Package ‘DistributionOptimization’
February 12, 2020

Type Package
Title Distribution Optimization
Version 1.2.6
Author Florian Lerch, Jorn Lotsch, Alfred Ultsch
Maintainer Florian Lerch <lerch@mathematik.uni-marburg.de>
Description Fits Gaussian Mixtures by applying evolution. As fitness function a mixture of the chi square test for distributions and a novel measure for approximating the common area under curves between multiple Gaussians is used. The package presents an alternative to the commonly used Likelihood Maximization as is used in Expectation Maximization. The algorithm and applications of this package are published under: Lerch, F., Ultsch, A., Lotsch, J. (2020) <doi:10.1038/s41598-020-57432-w>. The evolution is based on the 'GA' package: Scrucca, L. (2013) <doi:10.18637/jss.v053.i04> while the Gaussian Mixture Logic stems from 'AdaptGauss': Ultsch, A, et al. (2015) <doi:10.3390/ijms161025897>.
Imports ggplot2, GA, AdaptGauss, graphics, stats, utils, pracma
Suggests parallelDist
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-12 15:40:02 UTC

R topics documented:

DistributionOptimization-package 2
BinProb4Mixtures 2
DistributionOptimization 3
MixedDistributionError 5
OverlapErrorByDensity 6

Index 7
Description

Distribution Optimization fits gaussian mixture models on to one dimensional samples by minimizing the Chi Squared Error by evolutional optimization. It is an alternative to likelihood maximizers like expectation maximization. Through the included "Overlapping" Methods, single gaussians can be forced to be separated, achieving various significant models to choose from. The evolutionary part is done through the "GA" Package. The Gaussian Mixture Logic is based on the "AdaptGauss" Package.

Author(s)

Florian Lerch, Jorn Lotsch, Alfred Ultsch

References

Description

Calculates the probability of bins/intervals within the dataspace defined by given breaks between them.

Usage

BinProb4Mixtures(Means, SDs, Weights, Breaks, IsLogDistribution = rep(F, length(Means)), LimitsAreFinite = T)

Arguments

Means Means of the GMM Components
SDs Standard Deviations of the GMM Components
Weights Weights of the GMM Components
Breaks Breaks Defining c-1 or c+1 bins (depending on LimitsAreFinite)
IsLogDistribution If True, the GMM is interpreted as a logarithmic
LimitsAreFinite If True, there are c+1 Bins, where the first and last bin are of infinite size
Value

Probabilities of either \(c-1\) or \(c+1\) bins/intervals (depending on LimitsAreFinite)

Author(s)

Florian Lerch

Examples

```r
Data = c(rnorm(50,1,2), rnorm(50,3,4))
NoBins = 20
breaks = seq(min(Data),max(Data), length.out=length(NoBins)+1)
BinProb4Mixtures(c(1,3), c(2,4), c(0.5,0.5), breaks)
```

Description

Fits a Gaussian Mixture Model onto a Dataset by minimizing a fitting error through evolutionary optimization. Every individual encodes one GMM. Details over the evolutionary process itself can be taken from the 'GA' package. ga

Usage

`DistributionOptimization(Data, Modes, Monitor = 1, SelectionMethod = "UnbiasedTournament", MutationMethod = "Uniform+Focused", CrossoverMethod = "WholeArithmetic", PopulationSize = Modes * 3 * 25, MutationRate = 0.7, Elitism = 0.05, CrossoverRate = 0.2, Iter = Modes * 3 * 200, OverlapTolerance = NULL, IsLogDistribution = rep(F, Modes), ErrorMethod = "chisquare", NoBins = NULL, Seed = NULL, ConcurrentInit = F, ParetoRad = NULL)`

Arguments

- **Data**: Data to be modelled
- **Modes**: Number of expected Modes
- **Monitor**: 0: no monitoring, 1: status messages, 2: status messages and plots, 3: status messages, plots and calculated error-measures
- **SelectionMethod**: 1: LinearRank selection 4: UnbiasedTournament 5: FitnessProportional selection
DistributionOptimization

MutationMethod

1: UniformRandom mutation 2: NonuniformRandom mutation 4: Focused mutation, alternative random mutation around solution 5: GaussMutationCust 6: TwoPhaseMutation - mutation is uniform random during the first half of iterations, and than focuses around current solution

