Package ‘DALEXtra’

November 18, 2019

Title Extension for 'DALEX' Package

Version 0.2.0

Description Provides wrapper of various machine learning models.
In applied machine learning, there
is a strong belief that we need to strike a balance
between interpretability and accuracy.
However, in field of the interpretable machine learning,
there are more and more new ideas for explaining black-box models,
that are implemented in 'R'.
'DALEXtra' creates 'DALEX' Biecek (2018) <arXiv:1806.08915> ex-
plainer for many type of models
including those created using 'python' 'scikit-learn' and 'keras' libraries, 'java' 'h2o' library and
'mljar' API. Important part of the package is Champion-
Challenger analysis and innovative approach
to model performance across subsets of test data presented in Funnel Plot.
Third branch of 'DALEXtra' package is aspect importance analysis
that provides instance-level explanations for the groups of explanatory variables.

Depends R (>= 3.5.0), DALEX (>= 0.4.9)

License GPL

LazyData true

RoxygenNote 7.0.0

Imports reticulate, ggplot2, glmnet, ggdendro, gridExtra

Suggests auditor, ingredients, gbm, ggrepel, h2o, mljar, mlr, mlr3,
randomForest, rmarkdown, rpart, xgboost, testthat

URL https://ModelOriented.github.io/DALEXtra/,
https://github.com/ModelOriented/DALEXtra

BugReports https://github.com/ModelOriented/DALEXtra/issues

NeedsCompilation no

Author Szymon Maksymiuk [aut, cre],
Przemyslaw Biecek [aut] (<https://orcid.org/0000-0001-8423-1823>),
Katarzyna Pekala [aut],
Anna Kozak [ctb]
Description

Aspect Importance function takes a sample from a given dataset and modifies it. Modification is made by replacing part of its aspects by values from the observation. Then function is calculating the difference between the prediction made on modified sample and the original sample. Finally, it measures the impact of aspects on the change of prediction by using the linear model or lasso.
Usage

aspect_importance(x, ...)

S3 method for class 'explainer'
aspect_importance(
 x,
 new_observation,
 aspects,
 N = 100,
 sample_method = "default",
 n_var = 0,
 f = 2,
 show_cor = FALSE,
 ...
)

Default S3 method:
aspect_importance(
 x,
 data,
 predict_function = predict,
 new_observation,
 aspects,
 N = 100,
 label = class(x)[1],
 sample_method = "default",
 n_var = 0,
 f = 2,
 show_cor = FALSE,
 ...
)

lime(x, ...)

Arguments

x an explainer created with the DALEX::explain() function or a model to be explained.

... other parameters

new_observation selected observation with columns that corresponds to variables used in the model

aspects list containing grouping of features into aspects

N number of observations to be sampled (with replacement) from data

sample_method sampling method in get_sample

n_var maximum number of non-zero coefficients after lasso fitting, if zero than linear regression is used
aspect_importance

- **f**
 frequency in `get_sample`

- **show_cor**
 show if all features in aspect are pairwise positively correlated, works only if dataset contains solely numeric values

- **data**
 dataset, it will be extracted from `x` if it’s an explainer NOTE: It is best when target variable is not present in the data

- **predict_function**
 predict function, it will be extracted from `x` if it’s an explainer

- **label**
 name of the model. By default it’s extracted from the ‘class’ attribute of the model.

Value

An object of the class `aspect.importance`. Contains dataframe that describes aspects’ importance.

Examples

```r
library("DALEX")
library("ingredients")
titanic_imputed$country <- NULL

model_titanic_glm <- glm(survived == "yes" ~
class+gender+age+sibsp+parch+fare+embarked,
data = titanic_imputed,
family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed[,-8],
y = titanic_imputed$survived == "yes",
verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
family = c("sibsp", "parch"),
personal = c("gender", "age"),
embarked = "embarked")

aspect_importance(explain_titanic_glm,
new_observation = titanic_imputed[1,],
aspects = aspects)

library("randomForest")
model_titanic_rf <- randomForest(survived ~ class + gender + age + sibsp +
parch + fare + embarked,
data = titanic_imputed)

explain_titanic_rf <- explain(model_titanic_rf,
data = titanic_imputed[,-8],
y = titanic_imputed$survived == "yes",
verbose = FALSE)
```
aspect_importance_single

```r
aspect_importance(explain_titanic_rf,
                    new_observation = titanic_imputed[1,],
                    aspects = aspects)
```

Description

Calculates aspect_importance for single aspects (every aspect contains only one feature).

