Package ‘DVHmetrics’

April 16, 2021

Type Package

Title Analyze Dose-Volume Histograms and Check Constraints

Version 0.4.1

Date 2021-04-09

Depends R (>= 3.5.0)

Imports ggplot2, grid, shiny, DT, KernSmooth, stats, utils, reshape2

Suggests knitr, bs4Dash

VignetteBuilder knitr

LazyData yes

Description Functionality for analyzing dose-volume histograms (DVH) in radiation oncology: Read DVH text files, calculate DVH metrics as well as generalized equivalent uniform dose (gEUD), biologically effective dose (BED), equivalent dose in 2 Gy fractions (EQD2), normal tissue complication probability (NTCP), and tumor control probability (TCP). Show DVH diagrams, check and visualize quality assurance constraints for the DVH. Includes web-based graphical user interface.

License GPL (>= 2)

URL https://github.com/dwoll/DVHmetrics/

NeedsCompilation no

Author Daniel Wollschlaeger [aut, cre], Heiko Karle [aut], Heinz Schmidberger [ctb]

Maintainer Daniel Wollschlaeger <wollschlaeger@uni-mainz.de>

Repository CRAN

Date/Publication 2021-04-16 07:40:03 UTC
R topics documented:

- `DVHmetrics-package` .. 2
- `checkConstraint` ... 3
- `convertDVH` ... 6
- `convertDVHsmooth` .. 7
- `dataConstr` ... 9
- `dataMZ` .. 10
- `getBED` .. 11
- `getDMEAN` ... 12
- `getEUD` .. 13
- `getEQD2` ... 15
- `getIsoEffD` ... 16
- `getMeanDVH` ... 17
- `getMetric` ... 19
- `getNTCP` ... 22
- `getTCP` ... 24
- `mergeDVH` ... 25
- `print.DVHs` ... 26
- `readConstraint` .. 27
- `readDVH` ... 28
- `runGUI` ... 28
- `saveConstraint` .. 31
- `saveDVH` ... 32
- `saveMetric` ... 33
- `showConstraint` .. 34
- `showDVH` ... 35
- `showMeanDVH` .. 36
- `showMeanDVH` .. 38

Index

```
DVHmetrics-package  Analyze Dose-Volume Histograms and Check Constraints
```

Description

Functionality for analyzing dose-volume histograms (DVH) in radiation oncology: Read DVH text files, calculate DVH metrics, gEUD, BED, EQD2, NTCP, TCP, show DVH diagrams, check and visualize quality assurance constraints for the DVH. Includes web-based graphical user interface.

Details

- **Package:** DVHmetrics
- **Type:** Package
- **Version:** 0.4.1
- **Date:** 2021-04-09
- **License:** GPL (>= 2)
checkConstraint

Author(s)
Daniel Wollschlaeger and Heiko Karle
Maintainer: Daniel Wollschlaeger <wollschlaeger@uni-mainz.de>

References
For a solution that also reads files in DICOM-RT format, see the RadOnc package: https://CRAN.R-project.org/package=RadOnc.

Examples
showDVH(dataMZ[[1]])
checkConstraint(dataMZ, "D1CC < 10Gy")

checkConstraint Check constraints on dose-volume histograms (DVH)

Description
Simultaneously checks one or more quality assurance constraints on one or more DVHs. Reports compliance with each constraint as well as observed difference between linearly interpolated DVH and the given constraints in terms of (relative) dose, (relative) volume, and (relative) minimal Euclidean distance.

Usage
checkConstraint(x, constr, byPat=TRUE, semSign=FALSE,
sortBy=c("none", "observed", "compliance", "structure",
"constraint", "patID", "deltaV", "deltaD",
dstMin", "dstMinRel"),
interp=c("linear", "spline", "smooth"), ...)

S3 method for class 'DVHs'
checkConstraint(x, constr, byPat=TRUE, semSign=FALSE,
sortBy=c("none", "observed", "compliance", "structure",
"constraint", "patID", "deltaV", "deltaD",
dstMin", "dstMinRel"),
interp=c("linear", "spline", "smooth"), ...)

S3 method for class 'DVHLst'
checkConstraint(x, constr, byPat=TRUE, semSign=FALSE,
sortBy=c("none", "observed", "compliance", "structure",
"constraint", "patID", "deltaV", "deltaD",
dstMin", "dstMinRel"),
interp=c("linear", "spline", "smooth"), ...)

S3 method for class 'DVHLstLst'
checkConstraint(x, constr, byPat=TRUE, semSign=FALSE,
sortBy=c("none", "observed", "compliance", "structure",
 "constraint", "patID", "deltaV", "deltaD",
 "dstMin", "dstMinRel"),
interp=c("linear", "spline", "smooth"), ...)

Arguments

x
A single DVH (object of class DVHs), multiple DVHs from one patient/structure
(object of class DVHLst), or multiple DVHs from many patients/structures (ob-
ject of class DVHLstLst). See readDVH.

constr
One or more constraints - given as a character vector or as a data.frame. See
Details.

byPat
logical. Relevant if multiple DVHs are given. If x has class DVHLst: byPat=TRUE
means that the DVHs are for one patient with multiple structures. byPat=FALSE
means that the DVHs are for one structure from multiple patients. If x has class
DVHLstLst: byPat=TRUE means that the DVHs are for multiple patients (list
components of x) with multiple structures. byPat=FALSE means that the DVHs
are for multiple structures (list components of x) from multiple patients.

semSign
logical. Meaning of the sign of the observed dose/volume differences between
DVHs and constraints. semSign=TRUE means that negative differences indicate
constraint compliance, positive differences indicate constraint violations. With
semSign=FALSE, the algebraic differences are returned as is.

sortBy
character vector. Sorting criteria for the output data frame.

interp
character. Method of interpolation between DVH points: Linear interpolation
using approx, monotone Hermite spline interpolation using spline, or local
polynomial regression using locpoly with kernel bandwidth chosen by the di-
rect plug-in method using dpill.

... Additional parameters passed to getMetric. Use for constraints on EUD (see
gEUD for parameter names), TCP (see getTCP), and NTCP (see getNTCP).

Details

A DVH constraint is a character string that consists of three parts: The DVH metric, the comparison
operator (<, >, <=, >), and the reference value together with the measurement unit. See getMetric
for defining a DVH metric, as well as for possible measurement units for dose and volume. For
constraints involving the relative dose, the DVH must contain the prescription dose.

Some example constraints are "V10Gy > 80%" (more than 80% of the structure should have received
10Gy), "V20% < 10CC" (less than 10cm^3 of the structure should have received 20% of the prescrip-
tion dose), or "D10CC > 500cGy" (The "hottest" 10cm^3 of the structure should have received more
than 500cGy).

For constraints on DEUD, DNTPC and DTCP (see getMetric), the reference measurement unit must be
Gy, cGy, even though NTCP and TCP are probabilities. Example: "DNTPC < 0.5Gy".
A DVH constraint can apply to a specific patient or to all patients, and to a specific structure or to all structures.

- If constraints apply to all patients/structures in x, constr can be a character vector with elements like the examples above.
- If constraints apply only to some patients/structures, constr must be a data frame with variables constraint, patID and structure. Each row then defines one constraint and its scope: constraint must be a character string with one constraint definition as in the examples above. patID must be either a character string with a valid patient ID or "*" if the the constraint applies to all patients. structure must be either a character string with a valid structure or "*" if the the constraint applies to all structures. If variable patID is missing from the data frame, the constraints apply to all available patients. If variable structure is missing from the data frame, the constraints apply to all available structures. See readConstraint for reading appropriate constraint data.frames from external text files.

For calculating the minimal Euclidean distance between the constraint point and the DVH, the constraint point is orthogonally projected onto each DVH segment between (interpolated) DVH nodes. The relative Euclidean distance is the minimum of these distances divided by the distance of the constraint point to the closer one of both axes (dose and volume).

If volume or dose values outside the range of possible values for a structure are requested, metrics cannot be calculated, and the result will be NA with a warning.

