use
cdm[["dus_cohort"]]
```

Description
Get indication for a target cohort

Usage

```r
addIndication(
  x,
  cdm = lifecycle::deprecated(),
  indicationCohortName,
  indicationGap = 0,
  unknownIndicationTable = NULL,
  indicationDate = "cohort_start_date"
)`
Arguments

- `x`: Table in the cdm
- `cdm`: A cdm reference created using CDMConnector
- `indicationCohortName`: Name of indication cohort table
- `indicationGap`: Gap between the event and the indication
- `unknownIndicationTable`: Tables to search unknown indications
- `indicationDate`: Date of the indication

Value

Same cohort adding the indications

Examples

```r
library(DrugUtilisation)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()

indications <- list("headache" = 378253, "asthma" = 317009)

cdm <- generateConceptCohortSet(
 cdm, indications, "indication_cohorts"
)

acetaminophen <- getDrugIngredientCodes(cdm, "acetaminophen")

cdm <- generateDrugUtilisationCohortSet(cdm, "drug_cohort", acetaminophen)

cdm[["drug_cohort"]]
 %>%
 addIndication(cdm, "indication_cohorts", indicationGap = c(0, 30, 365))
```

Description

add route column to a table containing drug_exposure information

Usage

```r
addRoute(drugTable, cdm = attr(drugTable, "cdm_reference"))
```
**Arguments**

- **drugTable**: Table in the cdm that must contain drug_concept_id
- **cdm**: 'cdm' object created with CDMConnector::cdm_from_con(). It must contain 'concept_relationship' table.

**Value**

It adds route to the current table

**Examples**

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm[["drug_exposure"]%>%
 addRoute()
```

---

**benchmarkDUS**

*Run benchmark of drug utilisation cohort generation*

**Description**

Run benchmark of drug utilisation cohort generation

**Usage**

```r
benchmarkDUS(
 cdm, # A CDM reference object
 numberOfCohort = 1:4,
 indicationCohortName = "cohort1",
 ingredientId = 1125315,
 drugExposureName = "drug_exposure"
)
```

**Arguments**

- **cdm**: A CDM reference object
- **numberOfCohort**: Number of cohort to generate for benchmarking. An integer or a vector of integers
- **indicationCohortName**: Name of indication cohort table
dailyDoseCoverage

ingredientId  Ingredient OMOP concept that we are interested for the study. It is a compulsory
input, no default value is provided.

drugExposureName  Name of drug_exposure table in cdm, the table must contain drug_concept_id,
quantity, drug_exposure_start_date and drug_exposure_end_date as columns

Value

a tibble with time taken for different analyses

Examples

