Package ‘DeCAFS’

Type Package

Title Detecting Changes in Autocorrelated and Fluctuating Signals

Version 3.2.3

Date 2021-04-09

Maintainer Gaetano Romano <g.romano@lancaster.ac.uk>

License GPL (>= 2)

Imports Rcpp (>= 1.0.0), ggplot2, robustbase

LinkingTo Rcpp

NeedsCompilation yes

Depends R (>= 2.10)

LazyData true

BugReports https://github.com/gtromano/DeCAFS/issues

RoxygenNote 7.1.1

Author Gaetano Romano [aut, cre],
Guillem Rigaill [aut],
Vincent Runge [aut],
Paul Fearnhead [aut]

Repository CRAN

Date/Publication 2021-04-09 10:30:07 UTC

R topics documented:

bestParameters .. 2
cost ... 3
dataRWAR .. 3
dataSinusoidal ... 4
DeCAFS .. 6
Description

iteration of the least square criterion for a grid of the phi parameter

Usage

bestParameters(y, nbK = 10, type = "MAD", sdEta = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>A time-series obtained by the dataRWAR function</td>
</tr>
<tr>
<td>nbK</td>
<td>number of diff k elements to consider</td>
</tr>
<tr>
<td>type</td>
<td>type of robust variance estimator (MAD, S or Q)</td>
</tr>
<tr>
<td>sdEta</td>
<td>if sdEta = FALSE there is no random walk</td>
</tr>
</tbody>
</table>

Value

a list with an estimation of the best parameters for Eta2, Nu2 and phi

Examples

bestParameters(dataRWAR(10000, sdEta = 0.2, sdNu = 0.1, phi = 0.3, type = "rand1", nbSeg = 10)$y)
cost

Description

the least-square value

Usage

```r
cost(v, sdEta, sdNu, phi)
```

Arguments

- `v` the estimated variances of the diff k operator
- `sdEta` standard deviation in Random Walk
- `sdNu` standard deviation in AR(1)
- `phi` the autocorrelative AR(1) parameter

Value

the value of the sum of squares

dataRWAR

Generate a Random Walk + AR realization

Description

Generate a Realization from the RWAR model (check the references for further details).

\[
y_t = \mu_t + \epsilon_t
\]

where

\[
\mu_t = \mu_{t-1} + \eta_t + \delta_t, \quad \eta_t \sim N(0, \sigma^2_{\eta}), \quad \delta_t \in \mathbb{R}
\]

and

\[
\epsilon_t = \phi \epsilon_{t-1} + \nu_t, \quad \nu_t \sim N(0, \sigma^2_{\nu})
\]

Usage

```r
dataRWAR(
  n = 1000,
  sdEta = 0,
  sdNu = 1,
  phi = 0,
  type = c("none", "up", "updown", "rand1"),
  nbSeg = 20,
  jumpSize = 1
)
```
Arguments

- **n**: The length of the sequence of observations.
- **sdEta**: The standard deviation of the Random Walk Component on the signal drift.
- **sdNu**: The standard deviation of the Autocorrelated noise.
- **phi**: The autocorrelation parameter ϕ.
- **type**: Possible change scenarios for the jump structure (default: none).
- **nbSeg**: Number of segments.
- **jumpSize**: Maximum magnitude of a change.

Value

A list containing:

- **y**: the data sequence.
- **signal**: the underlying signal without the superimposed AR(1) noise.
- **changepoints**: the changepoint locations.

References

Examples

```r
library(ggplot2)
set.seed(42)
Y = dataRWAR(n = 1e3, phi = .5, sdEta = 3, sdNu = 1, jumpSize = 15, type = "updown", nbSeg = 5)
y = Y$y
ggplot(data.frame(t = 1:length(y), y), aes(x = t, y = y)) +
geom_point() +
geom_vline(xintercept = Y$changepoints, col = 4, lty = 3)
```

dataSinusoidal

Generating data from a sinusoidal model with changes

Description

This function generates a sequence of observation from a sinusoidal model with changes. This can be used as an example for model misspecification.
dataSinusoidal

Usage

dataSinusoidal(
 n,
 amplitude = 1,
 frequency = 0.001,
 phase = 0,
 sd = 1,
 type = c("none", "up", "updown", "rand1"),
 nbSeg = 20,
 jumpSize = 1
)

Arguments

n The length of the sequence of observations.
amplitude The amplitude of the sinusoid
frequency The angular frequency of the sinusoid
phase where the signal starts at time t = 0
sd standard deviation of the noise added on top of the signal
type Possible change scenarios for the jump structure (default: none)
nbSeg Number of segments
jumpSize Maximum magnitude of a change