Value

A data frame with details on constraint compliance / violation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>patID</td>
<td>Patient ID</td>
</tr>
<tr>
<td>structure</td>
<td>Structure</td>
</tr>
<tr>
<td>constraint</td>
<td>The checked constraint</td>
</tr>
<tr>
<td>observed</td>
<td>The observed value for the metric given in the constraint</td>
</tr>
<tr>
<td>compliance</td>
<td>Does the DVH satisfy the constraint?</td>
</tr>
<tr>
<td>deltaV</td>
<td>Volume difference between constraint and observed DVH (for the constraint dose) in measurement unit specified by constraint</td>
</tr>
<tr>
<td>deltaVpc</td>
<td>Percent volume difference between constraint and observed DVH (for the constraint dose) relative to constraint volume</td>
</tr>
<tr>
<td>deltaD</td>
<td>Dose difference between constraint and observed DVH (for the constraint volume) in measurement unit specified by constraint</td>
</tr>
<tr>
<td>deltaDpc</td>
<td>Percent dose difference between constraint and observed DVH (for the constraint volume) relative to constraint dose</td>
</tr>
<tr>
<td>dstMin</td>
<td>Minimal Euclidean distance between constraint and the cumulative DVH, using linear interpolation</td>
</tr>
<tr>
<td>ptMinD</td>
<td>Dose coordinate of closest point on cumulative DVH to constraint</td>
</tr>
<tr>
<td>ptMinV</td>
<td>Volume coordinate of closest point on cumulative DVH to constraint</td>
</tr>
</tbody>
</table>

See Also

getMetric, getEUD, getNTCP, getTCP, readConstraint, saveConstraint, showConstraint
Examples

```
res <- checkConstraint(dataMZ, c("D10CC < 10Gy", "V20Gy < 20%"))
head(res)

# define constraints
constr <- data.frame(  
  patID=c("P123", "P234"),  
  structure=c("HEART", "*"),  
  constraint=c("D1CC < 20Gy", "V10% > 8CC"),  
  stringsAsFactors=FALSE)  
  # this is important
checkConstraint(dataMZ, constr=constr)
```

convertDVH Convert between differential and cumulative DVH

Description

Convert between differential and cumulative DVH as well as between dose units.

Usage

```
convertDVH(x, toType=c("asis", "cumulative", "differential"),
toDoseUnit=c("asis", "GY", "CGY"),
interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)

## S3 method for class 'matrix'
convertDVH(x, toType=c("asis", "cumulative", "differential"),
toDoseUnit=c("asis", "GY", "CGY"),
interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)

## S3 method for class 'DVHs'
convertDVH(x, toType=c("asis", "cumulative", "differential"),
toDoseUnit=c("asis", "GY", "CGY"),
interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)

## S3 method for class 'DVHLst'
convertDVH(x, toType=c("asis", "cumulative", "differential"),
toDoseUnit=c("asis", "GY", "CGY"),
interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)

## S3 method for class 'DVHLstLst'
convertDVH(x, toType=c("asis", "cumulative", "differential"),
toDoseUnit=c("asis", "GY", "CGY"),
interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)
```
convertDVHsmooth

interp=c("asis", "linear"),
nodes=NULL, rangeD=NULL, perDose=TRUE)

Arguments

x
One DVH (object of class matrix or DVHs, multiple cumulative DVHs from one
patient with multiple structures (object of class DVHLst), or multiple cumulative
DVHs from many patients, each with multiple structures (object of class
DVHLstLst). See readDVH.

toType
character. Convert the DVH to this type. "asis" keeps the current DVH type.

toDoseUnit
character. Convert the DVH to this dose unit. "asis" keeps the current dose unit.

interp
character. Interpolation method for the cumulative DVH. "asis" for no inter-
polation and "linear" for linear interpolation.

nodes
numeric. Minimum number of nodes to use in linear interpolation. Number of
available nodes is kept as is for NULL or if larger than nodes.

rangeD
numeric. Dose range for linear interpolation method. If NULL it is determined
individually for each DVH.

perDose
logical. Are the differential DVH volume values per unit dose?

Value

Depending on the input, an object of class matrix, DVHs, DVHLst, or DVHLstLst.

See Also

convertDVHsmooth, readDVH, showDVH

Examples

res <- convertDVH(dataMZ[[c(1, 1)]],
 toType="cumulative",
 toDoseUnit="CGY")

convertDVHsmooth Convert between differential and cumulative DVH

Description

Convert between differential and cumulative DVH as well as between dose units, using smoothing
of the differential DVH.
Usage

```r
convertDVHsmooth(x,
    toType=c("asis", "cumulative", "differential"),
    toDoseUnit=c("asis", "GY", "CGY"),
    interp=c("asis", "linear", "spline", "ksmooth", "smoothSpl"),
    nodes=NULL, rangeD=NULL, perDose=TRUE)
```

S3 method for class 'matrix'
```r
convertDVHsmooth(x,
    toType=c("asis", "cumulative", "differential"),
    toDoseUnit=c("asis", "GY", "CGY"),
    interp=c("asis", "linear", "spline", "ksmooth", "smoothSpl"),
    nodes=NULL, rangeD=NULL, perDose=TRUE)
```

S3 method for class 'DVHs'
```r
convertDVHsmooth(x,
    toType=c("asis", "cumulative", "differential"),
    toDoseUnit=c("asis", "GY", "CGY"),
    interp=c("asis", "linear", "spline", "ksmooth", "smoothSpl"),
    nodes=NULL, rangeD=NULL, perDose=TRUE)
```

S3 method for class 'DVHLst'
```r
convertDVHsmooth(x,
    toType=c("asis", "cumulative", "differential"),
    toDoseUnit=c("asis", "GY", "CGY"),
    interp=c("asis", "linear", "spline", "ksmooth", "smoothSpl"),
    nodes=NULL, rangeD=NULL, perDose=TRUE)
```

S3 method for class 'DVHLstLst'
```r
convertDVHsmooth(x,
    toType=c("asis", "cumulative", "differential"),
    toDoseUnit=c("asis", "GY", "CGY"),
    interp=c("asis", "linear", "spline", "ksmooth", "smoothSpl"),
    nodes=NULL, rangeD=NULL, perDose=TRUE)
```

Arguments

- **x**
 - One DVH (object of class `matrix` or `DVHs`, multiple cumulative DVHs from one patient with multiple structures (object of class `DVHLst`), or multiple cumulative DVHs from many patients, each with multiple structures (object of class `DVHLstLst`). See `readDVH`.

- **toType**
 - character. Convert the DVH to this type. "asis" keeps the current DVH type.

- **toDoseUnit**
 - character. Convert the DVH to this dose unit. "asis" keeps the current dose unit.

- **interp**
 - character. Interpolation method for the differential DVH. "asis" and "linear" for no interpolation. "spline" for spline interpolation using `splinefun` ("fmm" for differential, "monoH.FC" for cumulative DVHs), "ksmooth" for local polynomial regression using `locpoly` with kernel bandwidth chosen by the direct
plug-in method using `dpill`, "smoothSpl" for a smoothing spline using `smooth.spline`, with the smoothing parameter chosen by generalized crossvalidation.

Value

Depending on the input, an object of class matrix, DVHs, DVHLst, or DVHLstLst.

See Also

`convertDVH`, `readDVH`, `showDVH`

Examples

```r
res <- convertDVHsmooth(dataMZ[[c(1, 1)]],
                        toType="cumulative",
                        toDoseUnit="CGY")
```

dataConstr

Constraint data frame

Description

Data frame with quality assurance constraints to use with built-in DVH object `dataMZ`.

Usage

```r
data(dataConstr)
```

Format

A data frame with 6 entries for the following 3 variables.

- **constraint** The constraint character string.
- **patID** The patient ID character string or * wildcard.
- **structure** The structure character string or * wildcard.

Details

See `checkConstraint` for the definition of a constraint.

See Also

`readConstraint`, `checkConstraint`, `showConstraint`
Examples

checkConstraint(dataMZ, constr=dataConstr)

dataMZ DVH data from 3 patients

Description

Data from 3 patients with radiotherapy. DVHs for 7 heart structures.