```r
cdm <- DrugUtilisation::mockDrugUtilisation()
timings <- DrugUtilisation::benchmarkDUS(cdm)
```

dailyDoseCoverage  Check coverage of daily dose computation in a sample of the cdm for
selected concept sets and ingredient

Description

Check coverage of daily dose computation in a sample of the cdm for selected concept sets and
ingredient

Usage

dailyDoseCoverage(cdm, ingredientConceptId)

Arguments

- **cdm**: A cdm reference created using CDMConnector
- **ingredientConceptId**: Code indicating the ingredient of interest

Value

The function returns information of the coverage of computeDailyDose.R for the selected ingredi-
ents and concept sets
generateAtcCohortSet

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()
dailyDoseCoverage(cdm, 1125315)

generateAtcCohortSet  Generates a cohort of the drug use of ATC name(s) of interest.

Description

Generates a cohort of the drug use of ATC name(s) of interest.

Usage

generateAtcCohortSet(
  cdm,
  name,
  atcName = NULL,
  durationRange = c(1, Inf),
  imputeDuration = "none",
  gapEra = 0,
  priorUseWashout = 0,
  priorObservation = 0,
  cohortDateRange = as.Date(c(NA, NA)),
  limit = "all",
  level = c("ATC 1st"),
  doseForm = NULL
)

Arguments

cdm  A cdm_reference object.
name  Name of the GeneratedCohortSet
atcName  Names of ATC of interest.
durationRange  Range between the duration must be comprised. It should be a numeric vector
  of length two, with no NAs and the first value should be equal or smaller than
  the second one. It is only required if imputeDuration = TRUE. If NULL no
  restrictions are applied.
imputeDuration  Whether/how the duration should be imputed "none", "median", "mean", "mode",
  or it can be a count
generateDrugUtilisationCohortSet

Generates a cohort of the drug use of a certain list of concepts.

### Description

Generates a cohort of the drug use of a certain list of concepts.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gapEra</td>
<td>Number of days between two continuous exposures to be considered in the same era.</td>
</tr>
<tr>
<td>priorUseWashout</td>
<td>Prior days without exposure.</td>
</tr>
<tr>
<td>priorObservation</td>
<td>Minimum number of days of prior observation required for the incident eras to be considered.</td>
</tr>
<tr>
<td>cohortDateRange</td>
<td>Range for cohort_start_date and cohort_end_date</td>
</tr>
<tr>
<td>limit</td>
<td>Choice on how to summarise the exposures. There are two options: &quot;all&quot; we summarise the output will be a summary of the exposed eras of each individual. Each individual can contribute multiple times. &quot;first&quot; we only consider the first observable era of each individual that fulfills the criteria provided in previous parameters. In this case each individual can not contribute with multiple rows.</td>
</tr>
<tr>
<td>level</td>
<td>ATC level. Can be one or more of &quot;ATC 1st&quot;, &quot;ATC 2nd&quot;, &quot;ATC 3rd&quot;, &quot;ATC 4th&quot;, and &quot;ATC 5th&quot;</td>
</tr>
<tr>
<td>doseForm</td>
<td>Only descendant codes with the specified dose form will be returned. If NULL, descendant codes will be returned regardless of dose form.</td>
</tr>
</tbody>
</table>

### Value

The function returns the 'cdm' object with the created cohorts as references of the object.

### Examples

```r
library(DrugUtilisation)
cdm <- mockDrugUtilisation()
cdm <- generateAtcCohortSet(cdm, name = "test")
cdm
cdm$test
settings(cdm$test)
```
generateDrugUtilisationCohortSet

Usage

generateDrugUtilisationCohortSet(
  cdm,
  name,
  conceptSet,
  durationRange = c(1, Inf),
  imputeDuration = "none",
  gapEra = 0,
  priorUseWashout = 0,
  priorObservation = 0,
  cohortDateRange = as.Date(c(NA, NA)),
  limit = "all"
)

Arguments

cdm A cdm_reference object.
name Name of the GeneratedCohortSet
conceptSet Named list of concept sets.
durationRange Range between the duration must be comprised. It should be a numeric vector
  of length two, with no NAs and the first value should be equal or smaller than
  the second one. It is only required if imputeDuration = TRUE. If NULL no
  restrictions are applied.
imputeDuration Whether/how the duration should be imputed "none", "median", "mean", "mode",
  or it can be a count
gapEra Number of days between two continuous exposures to be considered in the same
  era.
priorUseWashout Prior days without exposure.
priorObservation Minimum number of days of prior observation required for the incident eras to
  be considered.
cohortDateRange Range for cohort_start_date and cohort_end_date
limit Choice on how to summarise the exposures. There are two options: "all" we
  summarise the output will be a summary of the exposed eras of each individual.
  Each individual can contribute multiple times. "first" we only consider the first
  observable era of each individual that fulfills the criteria provided in previous
  parameters. In this case each individual can not contribute with multiple rows.

Value

The function returns the 'cdm' object with the created tables as references of the object.
Examples

```r
library(CodelistGenerator)
library(CDMConnector)
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

druglist <- getDrugIngredientCodes(cdm, c("acetaminophen", "metformin"))

cdm <- generateDrugUtilisationCohortSet(
 cdm = cdm,
 name = "drug_cohorts",
 conceptSet = druglist,
 priorObservation = 365
)

cdm[["drug_cohorts"]]

settings(cdm[["drug_cohorts"]])

cohortCount(cdm[["drug_cohorts"]])

attrition(cdm[["drug_cohorts"]])
```

---

**generateIngredientCohortSet**

*Generates a cohort of the drug use of ingredient name(s) of interest.*

Description

Generates a cohort of the drug use of ingredient name(s) of interest.

Usage