CrossoverMethod

1: single point crossover 2: whole arithmetic crossover 3: local arithmetic crossover 4: blend crossover 5: GaussCrossover - exchange complete gaussian components 6: MultiPointCrossover - Random amount of information between mixtures get exchanged

PopulationSize

Size of the population

MutationRate

amount (0..1) of population that gets mutated

Elitism

amount of best individuals that will survive generation unchanged

CrossoverRate

amount of individuals that will be used for crossover

Iter

number of iterations of this algorithm

OverlapTolerance

ratio between Chi-Square and OverlapError (only if FitnessMethod = 4 (Chi2ValueWithOverlap))

IsLogDistribution

which gauss components should be considered as log gaussian

ErrorMethod

"pde": fitting is measured by pareto density estimation. "chisquare": fitting is measured by Chi-Square test

NoBins

Number of Bins that will be used for evaluating fitting

Seed

Random Seed for reproducible results

ConcurrentInit

If true, before initialization a number of short optimizations are done to find a good starting point for evolution

ParetoRad

Pareto Radius for Pareto Density Estimation and its plots

Value

The GA object containing the evolutionary training and a description of the final GMM consisting of means, sdevs and weights.

Author(s)

Florian Lerch
Jorn Lotsch
Alfred Ultsch

Examples

```r
## Not run:
DistributionOptimization(c(rnorm(200), rnorm(200, 3), 2))

## End(Not run)
```
Description

Calculates a fitting error as well as the overlapping measure for the mixtures. Combines them with ratio rho in favor of Overlapping.

Usage

```r
MixedDistributionError(Means, SDs, Weights, Data, rho = 0.5, breaks = NULL, Kernels = NULL, ErrorMethod = "chisquare")
```

Arguments

- **Means**: Means of the GMM Components
- **SDs**: Standard Deviations of the GMM Components
- **Weights**: Weights of the GMM Components
- **Data**: Empirical Data based on which the GMM is build
- **rho**: Ratio of OverlappingError vs Fitting Error
- **breaks**: vector containing the breaks between bins
- **Kernels**: positions at which density is to be compared
- **ErrorMethod**: "pdeerror": fitting error is measured through Pareto Density Estimation. "chisquare": fitting error is measured through the Chi Square fitting error.

Value

Mixed Error

Author(s)

Florian Lerch

Examples

```r
Data = c(rnorm(50,1,2), rnorm(50,3,4))
MixedDistributionError(c(1,3), c(2,4), c(0.5,0.5), Data = Data)
```
OverlapErrorByDensity OverlapErrorByDensity

Description

Similarity in GMM by Density

Usage

OverlapErrorByDensity(Means, SDs, Weights, Data = NULL, Kernels = NULL)

Arguments

- Means: Means of the GMM Components
- SDs: Standard Deviations of the GMM Components
- Weights: Weights of the GMM Components
- Data: Dataset that the GMM should be compared with
- Kernels: if length(Kernels) = 1: amount of kernels if length(Kernels) > 1: kernels in dataspace at which the GMM Components will be compared with each other

Details

Calculates the similarity (overlap) between multiple modes in Gaussian Mixture Models. Kernels at equally distanced positions are used, if not explicitly given.

Value

List: OverlapError Error for estimating the maximal Overlap of AUC of PDFs of each pair of GMM Components Kernels Kernels that were used for comparing the GMM Components

Author(s)

Florian Lerch

Examples

```r
Data = c(rnorm(50,1,2), rnorm(50,3,4))
V<-OverlapErrorByDensity(c(1,3), c(2,4), c(0.5,0.5), Data = Data)
AdaptGauss::PlotMixtures(Data, c(1,3), c(2,4), SingleGausses = TRUE)
print(V$OverlapError)
```
Index

*Topic **EM**
 DistributionOptimization-package, 2

*Topic **GMM**
 DistributionOptimization-package, 2

*Topic **gaussian mixture model**
 DistributionOptimization-package, 2

*Topic **pareto density estimation**
 DistributionOptimization-package, 2

*Topic **pde**
 DistributionOptimization-package, 2

BinProb4Mixtures, 2

DistributionOptimization, 3
DistributionOptimization-package, 2

ga, 3

MixedDistributionError, 5

OverlapErrorByDensity, 6