Usage

data(dataMZ)

Format

Object of class `DVHLstLst` with 3 components corresponding to 3 patients.

P123 Object of class `DVHLst`. 7 objects of class `DVHs` for structures AMYOC (left anterior heart wall), AMYOCR (right anterior heart wall), AOVALVE (aortic valve), AVNODE (AV node), HEART (complete heart), PULMVALVE (pulmonary valve), MYOCARD (heart wall)

P234 Object of class `DVHLst`. 7 objects of class `DVHs` for the same structures as patient P123.

P345 Object of class `DVHLst`. 7 objects of class `DVHs` for the same structures as patient P123.

Details

Data courtesy of Department of Radiation Oncology (Prof. Dr. Schmidberger), University Medical Center Mainz, Germany.

See `readDVH` for classes `DVHLstLst`, `DVHLst`, and `DVHs`.

See Also

`readDVH`, `print.DVHs`

Examples

print(dataMZ, verbose=TRUE)
getBED

Calculate biologically effective dose (BED)

Description

Calculate biologically effective dose (BED) according to the linear-quadratic model.

Usage

getBED(D=NULL, fd=NULL, fn=NULL, ab=NULL)

Default S3 method:
getBED(D=NULL, fd=NULL, fn=NULL, ab=NULL)

S3 method for class 'DVHs'
getBED(D=NULL, fd=NULL, fn=NULL, ab=NULL)

S3 method for class 'DVHLst'
getBED(D=NULL, fd=NULL, fn=NULL, ab=NULL)

S3 method for class 'DVHLstLst'
getBED(D=NULL, fd=NULL, fn=NULL, ab=NULL)

Arguments

D Default: Total dose. If NULL, fn must be given. Alternative: One cumulative DVH (object of class DVHs), multiple cumulative DVHs from one patient with multiple structures (object of class DVHLst), or multiple cumulative DVHs from many patients, each with multiple structures (object of class DVHLstLst). See readDVH.

fd Fractional dose. If D is some kind of DVH object, only the first element will be used.

fn Number of fractions. If NULL, D must be the total dose. Ignored if D is some kind of DVH object.

ab alpha/beta ratio for the relevant tissue. If some kind of DVH object, only the first element will be used.

Value

Default method: A data frame with variables BED, fractDose, ab.

If D is some kind of DVH object, the same kind of object is returned with the individual dose values converted to BED.

References

getDMEAN

See Also

g EQD2, getIsoEffD

Examples

getBED(D=50, fd=2.5, ab=c(2, 3, 4))
getBED(D=dataMZ[[c(1, 1)]], fd=1.8, ab=3)

getDMEAN

DMEAN and other dose metrics

Description

Calculate DMEAN and other dose metrics from the (interpolated) differential DVH without relying on the values exported by the TPS.

Usage

getDMEAN(x, interp=c("linear", "spline", "ksmooth", "smoothSpl"),
nodes=5001L)

S3 method for class 'DVHs'
getDMEAN(x, interp=c("linear", "spline", "ksmooth", "smoothSpl"),
nodes=5001L)

S3 method for class 'DVHLst'
getDMEAN(x, interp=c("linear", "spline", "ksmooth", "smoothSpl"),
nodes=5001L)

S3 method for class 'DVHLstLst'
getDMEAN(x, interp=c("linear", "spline", "ksmooth", "smoothSpl"),
nodes=5001L)

Arguments

x

One DVH (object of class DVHs, multiple DVHs from one patient with multiple structures (object of class DVHLst), or multiple DVHs from many patients, each with multiple structures (object of class DVHLstLst). See readDVH.

interp

character. Method of interpolation between DVH points: Linear interpolation applies to the cumulative DVH (recommended). Spline interpolation with splinefun, local polynomial regression with locpoly, and smoothing splines with smooth.spline apply to the differential DVH (not recommended).

nodes

numeric. Minimum number of nodes to use in interpolation. Number of available nodes is kept as is for NULL or if larger than nodes.
Value

A data frame with the following value(s).

- **patID**
 Patient ID.

- **structure**
 Structure name.

- **doseMin**
 Minimum dose.

- **doseMax**
 Maximum dose.

- **doseAvg**
 Mean dose.

- **doseMed**
 Median dose.

- **doseSD**
 Dose standard deviation.

- **doseMode**
 Dose mode.

- **doseAvgTPS**
 Mean dose as exported from the TPS (if available).

- **doseMedTPS**
 Median dose as exported from the TPS (if available).

- **doseMinTPS**
 Minimum dose as exported from the TPS (if available).

- **doseMaxTPS**
 Maximum dose as exported from the TPS (if available).

See Also

- `getMetric`,
- `convertDVHsmooth`,
- `approxfun`,
- `splinefun`,
- `smooth.spline`,
- `dpill`,
- `locpoly`

Examples

```
getDMEAN(dataMZ[[1]], interp="linear")
```

Description

Calculate dose in 2Gy fractions biologically equivalent dose according to the linear-quadratic model, assuming a homogeneous dose distribution within the volume.

Usage

```
getEQD2(D=NULL, fd=NULL, fn=NULL, ab=NULL)
```

- ## Default S3 method:
 `getEQD2(D=NULL, fd=NULL, fn=NULL, ab=NULL)`

- ## S3 method for class 'DVHs'
 `getEQD2(D=NULL, fd=NULL, fn=NULL, ab=NULL)`

- ## S3 method for class 'DVHLst'
 `getEQD2(D=NULL, fd=NULL, fn=NULL, ab=NULL)`

- ## S3 method for class 'DVHLstLst'
 `getEQD2(D=NULL, fd=NULL, fn=NULL, ab=NULL)`
getEQD2

Arguments

\(D \)
Default: Total dose. If NULL, fn must be given. Alternative: One cumulative DVH (object of class DVHs), multiple cumulative DVHs from one patient with multiple structures (object of class DVHlst), or multiple cumulative DVHs from many patients, each with multiple structures (object of class DVHlstlst). See readDVH.

\(fd \)
Fractional dose. If \(D \) is some kind of DVH object, only the first element will be used.

\(fn \)
Number of fractions. If NULL, \(D \) must be given. Ignored if \(D \) is some kind of DVH object.

\(ab \)
alpha/beta ratio for the relevant tissue. If \(D \) is some kind of DVH object, only the first element will be used.

Details

EQD2 is a special case of isoeffective dose calculation with fractional dose \(d2=2 \), see getIsoEffD. The calculation assumes a homogeneous dose distribution within the volume.

Value

Default method: A data frame with variables EQD2, fractDose, ab.

If \(D \) is some kind of DVH object, the same kind of object is returned with the individual dose values converted to EQD2.

References

See Also

getBED, getIsoEffD

Examples

gEQD2(D=50, fd=2.5, ab=c(2, 3, 4))
gEQD2(dataMZ[[c(1, 1)]], fd=1.8, ab=3)
Description

Calculate generalized equivalent uniform dose (gEUD). May be based on EQD2.

Usage

```r
getEUD(x, EUDa, EUDfd=NULL, EUDab=NULL, ...)
```

S3 method for class 'DVHs'
getEUD(x, EUDa, EUDfd=NULL, EUDab=NULL, ...)

S3 method for class 'DVHLst'
getEUD(x, EUDa, EUDfd=NULL, EUDab=NULL, ...)

S3 method for class 'DVHLstLst'
getEUD(x, EUDa, EUDfd=NULL, EUDab=NULL, ...)

Arguments

- `x` One cumulative DVH (object of class `DVHs`, multiple cumulative DVHs from one patient with multiple structures (object of class `DVHLst`), or multiple cumulative DVHs from many patients, each with multiple structures (object of class `DVHLstLst`). See `readDVH`.
- `EUDa` Exponential parameter a.
- `EUDfd` If gEUD should be based on EQD2: Fraction dose.
- `EUDab` If gEUD should be based on EQD2: alpha/beta ratio for the relevant tissue.
- `...` Ignored. Used to catch additional arguments passed from `getMetric`.

Value

A data frame with variables EUD, patID, and structure.