```r
generateIngredientCohortSet(
 cdm,
 name,
 ingredient = NULL,
 durationRange = c(1, Inf),
 imputeDuration = "none",
 gapEra = 0,
 priorUseWashout = 0,
 priorObservation = 0,
 cohortDateRange = as.Date(c(NA, NA)),
 limit = "all",
 ...)
```
Arguments

cdm
A cdm_reference object.

name
Name of the GeneratedCohortSet

ingredient
Accepts both vectors and named lists of ingredient names. For a vector input, e.g., c("acetaminophen", "codeine"), it generates a cohort table with descendant concept codes for each ingredient, assigning unique cohort_definition_id. For a named list input, e.g., list( "test_1" = c("simvastatin", "acetaminophen"), "test_2" = "metformin"), it produces a cohort table based on the structure of the input, where each name leads to a combined set of descendant concept codes for the specified ingredients, creating distinct cohort_definition_id for each named group.

durationRange
Range between the duration must be comprised. It should be a numeric vector of length two, with no NAs and the first value should be equal or smaller than the second one. It is only required if imputeDuration = TRUE. If NULL no restrictions are applied.

imputeDuration
Whether/how the duration should be imputed "none", "median", "mean", "mode", or it can be a count

gapEra
Number of days between two continuous exposures to be considered in the same era.

priorUseWashout
Prior days without exposure.

priorObservation
Minimum number of days of prior observation required for the incident eras to be considered.

cohortDateRange
Range for cohort_start_date and cohort_end_date

limit
Choice on how to summarise the exposures. There are two options: "all" we summarise the output will be a summary of the exposed eras of each individual. Each individual can contribute multiple times. "first" we only consider the first observable era of each individual that fulfills the criteria provided in previous parameters. In this case each individual can not contribute with multiple rows.

doseForm
Only descendants codes with the specified dose form will be returned. If NULL, descendant codes will be returned regardless of dose form.

ingredientRange
Used to restrict descendant codes to those associated with a specific number of ingredients. Must be a vector of length two with the first element the minimum number of ingredients allowed and the second the maximum. A value of c(2, 2) would restrict to only concepts associated with two ingredients.

Value

The function returns the 'cdm' object with the created cohorts as references of the object.
Examples

```r
library(DrugUtilisation)
cdm <- mockDrugUtilisation()
cdm <- generateIngredientCohortSet(
 cdm = cdm,
 ingredient = "acetaminophen",
 name = "test"
)
cdm

indicationToStrata
Create new variables summarising the data of indication that can be used as stratification columns

Description
Create new variables summarising the data of indication that can be used as stratification columns

Usage

```r
indicationToStrata(
  cohort,
  indicationVariables = indicationColumns(cohort),
  keep = FALSE
)
```

Arguments

```r
cohort A cohort in the cdm
indicationVariables Indication variables that we want to join
keep Whether to keep the prior indication variables or not
```

Value
description The cohort with the new variable

Examples

```r
library(DrugUtilisation)
cdm <- mockDrugUtilisation()
cdm[["cohort1"]]
```

```r
%>% addIndication(cdm, "cohort2") %>%
```
It creates a mock database for testing drugutilisation package

Usage

mockDrugUtilisation(
 connectionDetails = list(con = DBI::dbConnect(duckdb::duckdb(), "::memory:"),
 writeSchema = "main"),
 numberIndividuals = 10,
 seed = 1,
 concept = NULL,
 concept_ancestor = NULL,
 drug_strength = NULL,
 person = NULL,
 observation_period = NULL,
 drug_exposure = NULL,
 condition_occurrence = NULL,
 observation = NULL,
 concept_relationship = NULL,
 extraTables = list(),
 ...)