Value

A list containing:
y the data sequence,
signal the underlying signal without the noise,
changepoints the changepoint locations

Examples

Y <- dataSinusoidal(
 1e4,
 frequency = 1 / 1e3,
 amplitude = 10,
 type = "updown",
 jumpSize = 4,
 nbSeg = 4
)
res <- DeCAFS(Y$y)
plot(res, col = "grey")
lines(Y$signal, col = "blue", lwd = 2, lty = 2)
abline(v = res$changepoints, col = 2)
abline(v = Y$changepoints, col = 4, lty = 2)
DeCAFS

Main DeCAFS algorithm for detecting abrupt changes

Description

This function implements the DeCAFS algorithm to detect abrupt changes in mean of a univariate data stream in the presence of local fluctuations and auto-correlated noise. It detects the changes under a penalised likelihood model where the data, \(y_1, \ldots, y_n \), is

\[
y_t = \mu_t + \epsilon_t
\]

with \(\epsilon_t \) an AR(1) process, and for \(t = 2, \ldots, N \)

\[
\mu_t = \mu_{t-1} + \eta_t + \delta_t
\]

where at time \(t \) if we do not have a change then \(\delta_t = 0 \) and \(\eta_t \sim N(0, \sigma^2_\eta) \); whereas if we have a change then \(\delta_t \neq 0 \) and \(\eta_t = 0 \). DeCAFS estimates the change by minimising a cost equal to twice the negative log-likelihood of this model, with a penalty \(\beta \) for adding a change. Note that the default DeCAFS behavior will assume the RW AR model, but fit on edge cases is still possible. For instance, should the user wish for DeCAFS to fit an AR model only with a piece-wise constant signal, or similarly a model that just assumes random fluctuations in the signal, this can be specified within the initial parameter estimation, by setting the argument: \(\text{modelParam} = \text{estimateParameters}(y, \text{model} = \text{"AR"}) \). Similarly, to allow for negative autocorrelation estimation, set \(\text{modelParam} = \text{estimateParameters}(Y$y, \text{phiLower} = -1) \).

Usage

DeCAFS(
 data,
 beta = 2 * log(length(data)),
 modelParam = estimateParameters(data),
 penalties = NULL,
 type = "std"
)

Arguments

data A vector of observations \(y \)
beta The \(l0 \) penalty. The default one is \(2 * \log(N) \) where \(N \) is the length of the data.
modelParam A list of 3 initial model parameters: \(\text{sdEta} \), the SD of the drift (random fluctuations) in the signal, \(\text{sdNu} \), the SD of the AR(1) noise process, and \(\text{phi} \), the autocorrelation parameter of the noise process (so the stationary variance of the AR(1) noise process is \(\text{sdNu}^2 / (1 - \text{phi}^2) \)). Defaulted to \(\text{estimateParameters(data,K = 15)} \), to perform automatically estimation of the three. See \text{estimateParameters()} \) for more details.
estimateParameters

penalties
Can be used as an alternative to the model parameters, a list of 3 initial penalties:
lambda, the l2-penalty penalising over the lag-1 of the signal, gamma, penalising
over the lag-1 of the AR(1) noise process, phi, the autocorrelation parameter. These are related to the modelParam list by list(lambda = 1 / sdEta ^ 2,gamma = 1 / sdNu ^ 2,phi = phi). Only one argument between penalties and modelParam should be specified. Defaulted to NULL.

type
The type of change one wants to look for. At the moment only 'std' is implemented.

Value
Returns an s3 object of class DeCAFSout where:

$changepoints is the vector of change-point locations,

$signal is the estimated signal without the auto-correlated noise,

$costFunction is the optimal cost in form of piecewise quadratics at the end of the sequence,

$estimatedParameters is a list of parameters estimates (if estimated, otherwise simply the initial modelParam input),

$data is the sequence of observations.

References

Examples
library(ggplot2)
set.seed(42)
Y <- dataRWAR(n = 1e3, phi = .5, sdEta = 1, sdNu = 3, jumpSize = 15, type = "updown", nbSeg = 5)
y <- Y$y
res = DeCAFS(y)
ggplot(data.frame(t = 1:length(y), y), aes(x = t, y = y)) +
 geom_point() +
 geom_vline(xintercept = res$changepoints, color = "red") +
 geom_vline(xintercept = Y$changepoints, col = "blue", lty = 3)
Usage

```r
estimateParameters(
  y,
  K = 15,
  phiLower = 0,
  phiUpper = 0.999,
  sdEtaUpper = Inf,
  sdNuUpper = Inf,
  model = c("RWAR", "AR", "RW")
)
```