References

See Also

`getEQD2, getMetric`
Examples

gEUd(dataM2[[1]], EUDa=2)

based on EQD2
gEUd(dataM2[[1]], EUDa=2, EUDfd=1.8, EUDab=4)

gIsoEffD Isoeffective dose calculation

Description

Convert given (fractional) dose into a corresponding (fractional) dose for a different total dose / fractionation schedule according to the linear-quadratic model.

Usage

gIsoEffD(D1=NULL, D2=NULL, fd1=NULL, fd2=NULL, ab=NULL)

Default S3 method:
gIsoEffD(D1=NULL, D2=NULL, fd1=NULL, fd2=NULL, ab=NULL)

S3 method for class 'DVHs'
gIsoEffD(D1=NULL, D2=NULL, fd1=NULL, fd2=NULL, ab=NULL)

S3 method for class 'DVHLst'
gIsoEffD(D1=NULL, D2=NULL, fd1=NULL, fd2=NULL, ab=NULL)

S3 method for class 'DVHLstLst'
gIsoEffD(D1=NULL, D2=NULL, fd1=NULL, fd2=NULL, ab=NULL)

Arguments

D1 Default: numeric vector. Total dose 1. Alternative: One cumulative DVH (object of class DVHs, multiple cumulative DVHs from one patient with multiple structures (object of class DVHLst), or multiple cumulative DVHs from many patients, each with multiple structures (object of class DVHLstLst). See readDVH.

D2 numeric vector. Total dose 2. Ignored if D is some kind of DVH object.

fd1 numeric vector. Fractional dose 1. If D is some kind of DVH object, only the first element will be used.

fd2 numeric vector. Fractional dose 2. If D is some kind of DVH object, only the first element will be used.

ab numeric vector. alpha/beta ratio for the relevant tissue in the linear-quadratic model. If D is some kind of DVH object, only the first element will be used.
getMeanDVH

Details

DVH methods: Calculate D_2 based on D_1, fd_1, fd_2, and ab. The default method can also calculate fd_2 based on D_1, D_2, fd_1, and ab.

Value

The (vector of) corresponding (fractional) dose value(s). If D is some kind of DVH object, the same kind of object is returned with the individual dose values converted to D_2.

References

See Also

getBED, getEQD2

Examples

reference: 70Gy in 2Gy fractions
new fractionation: 3Gy fractions
calculate corresponding dose
(D2 <- getIsoEffD(D1=70, fd1=2, fd2=3, ab=c(3.5, 10)))

getIsoEffD(D1=dataMZ[[c(1, 1)]], fd1=1.8, fd2=2, ab=3.5)

getMeanDVH(x, fun=list(mean=mean, median=median, sd=sd),
cumul=TRUE, thin=1, byPat=TRUE, patID=NULL, structure=NULL,
fixed=TRUE)

S3 method for class 'DVHs'
getMeanDVH(x, fun=list(mean=mean, median=median, sd=sd),
cumul=TRUE, thin=1, byPat=TRUE, patID=NULL, structure=NULL,
fixed=TRUE)

S3 method for class 'DVHLst'

Description

Returns the point-wise mean and median DVH with the point-wise standard deviation for a given list of input DVHs. Other point-wise measures may be calculated as well.

Usage

gmeanDVH(x, fun=list(mean=mean, median=median, sd=sd),
cumul=TRUE, thin=1, byPat=TRUE, patID=NULL, structure=NULL,
fixed=TRUE)
getMeanDVH(x, fun=list(mean=mean, median=median, sd=sd),
 cumul=TRUE, thin=1, byPat=TRUE, patID=NULL, structure=NULL,
 fixed=TRUE)

S3 method for class 'DVHLstLst'
getMeanDVH(x, fun=list(mean=mean, median=median, sd=sd),
 cumul=TRUE, thin=1, byPat=TRUE, patID=NULL, structure=NULL,
 fixed=TRUE)

Arguments

x A single DVH (object of class DVHs), multiple DVHs from one patient/structure
 (object of class DVHLst), or multiple DVHs from many patients/structures (object of class DVHLstLst). See readDVH.

fun Named list of functions that should be applied to yield 1 point-wise DVH measure. Functions must have exactly 1 return value.

cumul logical. Get point-wise mean and SD for cumulative or differential (per unit dose) DVH?

thin numeric. The number of DVH nodes (dose values) is reduced by 1/thin of the maximum number of nodes in x before interpolating and averaging.

byPat logical. Relevant if multiple DVHs are given. byPat=TRUE means that for each patient, DVHs for multiple structures are averaged point wise. byPat=FALSE means that for each structure, DVHs for multiple patients averaged point wise.

patID character vector. Include DVHs for these patients only when calculating mean/SD. If missing, all patients are used. Can be a regular expression with fixed=FALSE, see regex.

structure character vector. Include DVHs for these structures only when calculating mean/SD. If missing, all structures are used. Can be a regular expression with fixed=FALSE, see regex.

fixed logical. Use fixed=FALSE for regular expression matching of patID and structure.

Details

Before calculating the point-wise mean and SD, DVHs in x are first linearly interpolated with convertDVH using the same set of nodes.

Value

Returns a data frame with point-wise mean DVH averaged over structures (byPat=TRUE) or over patients (byPat=FALSE) including the point-wise standard deviation or other measures as controlled by fun.

See Also

showDVH, convertDVH
getMetric

Examples

```r
res1 <- getMeanDVH(dataMZ, byPat=TRUE, structure=c("HEART", "AMYOCL"))
head(res1)

# average differential DVHs
# matches patients P123 and P234
res2 <- getMeanDVH(dataMZ, fun=list(min=min, max=max),
                   cumul=FALSE, byPat=FALSE,
                   patID="23", fixed=FALSE)
head(res2)
```

getMetric
Calculate dose-volume-histogram metrics

Description

Simultaneously calculates multiple metrics for multiple cumulative DVHs.

Usage

```r
getMetric(x, metric, patID, structure, 
          sortBy=c("none", "observed", "patID", "structure", "metric"),
          splitBy=c("none", "patID", "structure", "metric"),
          interp=c("linear", "spline", "ksmooth"), fixed=TRUE, ...)
```

S3 method for class 'DVHs'
```r
getMetric(x, metric, patID, structure, 
          sortBy=c("none", "observed", "patID", "structure", "metric"),
          splitBy=c("none", "patID", "structure", "metric"),
          interp=c("linear", "spline", "ksmooth"), fixed=TRUE, ...)
```

S3 method for class 'DVHLst'
```r
getMetric(x, metric, patID, structure, 
          sortBy=c("none", "observed", "patID", "structure", "metric"),
          splitBy=c("none", "patID", "structure", "metric"),
          interp=c("linear", "spline", "ksmooth"), fixed=TRUE, ...)
```

S3 method for class 'DVHLstLst'
```r
getMetric(x, metric, patID, structure, 
          sortBy=c("none", "observed", "patID", "structure", "metric"),
          splitBy=c("none", "patID", "structure", "metric"),
          interp=c("linear", "spline", "ksmooth"), fixed=TRUE, ...)
```

Arguments

- **x**
 One cumulative DVH (object of class DVHs, multiple cumulative DVHs from one patient with multiple structures (object of class DVHLst), or multiple cumulative DVHs from many patients, each with multiple structures (object of class DVHLstLst). See `readDVH`.

metric character vector defining one or more DVH metrics. See Details for their definition. For metrics involving the relative dose, the DVH must contain the prescription dose.

patID character vector. Calculate given DVH metrics for these patients only. If missing, DVH metrics are calculated for all patients. Can be a regular expression if additional argument fixed=FALSE is supplied as well, see regex.

structure character vector. Calculate given DVH metrics for these structures only. If missing, DVH metrics are calculated for all structures. Can be a regular expression if additional argument fixed=FALSE is supplied as well, see regex.

sortBy character vector giving the sorting criteria for the output data frame.

splitBy character vector. Split results into a list of data frames where list components are defined by groups from combining these variables.

interp character. Method of interpolation between DVH points: Linear interpolation using approx, monotone Hermite spline interpolation using splinefun, or local polynomial regression using locpoly with kernel bandwidth chosen by the direct plug-in method using dpill.

fixed logical. Use fixed=FALSE for regular expression matching of patID and structure.