Arguments

 connectionDetails Details of the connection
 numberIndividuals Number of individuals in the mock cdm
 seed Seed for the random numbers
 concept A concept tibble, if NULL a mock one is created
 concept_ancestor A concept_ancestor tibble, if NULL a mock one is created
 drug_strength A drug_strength tibble, if NULL a mock one is created
 person A person tibble, if NULL a mock one is created
 observation_period A observation_period tibble, if NULL a mock one is created
drug_exposure A drug_exposure tibble, if NULL a mock one is created
condition_occurrence
 A condition_occurrence tibble, if NULL a mock one is created
observation
 A observation tibble, if NULL a mock one is created
concept_relationship
 A concept_relationship tibble, if NULL a mock one is created.
extraTables
 Extra tibbles to be instantiated that are not cohorts or cdm tables
...
 Cohorts can be added to the cdm reference, cohort1 and cohort2 will be created if not provided

Value

A cdm reference with the mock tables

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

cdm

patternsWithFormula Patterns valid to compute daily dose with the associated formula.

Description

Patterns valid to compute daily dose with the associated formula.

Usage

patternsWithFormula

Format

A data frame with eight variables: pattern_id, amount, amount_unit, numerator, numerator_unit, denominator, denominator_unit, formula_name and formula.
patternTable

Function to create a tibble with the patterns from current drug strength table

Description

Function to create a tibble with the patterns from current drug strength table

Usage

```r
patternTable(cdm)
```

Arguments

- `cdm` : 'cdm' object created with CDMConnector::cdm_from_con(). It must contain 'drug_strength' and 'concept' tables.

Value

The function creates a tibble with the different patterns found in the table, plus a column of potentially valid and invalid combinations.

Examples

```r
cdm <- mockDrugUtilisation()
patternTable(cdm)
```

readConceptList

Get concept ids from a provided path to json files

Description

Get concept ids from a provided path to json files

Usage

```r
readConceptList(path, cdm)
```

Arguments

- `path` : path to a file or folder containing jsons to be read
- `cdm` : A cdm reference created with CDMConnector
stratifyByUnit

Function to stratify a conceptSet by unit

Description

Function to stratify a conceptSet by unit

Usage

stratifyByUnit(conceptSet, cdm, ingredientConceptId)

Arguments

conceptSet

List of concept sets

cdm

cdm reference

ingredientConceptId

ConceptId that refers to an ingredient

Value

The conceptSet stratified by unit

Examples

library(DrugUtilisation)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()

codelist <- getDrugIngredientCodes(cdm, "acetaminophen")
summariseCharacteristicsFromCodelist

```r
codelistStratified <- stratifyByUnit(codelist, cdm, 1125315)
codelistStratified
```

Description

Summarise a cohort from multiple codelist and windows

Usage

```r
summariseCharacteristicsFromCodelist(
  cohort, 
  cdm = lifecycle::deprecated(),
  conceptSet, 
  strata = list(),
  window = list(c(-Inf, -366), c(-365, -31), c(-30, -1), c(0, 0), c(1, 30), c(31, 365),
                c(366, Inf)),
  overlap = TRUE,
  minCellCount = lifecycle::deprecated()
)
```

Arguments

- **cohort**: Cohort to summarise
- **cdm**: cdm_reference
- **conceptSet**: A list of concept sets
- **strata**: Stratification list
- **window**: Windows to characterize
- **overlap**: Whether we consider episodes (overlap = TRUE) or incident (overlap = FALSE)
- **minCellCount**: Minimum cell counts

Value

A SummarisedResults object that contains the characterization
This function is used to summarise the dose table over multiple cohorts.

Usage

```r
summariseDrugUse(
  cohort,
  cdm = lifecycle::deprecated(),
  strata = list(),
  drugUseEstimates = c("min", "q05", "q25", "median", "q75", "q95", "max", "mean", "sd", "missing"),
  minCellCount = lifecycle::deprecated()
)
```

Arguments

- `cohort` : Cohort with drug use variables and strata
- `cdm` : cdm_reference generated by CDMConnector
- `strata` : Stratification list
- `drugUseEstimates` : Estimates that we want for the columns
- `minCellCount` : Below this number counts will be suppressed

Value

A summary of the drug use stratified by cohort_name and strata_name

Examples

```r
library(DrugUtilisation)
library(PatientProfiles)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()

result <- summariseDrugUse(cdm[["dus_cohort"]], cdm)
print(result)
```
summariseIndication

This function is used to summarise the indication table over multiple cohorts.

Description

This function is used to summarise the indication table over multiple cohorts.