Arguments

- **y**: A vector of observations
- **K**: The number of K-lags differences of the data to run the robust estimation over. Default set at 15.
- **phiLower**: Smallest value of the autocorrelation parameter. Default set at 0.
- **phiUpper**: Highest value of the autocorrelation parameter. Default set at 0.99.
- **sdEtaUpper**: Highest value of the RW standard deviation. Default set at Inf
- **sdNuUpper**: Highest value of the AR(1) noise standard deviation. Default set at Inf
- **model**: Constrain estimation to an edge case of the RWAR model. Defaults to "RWAR". To fit an AR model only with a piece-wise constant signal, specify "AR". To fit a random walk plus noise, specify "RW".

Value

A list containing:

- **sdEta**: the SD of the drift (random fluctuations) in the signal,
- **sdNu**: the SD of the AR(1) noise process,
- **phi**: the autocorrelation parameter of the noise process.

Examples

```r
set.seed(42)
y <- dataRWAR(n = 1e3, phi = .5, sdEta = 1, sdNu = 3, jumpSize = 15, type = "updown", nbSeg = 5)$y
estimateParameters(y)
```
estimVar

Variance estimation for diff k operators

Description

Estimation of the variances for the diff k operator k = 1 to nbK

Usage

estimVar(y, nbK = 10, type = "MAD")

Arguments

y A time-series obtained by the dataRWAR function
nbK number of diff k elements to consider
type type of robust variance estimator (MAD, S or Q)

Value

the vector varEst of estimated variances

Examples

estimVar(dataRWAR(1000, sdEta = 0.1, sdNu = 0.1, phi = 0.3, type = "rand1", nbSeg = 10)$y)

evalEtaNu

RW and AR(1) variance estimations with fixed AR(1) parameter

Description

Evaluation of the variances Eta2 and Nu2

Usage

evalEtaNu(v, phi, sdEta = TRUE)

Arguments

v the estimated variances of the diff k operator
phi the autocorrelative AR(1) parameter
sdEta if sdEta = FALSE there is no random walk

Value

a list with an estimation of the variances Eta2 and Nu2
oilWell

Rock structure data from an oil well

Description

This data comes from lowering a probe into a bore-hole, and taking measurements of the rock structure as the probe is lowered. As the probe moves from one rock strata to another we expect to see an abrupt change in the signal from the measurements.

Usage

oilWell

Format

A numeric vector of 4050 observations

Source

Examples

```r
# removing outliers
n = length(oilWell)
h = 32
med = rep(NA, n)
for (i in 1:n) {
  index = max(1, i - h):min(n, i + h)
  med[i] = median(oilWell[index])
}
residual = (oilWell - med)
y = oilWell[abs(residual) < 8000]
sigma = sqrt(var(residual[abs(residual) < 8000]))

# running DeCAFS
res <- DeCAFS(y/sigma)
plot(res, xlab = "time", ylab = "y", type = "l")
abline(v = res$changePoints, col = 4, lty = 3)
```
plot.DeCAFSout

DeCAFS Plotting

Description

DeCAFS output plotting method.

Usage

```r
## S3 method for class 'DeCAFSout'
plot(x, ...)
```

Arguments

- `x`: the output object from a DeCAFS call
- `...`: Additional graphical parameters to be passed down to the plot function

Value

An R plot

Examples

```r
set.seed(42)
Y <- dataRWAR(n = 1e3, phi = .5, sdEta = 1, sdNu = 3, jumpSize = 15, type = "updown", nbSeg = 5)
res = DeCAFS(Y$y)
plot(res, type = "l")
```

scenarioGenerator

Generate a piecewise constant signal of a given length

Description

Generate a piecewise constant signal of a given length

Usage

```r
scenarioGenerator(
    n,
    type = c("none", "up", "updown", "rand1"),
    nbSeg = 20,
    jumpSize = 1
)```
scenarioGenerator

Arguments

- **n**: The length of the sequence of observations.
- **type**: Possible change scenarios for the jump structure
- **nbSeg**: Number of segments
- **jumpSize**: Maximum magnitude of a change

Value

a sequence of N values for the piecewise constant signal

Examples

scenarioGenerator(1e3, "rand1")
Index

* datasets
  oilWell, 10

bestParameters, 2

cost, 3

dataRWAR, 3
dataSinusoidal, 4
DeCAFS, 6
DeCAFS(), 7

estimateParameters, 7
estimateParameters(), 6
estimVar, 9
evalEtaNu, 9

oilWell, 10

plot.DeCAFSout, 11

scenarioGenerator, 11