... Further arguments passed to getEUD (for metric="DEUD"), getTCP (for metric="DTCP"), or getNTCP (for metric="DNTCP").

Details

A pre-specified DVH metric is one of the following character strings:

- "DMEAN": The volume-weighted mean dose of the structure.
- "DMEDIAN": Median dose, equal to D50%
- "DMIN": The minimum dose of the non-zero-dose voxels in the structure.
- "DMAX": The maximum dose of the non-zero-dose voxels in the structure.
- "DSD": The standard deviation of the dose in the structure.
- "DRX": The prescription dose.
- "DHI": The Homogeneity Index according to ICRU 83: (D2%-D98%)/D50%.
- "DEUD": The generalized equivalent uniform dose (gEUD). See getEUD for mandatory and optional parameters.
- "DNTCP": The normal tissue complication probability (NTCP). See getNTCP for mandatory and optional parameters.
- "DTCP": The tumor control probability (TCP). See getNTCP for mandatory and optional parameters.

A free DVH metric is a character string which has three mandatory elements and one optional element in the following order (AAPM TG263 2018, section 9.2, note that complementary / cold metrics are not yet implemented):

- 1st letter "D" or "V": "D" If the requested value is a dose, "V" if it is a volume.
• 2nd element <number>: If the first letter is "D", this gives the volume for which the dose value of the cumulative DVH should be reported. If the first letter is "V", this gives the dose for which the volume value of the cumulative DVH should be reported.

• 3rd element <measurement unit>: The measurement unit for the 2nd element of the metric. Absolute volumes are indicated by "CC" for cubic centimeter, relative volumes by "%". Absolute doses are indicated by "Gy" for Gray, "cGy" for Centigray, or "eV/g" for uncalibrated dose in DVHs exported by PRIMO. Relative doses are indicated by "%".

• Optional 4th element _<measurement unit>: The measurement unit of the output value. Possible units are as for the 3rd element. If missing, dose is reported as absolute dose in the measurement unit used in the DVH. Volume is reported as relative volume in %.

Examples:

• "D1%": Minimal absolute dose for the "hottest" 1% of the structure, i.e., the maximally irradiated 1% of the structure was exposed to at least this absolute dose.

• "D1CC_%": Minimal relative dose (% of prescription dose) for the maximally irradiated cm^3 of the structure.

• "V500cGy": Relative structure volume in % that was exposed to at least 500cGy.

• "V10%_CC": Absolute structure volume in cm^3 that was exposed to at least 10% of prescription dose.

If volume or dose values outside the range of possible values for a structure are requested, metrics cannot be calculated, and the result will be NA with a warning.

DMEAN, DMEDIAN, DMIN, DMAX, DSD are taken from the exported DVH if present. Otherwise, the differential DVH is generated and used for calculating these metrics.

Value

A data frame or a list with details on the calculated metrics.

<table>
<thead>
<tr>
<th>patID</th>
<th>Patient ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>structure</td>
<td>Structure</td>
</tr>
<tr>
<td>metric</td>
<td>The calculated DVH metric</td>
</tr>
<tr>
<td>observed</td>
<td>The observed value for the DVH metric</td>
</tr>
</tbody>
</table>

References

Rancati et al. (2004). Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). Radiotherapy Oncology, 73, 21-32.

See Also

saveMetric, getEUD, getNTCP, getTCP, getEQD2, approxfun, splinefun, d pill, locpoly
Examples

getMetric(dataMZ, c("D1CC", "V10%_CC"),
 sortBy=c("metric", "structure", "observed"))

matching patients are P123 and P234
matching structures are AMYOCCL and AMYOCR
getMetric(dataMZ, c("D1CC", "V10%_CC"),
 patID="23",
 structure=c("AMYOC", "VALVE"),
 splitBy="patID",
 fixed=FALSE)

gEUD with a=2
getMetric(dataMZ[[c(1, 1)]], "DEUD", EUDa=2)

gEUD based on EQD2 with a=2, 20 fractions
getMetric(dataMZ[[c(1, 1)]], "DEUD", EUDa=2, EUDfd=1.8)

NTCP Lyman probit model with TD50=20, m=4, n=0.5
getMetric(dataMZ[[c(1, 1)]], "DNTCP",
 NTCPtd50=20, NTCPm=4, NTCPn=0.5, NTCPtype="probit")

getNTCP

Normal tissue complication probability (NTCP)

Description

Calculate normal tissue complication probability (NTCP) from Lyman’s probit model, Niemierko’s logit model, or the Poisson model. May be based on EQD2.

Usage

```r
getNTCP(x, NTCPtd50=NULL, NTCPm=NULL, NTCPn=NULL, NTCPgamma50=NULL,
    EUDa=NULL, EUDfn=NULL, EUDab=NULL,
    NTCPtype=c("probit", "logit", "poisson"), ...)
```

S3 method for class 'DVHs'
```r
getNTCP(x, NTCPtd50=NULL, NTCPm=NULL, NTCPn=NULL, NTCPgamma50=NULL,
    EUDa=NULL, EUDfn=NULL, EUDab=NULL,
    NTCPtype=c("probit", "logit", "poisson"), ...)
```

S3 method for class 'DVHLst'
```r
getNTCP(x, NTCPtd50=NULL, NTCPm=NULL, NTCPn=NULL, NTCPgamma50=NULL,
    EUDa=NULL, EUDfn=NULL, EUDab=NULL,
    NTCPtype=c("probit", "logit", "poisson"), ...)
```

S3 method for class 'DVHLstLst'
```r
getNTCP(x, NTCPtd50=NULL, NTCPm=NULL, NTCPn=NULL, NTCPgamma50=NULL,
```
getNTCP

EUDA=NULL, EUDfn=NULL, EUDab=NULL,
NTCPtype=c("probit", "logit", "poisson"), ...)

Arguments

x One cumulative DVH (object of class DVHs, multiple cumulative DVHs from
one patient with multiple structures (object of class DVHLst), or multiple cumu-
lative DVHs from many patients, each with multiple structures (object of class
DVHLstLst). See readDVH.

NTCPtd50 Tolerance dose with 50% complication probability.

NTCPm Probit/logit Parameter m. Equal to 1 / (NTCPgamma50*sqrt(2*pi)).

NTCPn Parameter n. Equal to 1/a with exponential gEUD parameter a.

NTCPgamma50 Poisson parameter gamma50. Equal to 1 / (NTCPm*sqrt(2*pi))

EUDA If gEUD should be based on EQD2: Exponential parameter a.

EUDfn If gEUD should be based on EQD2: Number of fractions.

EUDab If gEUD should be based on EQD2: alpha/beta ratio for the relevant tissue.

NTCPtype "probit" - Lyman probit model, "logit" - Niemierko logit model, "poisson" - Poisson model.

... Ignored. Used to catch additional arguments passed from getMetric.

Details

For DVH reduction, gEUD is used. This is equivalent to the Kutcher-Burman DVH reduction
scheme. The probit model is given in equation (1), the logit model in equation (2), and the Poisson
model in equation (3) in Kaellman (1992), with gEUD plugged in for D.

Value

A data frame with variables NTCP, patID, and structure.

References

method for calculating complication probabilities for threedimensional treatment planning evalua-

Research, 104(2), S13-19.

1100.

Rancati et al. (2004). Fitting late rectal bleeding data using different NTCP models: results from
an Italian multi-centric study (AIROPROS0101). Radiotherapy Oncology, 73, 21-32.
getTCP

See Also

getTCP, getEUD, getMetric

Examples

getNTCP(dataMZ[[1]],
 NTCPtd50=40, NTCPm=0.6, NTCPn=0.5, NTCPtype="probit")

Description

Calculate tumor control probability (TCP) from Lyman’s probit model, Niemierko’s logit model, or
Kaellman’s Poisson model. May be based on EQD2.

Usage

getTCP(x, TCPtcd50=NULL, TCPm=NULL, TCPn=NULL, TCPgamma50=NULL,
 EUDa=NULL, EUDfn=NULL, EUDab=NULL,
 TCPtype=c("probit", "logit", "poisson"), ...)