Usage

summariseIndication(
 cohort,
 cdm = lifecycle::deprecated(),
 strata = list(),
 minCellCount = lifecycle::deprecated()
)

Arguments

- cohort: Cohort with indications and strata
- cdm: cdm_reference created by CDMConnector
- strata: Stratification list
- minCellCount: Minimum counts that a group can have. Cohorts with less counts than this value are obscured.

Value

A Tibble with 4 columns: cohort_definition_id, variable, estimate and value. There will be one row for each cohort, variable and cohort combination.
summariseTreatmentFromCohort

This function is used to summarise the dose table over multiple cohorts.

Description

This function is used to summarise the dose table over multiple cohorts.

Usage

```r
summariseTreatmentFromCohort(
    cohort,
    strata = list(),
    window,
    treatmentCohortName,
    treatmentCohortId = NULL,
    combination = FALSE,
    minCellCount = 5
)
```

Examples

```r
library(DrugUtilisation)
library(PatientProfiles)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()
indications <- list("headache" = 378253, "asthma" = 317009)
acetaminophen <- getDrugIngredientCodes(cdm, "acetaminophen")

indications <- list("headache" = 378253, "asthma" = 317009)
acetaminophen <- getDrugIngredientCodes(cdm, "acetaminophen")

cdm <- generateConceptCohortSet(cdm, indications, "indication_cohorts")
acetaminophen <- getDrugIngredientCodes(cdm, "acetaminophen")

cdm <- generateDrugUtilisationCohortSet(cdm, "drug_cohort", acetaminophen)

summariseIndication(cdm[["drug_cohort"]], cdm)

summariseIndication(cdm, strata = list("age_group" = "age_group", "age_group and sex" = c("age_group", "sex")))
```
summariseTreatmentFromCohort

Arguments

- cohort: Cohort with drug use variables and strata.
- strata: Stratification list.
- window: Window where to summarise the treatments.
- treatmentCohortName: Name of a cohort in the cdm that contains the interest treatments.
- treatmentCohortId: Cohort definition id of interest from treatmentCohortName.
- combination: Whether to include combination treatments.
- minCellCount: Below this number counts will be suppressed.

Value

A summary of the drug use stratified by cohort_name and strata_name

Examples

```r
library(DrugUtilisation)
library(PatientProfiles)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()
cdm <- generateDrugUtilisationCohortSet(
  cdm, "dus_cohort", getDrugIngredientCodes(cdm, "acetaminophen")
)
cdm[["dus_cohort"]]
result <- summariseDrugUse(cdm[["dus_cohort"]], cdm)
print(result)

cdm[["dus_cohort"]]
result <- summariseDrugUse(cdm[["dus_cohort"]], cdm)
print(result)

summariseDrugUse(
  cdm[["dus_cohort"]], cdm, strata = list(
    "age_group" = "age_group", "sex" = "sex",
    "age_group and sex" = c("age_group", "sex")
  )
)
```
This function is used to summarise the dose table over multiple cohorts.

Usage

```r
summariseTreatmentFromConceptSet(
  cohort,
  strata = list(),
  window,
  treatmentConceptSet,
  combination = FALSE,
  minCellCount = 5
)
```

Arguments

- `cohort` Cohort with drug use variables and strata.
- `strata` Stratification list.
- `window` Window where to summarise the treatments.
- `treatmentConceptSet` Concept set list to summarise.
- `combination` Whether to include combination treatments.
- `minCellCount` Below this number counts will be suppressed.

Value

A summary of the drug use stratified by cohort_name and strata_name
Index

* **datasets**

 patternsWithFormula, 16

addDailyDose, 2
addDrugUse, 3
addIndication, 5
addRoute, 6

benchmarkDUS, 7
dailyDoseCoverage, 8

generateAtcCohortSet, 9
generateDrugUtilisationCohortSet, 10
generateIngredientCohortSet, 12

indicationToStrata, 14

mockDrugUtilisation, 15

patternsWithFormula, 16
patternTable, 17

readConceptList, 17

stratifyByUnit, 18
summariseCharacteristicsFromCodelist, 19

summariseDrugUse, 20
summariseIndication, 21
summariseTreatmentFromCohort, 22
summariseTreatmentFromConceptSet, 24