Arguments

x One cumulative DVH (object of class DVHs, multiple cumulative DVHs from
 one patient with multiple structures (object of class DVHLst), or multiple cumu-
 lative DVHs from many patients, each with multiple structures (object of class
 DVHLstLst). See readDVH.
TCPtcd50 Tolerance dose with 50% tumor control probability.
TCPm Probit/logit Parameter m. Equal to 1 / (NTCPgamma50*sqrt(2*pi)).
TCPn Parameter n. Equal to 1/a with exponential gEUD paramter a.
TCPgamma50 Poisson parameter gamma50. Equal to 1 / (NTCPm*sqrt(2*pi))
EUDa If gEUD should be based on EQD2: Exponential parameter a.
EUDfn If gEUD should be based on EQD2: Number of fractions.
EUDab If gEUD should be based on EQD2: alpha/beta ratio for the relevant tissue.
TCPtype "probit" - Lyman probit model, "logit" - Niemierko logit model, "poisson"
 - Kaellman Poisson (relative seriality) model.
... Ignored. Used to catch additional arguments passed from getMetric.

Details

For DVH reduction, gEUD is used. This is equivalent to the Kutcher-Burman DVH reduction
scheme.
mergeDVH

Value

A data frame with variables TCP, patID, and structure.

References

Rancati et al. (2004). Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). Radiotherapy Oncology, 73, 21-32.

See Also

getNTCP, getEUD, getMetric

Examples

getTCP(dataMZ[[1]],
 TCPtcd50=40, TCPm=0.6, TCPn=0.5, TCPtype="probit")

mergeDVH

| Merge existing DVH objects |

Description

Combine several existing DVH objects into one object.

Usage

mergeDVH(...)

Arguments

...

DVHLstLst objects.

Details

The first object determines whether the resulting object is organized by patient or by structure. Objects need not originally come from the same treatment planning system.
Value

Returns an object of class DVHLstLst.

Examples

```r
## Not run:
# pick some DVH files interactively
a <- readDVH(type="Cadplan")

# pick other DVH files interactively
b <- readDVH(type="Eclipse")

# combine DVH data
res <- mergeDVH(a, b)
res

## End(Not run)
```

print.DVHs

Print basic information about one or more DVHs

Description

Print basic information (patients, structures, dose range) about one or more DVHs.

Usage

```r
## S3 method for class 'DVHs'
print(x, ...)

## S3 method for class 'DVHLst'
print(x, ...)

## S3 method for class 'DVHLstLst'
print(x, ...)
```

Arguments

- `x` A single DVH (object of class `DVHs`), multiple DVHs from one patient/structure (object of class `DVHLst`), or multiple DVHs from many patients/structures (object of class `DVHLstLst`). See `readDVH`.
- `...` Further arguments: `print.DVHLst(x, verbose=TRUE)` prints more information about each DVH.

Value

Prints summary information about the DVHs.
readConstraint

See Also

`readDVH`

Examples

```r
print(dataMZ)
print(dataMZ, verbose=TRUE)
```

Description

Reads the definition of quality assurance constraints from a text file.

Usage

```r
readConstraint(x, ...)
```

Arguments

- `x` character string giving the path to a single text file with the constraint definition. May contain globbing symbols understood by `Sys.glob`. If missing and in interactive mode, `readDVH` opens a file selector widget. See Details.
- `...` Further arguments passed to `read.table`, e.g., `sep=\\t` to define the column separator as tab.

Details

This is a wrapper for `read.table`.

The text file should contain three columns with the column names `patID`, `structure`, `constraint` in the first line. Each further line then defines one constraint and the scope it applies to in terms of patients and structures. See `checkConstraint` for the definition of a constraint and for the definition of a scope. Example content:

```
"patID" "structure" "constraint"
"*" "HEART" "D1CC < 20Gy"
"234" "*" "V10% > 8CC"
```

Value

A data frame with columns `patID`, `structure`, `constraint` that can be used in functions `checkConstraint` and `showConstraint`.

See Also

`read.table`, `checkConstraint`, `saveConstraint`, `showConstraint`
Examples

```r
## Not run:
readConstraint("constraint.txt")
readConstraint()

## End(Not run)
```

readDVH

Read DVH text files

Description

Reads single or multiple DVH text files as exported from Varian Eclipse(TM), CadPlan(TM), OnCentra MasterPlan(TM), Philips Pinnacle3 (TM), Elekta Monaco (TM), Tomo HiArt (TM), RaySearch Labs RayStation (TM), or Medcom ProSoma (TM). Supports cumulative and differential DVHs.

Usage

```r
readDVH(x, 
  planInfo=FALSE, courseAsID=FALSE, add, ...)
```

Arguments

- `x` character vector giving paths to DVH text files. May contain globbing symbols understood by `Sys.glob`. If missing and in interactive mode, `readDVH` opens a file selector widget. Under Windows, this widget allows selecting multiple files simultaneously. For type="Pinnacle", `x` should be one of the following: A directory with information for one patient, a directory with several sub-directories (one for each patient), or a zip file of such directories. Under Windows, if `x` is missing and type="Pinnacle", `readDVH` opens a folder selector widget.

- `type` character. Indicates which program the DVH text files were exported from. Supported: "Cadplan" (tested with version 6.4.7), "Eclipse" (tested with Varian Eclipse version 10-15), "Masterplan" (tested with OnCentra MasterPlan version 4.3), "Pinnacle" (tested with Pinnacle3 version 9, see Details), "Monaco" (tested with Elekta Monaco version 5), "HiArt" (TomoTherapy HiArt), "RayStation" (RaySearch Labs RayStation), "ProSoma" (Medcom ProSoma), "PRIMO" (tested with version 0.3.1.1558).

- `planInfo` Experimental: Either FALSE or character string. In the latter case, `readDVH` tries to extract additional information from the `Plan` field in the DVH file, e.g., the prescription dose for a sum plan or the boost quadrant. Undocumented, see source.
courseAsID logical. If TRUE, the Course entry in the header section of a DVH file is appended to the regular patient ID. Currently supported only for type="Eclipse".

add DVHLstLst object. Existing object that should be merged with the new data from the files.

Additional arguments passed on to file. Specify UTF-8 file encoding with encoding="UTF-8" or encoding="UTF-8-BOM" (when a byte-order-mark is used). Passing additional arguments is currently not supported when reading Pinnacle files. Additional arguments are also used for type="HiArt" where a list hiart may be supplied that specifies patient IDs, absolute structure volumes, and prescription dose. If Eclipse uncertainty plans are present, specify uncertainty=TRUE (see Details).

Details

Absolute dose values need to be given in Gy, cGy, or eV/g for uncalibrated dose in DVHs exported by PRIMO. Absolute volume values need to be given in in cm^3.

Differential DVHs are automatically converted to cumulative DVHs, but the differential DVH information is kept.

Sum plans are supported.

For Eclipse starting with version 13, the date format is locale dependent as it uses words for day and month. Importing those dates as class Date requires that the correct locale is set (see Sys.setlocale), and that files containing accents are read using the correct encoding (see above). Otherwise, date is stored as a character string.

For RayStation, only cumulative DVHs with absolute volume are currently supported. Volume is assumed to be measured in cm^3.

For files with absolute volume exported from Masterplan and Tomo HiArt, you can specify volume_from_dvh=TRUE if the structure volume should be guessed from the maximal volume given in the DVH for each structure.

Since files from HiArt, ProSoma and PRIMO do not contain info on patient ID, the current workaround is to generate a random ID.

To export data from Tomo HiArt, copy to clipboard and then save to file from a text editor. Support for Tomo HiArt files is currently limited to those with absolute dose. Please send an anonymized sample file if you need to read files with relative dose. You can provide a list hiart with more information about patients and structures. The list should have one component for each file you import. Each component itself has to be a named list with optional components

- patName - a character string for patient name
- patID - a character string for patient ID
- doseRx - a numeric value like 50.4 for prescription dose in the same dose unit as used in the DVHs
- structVol - a named list like list("PTV 52Gy"=750,"LUNG"=1250) giving the absolute structure volumes with names equal to structure names and numeric components of length 1
- volumeUnit - a character string like "CC" for the structure volume unit)
Pinnacle3 files have to be exported using its own scripting facility such that information from one patient is contained in one directory. A suitable export script is available on request from the package authors. The directory layout for one patient has to be as follows (experimental, likely to change in future versions):

- Files (CSV format with column headers):
 - DoseInfo.csv (variables "PrescriptionDose cGy", "NumberOfFractions", "Dosis cGy")
 - PatInfo.csv (variables "LastName", "FirstName", "MedicalRecordNumber")
 - PlanInfo.csv (variable "PlanName")

- Directory: Data:
 - Info.csv (variables "Filename", "RegionOfInterestName", "DoseMin cGy", "DoseMax cGy", "DoseMean cGy", "Volume ccm")
 - DVH1.csv, DVH2.csv, ... - the actual DVH data files with names defined in Info.csv variable "Filename". They should look like NumberOfDimensions = 2; NumberOfPoints = 431;
    ```
    Points[] =
    0,0
    10,0
    ...
    4000,100
    ```

Value

Returns an object of class DVHLstLst. This is a list (one component with class DVHLst for each original file from one patient) of lists (each component is an object of class DVHs). A DVHs object is a list with the following components:

- **dvh matrix** - cumulative DVH values
- **dvhDiff matrix** - differential DVH values, only created a) if original file contained a differential DVH or b) by `convertDVH`
- **patID** character string - patient ID
- **date** character string - date of DVH export
- **type** character string - cumulative or differential DVH
- **plan** character string - plan name
- **course** character string - course - currently Eclipse only
- **structure** character string - structure name
- **structVol** numeric - structure volume
- **doseUnit** character string - measurement unit dose
- **volumeUnit** character string - measurement unit volume
- **doseRx** numeric - prescription dose
- **isoDoseRx** numeric - iso-dose percentage
doseMin numeric - minimum dose from DVH file

doseMax numeric - maximum dose from DVH file

doseAvg numeric - average dose from DVH file

doseMed numeric - median dose from DVH file

doseSD numeric - dose standard deviation from DVH file

See Also

Sys.glob, readLines, print.DVHs, showDVH, getMetric, checkConstraint, convertDVH

Examples

Not run:

pick DVH files interactively
res <- readDVH()
res

read all txt files in subdirectory DVH
res <- readDVH("DVH/*.txt", type="Eclipse")
res

End(Not run)

runGUI Open web-based GUI in browser

Description

Opens the web-based GUI in an external browser.

Usage

runGUI(...)

Arguments

... Arguments passed to runApp. Supply port=80 if a web browser refuses to connect to the randomly chosen port for security reasons.

Details

This function calls runApp to run the included DVHshiny application. See vignette("DVHshiny") for documentation.

See Also

runApp
saveConstraint

Description

Saves results from checkConstraint to a text file.

Usage

saveConstraint(x, ...)

Arguments

x data.frame - the result from checkConstraint.
... Further arguments passed to write.table - e.g., file="<filename>" for the output filename, dec="." to define the decimal separator as point or sep="\t" to define the column separator as tab.

Details

This is a wrapper for write.table.

See Also

write.table, checkConstraint

Examples

res <- checkConstraint(dataMZ, c("D10CC < 10Gy", "V20Gy < 20%"))
Not run:
saveConstraint(res, file="constrResults.txt", sep="\t")
End(Not run)
saveDVH

Save DVH diagram to file

Description

Saves one or multiple DVH diagrams to file.

Usage

saveDVH(x, file='', ...)

Arguments

x
A single `ggplot` object or a list of multiple `ggplot` objects as returned by `showDVH` or `showConstraint`.

file
character. Path to file. The file-ending determines what kind of file is written, e.g., "filename.pdf" will write a pdf document, "filename.jpg" a JPEG image.

...
Further arguments passed to `ggsave`, e.g., width and height to determine the figure size.

Details

This is a wrapper for `ggsave`.

Value

If x is a list of `ggplot` objects, one file is written for each list component. If x is a single `ggplot` object, one file is written.

See Also

`ggsave, showDVH, showConstraint`

Examples

```r
res <- showDVH(dataMZ, byPat=TRUE, structure=c("HEART", "AMYOCL"))
## Not run:
saveDVH(res, "out.pdf")
## End(Not run)
```
saveMetric

Save DVH metrics to file

Description
Saves results from `getMetric` to a text file.

Usage

```r
saveMetric(x, file = "", ...)  
## S3 method for class 'data.frame'
saveMetric(x, file = "", ...)  
## S3 method for class 'list'
saveMetric(x, file = "", ...)
```

Arguments

- `x` data.frame or list - the result from `getMetric`.
- `file` character. Path to file.
- `...` Further arguments passed to `write.table` - e.g., `dec="."` to define the decimal separator as point or `sep="\t"` to define the column separator as tab.

Details
This is a wrapper for `write.table`.

Value
If `x` is a list, one text file is written for each list component. If `x` is a data.frame, one file is written.

See Also

`write.table`, `getMetric`

Examples

```r
res <- getMetric(dataMZ, c("D1CC", "V10%_CC"),  
  sortBy=c("metric", "structure"),  
  splitBy="patID")
## Not run:
# not run
saveMetric(res, file="metricsResults.txt", sep="\t")
## End(Not run)
```
showConstraint

Display constraints for cumulative dose-volume histograms

Description
Displays quality assurance constraints for cumulative dose-volume histograms: Either one diagram per patient - including multiple structures. Or one diagram per structure - including multiple patients.

Usage
showConstraint(x, constr, byPat=TRUE, rel=TRUE, guessX=TRUE, guessY=TRUE, thresh=1, show=TRUE, visible=FALSE)

Arguments
x A single DVH (object of class DVHs), multiple DVHs from one patient/structure (object of class DVHLst), or multiple DVHs from many patients/structures (object of class DVHLstLst). See readDVH. See Details.
constr One or more constraints - given as a character vector or as a data.frame. See checkConstraint for their definition.
byPat logical. Relevant if multiple DVHs are given. If x has class DVHLstLst: byPat=TRUE means that one diagram shows DVHs from one patient with multiple structures. byPat=FALSE means that one diagram shows DVHs for one structure from multiple patients.
rel logical. Show relative volume?
guessX logical. Try to guess the best x-axis limits for better visibility of main DVH range? If FALSE, x-axis runs from 0 to maximum dose. If TRUE, x-axis runs from 0 to dose value where volume approaches 0. If a single number is given, it is interpreted as the maximum value. If a vector of two numbers is given, it is interpreted as the range of the axis.
guessY logical. Try to guess the best y-axis limits? If a single number is given, it is interpreted as the maximum value. If a vector of two numbers is given, it is interpreted as the range of the axis.
showDVH

thresh numeric value. Relative volume threshold used with guessX=TRUE. Clip x-axis (+10%) such that the "highest" DVH is cut off at this relative volume.

show logical. If TRUE, diagrams are shown, if FALSE diagrams are not shown - only ggplot diagram objects are silently returned.

visible logical. Return ggplot diagram object visibly or invisibly. show=FALSE with visible=TRUE is useful for zooming in shiny apps.

Details

Constraints are shown as points in the cumulative DVH with an additional arrow indicating where the cumulative DVH curve should lie relative to the constraint. On each DVH curve, the point with the minimal Euclidean distance to the constraint is indicated. Note that, visually, this point only has the minimal apparent distance if the aspect ratio of the diagram is 1.

If multiple diagrams are produced, they are shown in the same graphics device. If interactive inspection is required, make sure you use an R development environment that saves previous diagrams and allows navigating between them - e.g., RStudio or OpenAnalytics Architect.

Value

Silently returns a ggplot diagram object, or - when multiple diagrams are constructed - a list of ggplot diagram objects.

See Also

cHECK.Constraint, saveDVH

Examples

data(dataMZ)

define constraints
constr <- data.frame(
 patID=c("P123", "P234"),
 structure=c("HEART", "*"),
 constraint=c("D1CC < 20Gy", "V10% > 8CC"),
 stringsAsFactors=FALSE) # this is important

dshowConstraint(dataMZ, constr=constr, byPat=FALSE)

dshowDVH

Description

Displays dose volume histograms: Either one diagram per patient - including multiple structures. Or one diagram per structure - including multiple patients.
showDVH

Usage

showDVH(x, cumul=TRUE, byPat=TRUE, patID=NULL, structure=NULL, rel=TRUE, guessX=TRUE, guessY=TRUE, thresh=1, addMSD=FALSE, show=TRUE, visible=FALSE, fixed=TRUE)

S3 method for class 'DVHs'
showDVH(x, cumul=TRUE, byPat=TRUE, patID=NULL, structure=NULL, rel=TRUE, guessX=TRUE, guessY=TRUE, thresh=1, addMSD=FALSE, show=TRUE, visible=FALSE, fixed=TRUE)

S3 method for class 'DVHLst'
showDVH(x, cumul=TRUE, byPat=TRUE, patID=NULL, structure=NULL, rel=TRUE, guessX=TRUE, guessY=TRUE, thresh=1, addMSD=FALSE, show=TRUE, visible=FALSE, fixed=TRUE)

S3 method for class 'DVHLstLst'
showDVH(x, cumul=TRUE, byPat=TRUE, patID=NULL, structure=NULL, rel=TRUE, guessX=TRUE, guessY=TRUE, thresh=1, addMSD=FALSE, show=TRUE, visible=FALSE, fixed=TRUE)

Arguments

x
A single DVH (object of class DVHs), multiple DVHs from one patient/structure (object of class DVHLst), or multiple DVHs from many patients/structures (object of class DVHLstLst). See readDVH. See Details.

cumul
logical. Show cumulative or differential (per unit dose) DVH?

byPat
logical. Relevant if multiple DVHs are given. If x has class DVHLstLst: byPat=TRUE means that one diagram shows DVHs from one patient with multiple structures. byPat=FALSE means that one diagram shows DVHs for one structure from multiple patients.

patID
character vector. Show diagram for these patients only. If missing, all patients are shown. Can be a regular expression with fixed=FALSE, see regex.

structure
character vector. Show diagram for these structures only. If missing, all structures are shown. Can be a regular expression with fixed=FALSE, see regex.

rel
logical. Show relative volume?

guessX
logical. Try to guess the best x-axis limits for better visibility of main DVH range? If FALSE, x-axis runs from 0 to maximum dose. If TRUE, x-axis runs from 0 to dose value where volume approaches 0. If a single number is given, it is interpreted as the maximum value. If a vector of two numbers is given, it is interpreted as the range of the axis.

guessY
logical. Try to guess the best y-axis limits? If a single number is given, it is interpreted as the maximum value. If a vector of two numbers is given, it is interpreted as the range of the axis.

thresh
numeric value. Relative volume threshold used with guessX=TRUE. Clip x-axis (+5%) such that the "highest" DVH is cut off at this relative volume.
showMeanDVH

addMSD logical. If TRUE, diagram shows the point-wise mean DVH as well as shaded areas for point-wise 1-standard deviation and 2-standard deviations around this mean. See details.

show logical. If TRUE, diagrams are shown, if FALSE diagrams are not shown - only ggplot diagram objects are silently returned.

visible logical. Return ggplot diagram object visibly or invisibly. show=FALSE with visible=TRUE is useful for zooming in shiny apps.

fixed logical. Use fixed=FALSE for regular expression matching of patID and structure.

Details

If multiple diagrams are produced, they are shown in the same graphics device. If interactive inspection is required, make sure you use an R development environment that saves previous diagrams and allows navigating between them - e.g., RStudio or OpenAnalytics Architect.

For addMSD=TRUE, the number of DVH nodes (dose values) is reduced by 1/3 of the maximum number of nodes in x. Before calculating the point-wise mean and SD, DVHs in x are first linearly interpolated using the same set of nodes.

Value

Silently returns a ggplot diagram object, or - when multiple diagrams are constructed - a list of ggplot diagram objects.

See Also

ggplot, readDVH, saveDVH, getMeanDVH

Examples

showDVH(dataMZ, byPat=TRUE, structure=c("HEART", "AMYOCL"))

matches patients P123 and P234
showDVH(dataMZ, byPat=FALSE, patID="23", fixed=FALSE)

showMeanDVH

Show average dose volume histograms

Description

Displays average dose volume histograms grouped by patients or structures.

Usage

showMeanDVH(x, byPat=TRUE, patID=NULL, structure=NULL, rel=TRUE, guessX=TRUE, thresh=1, show=TRUE, fixed=TRUE, showSD=TRUE, color=TRUE, facet=TRUE)
Arguments

- **x**: A data frame as returned by `getMeanDVH` or a list of such data frames.
- **byPat**: logical. Relevant if multiple DVHs are given. If `x` has class `DVHLstLst`, `byPat=TRUE` means that one diagram shows DVHs from one patient with multiple structures. `byPat=FALSE` means that one diagram shows DVHs for one structure from multiple patients.
- **patID**: character vector. Show diagram for these patients only. If missing, all patients are shown. Can be a regular expression with `fixed=FALSE`, see `regex`.
- **structure**: character vector. Show diagram for these structures only. If missing, all structures are shown. Can be a regular expression with `fixed=FALSE`, see `regex`.
- **rel**: logical. Show relative volume?
- **guessX**: logical. Try to clip the x-axis for better visibility of main DVH range?
- **thresh**: numeric value. Relative volume threshold used with `guessX=TRUE`. Clip x-axis (+10%) such that the "highest" DVH is cut off at this relative volume.
- **show**: logical. If TRUE, diagrams are shown, if FALSE diagrams are not shown - only `ggplot` diagram objects are silently returned.
- **fixed**: logical. Use `fixed=FALSE` for regular expression matching of `patID` and `structure`.
- **showSD**: logical. If TRUE, diagram shows shaded areas for point-wise 1-standard deviation and 2-standard deviations around this mean. See details.
- **color**: logical. If TRUE, diagram uses color to distinguish groups. If FALSE, colors are greyscale, and line types are used to distinguish groups.
- **facet**: logical. If TRUE, different structures (for `byPat=FALSE` or different patients (for `byPat=TRUE` go into separate panels using `facet_grid`. If FALSE, everything is shown in the same panel.

Details

TODO

Value

Silently returns a `ggplot` diagram object, or - when multiple diagrams are constructed - a list of `ggplot` diagram objects.

See Also

- `ggplot`, `showDVH`, `getMeanDVH`

Examples

```r
# mean DVH for HEART and AMYOCL averaged over patients
res <- getMeanDVH(dataMZ, byPat=FALSE, structure=c("HEART", "AMYOCL"))
showMeanDVH(res)
```
Index

* datasets
 * dataConstr, 9
 * dataMZ, 10

* package
 * DVHmetrics-package, 2
 * approx, 4, 20
 * approxfun, 13, 21
 * checkConstraint, 3, 9, 27, 31, 32, 35, 36
 * convertDVH, 6, 9, 18, 30, 31
 * convertDVHsmooth, 7, 7, 13
 * dataConstr, 9
 * dataMZ, 9, 10
 * dpill, 4, 9, 13, 20, 21
 * DVHmetrics (DVHmetrics-package), 2
 * DVHmetrics-package, 2
 * facet_grid, 39
 * file, 29
 * getBED, 11, 14, 17
 * getDMEAN, 12
 * getEQD2, 12, 13, 15, 17, 21
 * getEUD, 4, 5, 15, 20, 21, 24, 25
 * getIsoEffD, 12, 14, 16
 * getMeanDVH, 17, 38, 39
 * getMetric, 4, 5, 13, 15, 19, 23–25, 31, 34
 * getNTCP, 4, 5, 20, 21, 22, 25
 * getTCP, 4, 5, 20, 21, 24, 24
 * ggplot, 33, 36, 38, 39
 * ggsave, 33
 * locpoly, 4, 8, 12, 13, 20, 21
 * mergeDVH, 25

 * print.DVHLst (print.DVHs), 26
 * print.DVHLstLst (print.DVHs), 26
 * print.DVHs, 10, 26, 31