Usage

```r
aspect_importance_single(x, ...)
```

```r
## S3 method for class 'explainer'
aspect_importance_single(
    x,
    new_observation,
    N = 100,
    sample_method = "default",
    n_var = 0,
    f = 2,
    ...
)
```

```r
## Default S3 method:
aspect_importance_single(
    x,
    data,
    predict_function = predict,
    new_observation,
    N = 100,
    label = class(x)[1],
    sample_method = "default",
    n_var = 0,
    f = 2,
    ...
)
```

Arguments

- `x` an explainer created with the `DALEX::explain()` function or a model to be explained.
... other parameters

new_observation
selected observation with columns that corresponds to variables used in the
model, should be without target variable

N
number of observations to be sampled (with replacement) from data

sample_method
sampling method in get_sample

n_var
how many non-zero coefficients for lasso fitting, if zero than linear regression is
used

f
frequency in in get_sample

data
dataset, it will be extracted from x if it’s an explainer NOTE: Target variable
shouldn’t be present in the data

predict_function
predict function, it will be extracted from x if it’s an explainer

label
name of the model. By default it’s extracted from the ‘class’ attribute of the
model.

Value
An object of the class ‘aspect_importance’. Contains dataframe that describes aspects’ importance.

Examples

library("DALEX")

model_titanic_glm <- glm(survived == "yes" ~ class + gender + age +
sibsp + parch + fare + embarked,
data = titanic_imputed,
family = "binomial")

aspect_importance_single(model_titanic_glm, data = titanic_imputed[,-9],
new_observation = titanic_imputed[1,-9])

champion_challenger
Compare machine learning models

Description
Determining if one model is better than the other one is a difficult task. Mostly because there is a
lot of fields that have to be covered to make such a judgement. Overall performance, performance
on the crucial subset, distribution of residuals, those are only few among many ideas related to
that issue. Following function allow user to create a report based on various sections. Each says
something different about relation between champion and challengers. DALEXtra package share 3
base sections which are funnel_measure overall_comparison and training_test_comparison
but any object that has generic plot function can be incuded at report.
champion_challenger

Usage

champion_challenger(
 sections,
 dot_size = 4,
 output_dir_path = getwd(),
 output_name = "Report",
 model_performance_table = FALSE,
 title = "ChampionChallenger",
 author = Sys.info()[["user"]],
 ...
)

Arguments

sections - list of sections to be attached to report. Could be sections available with
DALEXtra which are funnel_measure training_test_comparison, overall_comparison
or any other explanation that can work with plot function. Please provide name
for not standard sections, that will be presented as section titles. Oterwise class
of the object will be used.
dot_size - dot_size argument passed to plot.funnel_measure if funnel_measure sec-
tion present
output_dir_path - path to directory where Report should be created. By default it is current
working directory.
output_name - name of the Report. By default it is "Report"
model_performance_table - If TRUE and overall_comparison section present, table of scores will be
displayed.
title - Title for report, by default it is "ChampionChallenger".
author - Author of report. By default it is current user name.
... - other parameters passed to rmarkdown::render.

Value

rmarkdown report

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)

champion_challenger(list(plot_data), dot_size = 3)

create_env

Create your conda virtual env with DALEX

Description

Python objects may be loaded into R. However, it requires versions of the Python and libraries to match between both machines. This function allows users to create a conda virtual environment based on the provided .yml file.

Usage

create_env(yml, condaenv)

Arguments

- **yml**: a path to the .yml file. If OS is Windows conda has to be added to the PATH first
- **condaenv**: path to the main conda folder. If OS is Unix you may want to specify it. When passed with Windows, param will be omitted.

Value

Name of created virtual env.
Author(s)

Szymon Maksymiuk

Examples

```r
if(DALEXtra::is_conda()) {
  create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))
} else {
  "conda is required"
}
```

explain_h2o

Create explainer from your h2o model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, we would like to make more accessible is H2O.

Usage

```r
explain_h2o(
  model,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ..., 
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = TRUE,
  model_info = NULL
)
```

Arguments

- `model`
 object - a model to be explained

- `data`
 data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). **NOTE:** If target variable is present in the data, some of the functionalities my not work properly.

- `y`
 numeric vector with outputs / scores. If provided then it shall have the same size as data
weights numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
predict_function function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals ($y - \hat{y}$) are calculated.
... other parameters
label character - the name of the model. By default it’s extracted from the ‘class’ attribute of the model
verbose if TRUE (default) then diagnostic messages will be printed
precalculate if TRUE (default) then ‘predicted_values’ and ‘residuals’ are calculated when explainer is created. This will happen also if ‘verbose’ is TRUE
colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
 training_frame = titanic_h2o,
 y = "survived",
 distribution = "bernoulli",
 ntrees = 500,
 max_depth = 4,
 min_rows = 12,
 learn_rate = 0.001
)
explain_h2o(model, titanic_test[,1:17], titanic_test[,18])
h2o::h2o.shutdown(prompt = FALSE)
explain_keras Wrapper for Python Keras Models

Description

Keras models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of Keras model exported from Python via pickle file.

Usage

```r
explain_keras(
  path,
  yml = NULL,
  condaenv = NULL,
  env = NULL,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ...
)
```

Arguments

- **path**: a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.
- **yml**: a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first
- **condaenv**: If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.
- **env**: A path to python virtual environment.
- **data**: test data set that will be passed to `explain`.
- **y**: vector that will be passed to `explain`.
- **weights**: numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as `data`
- **predict_function**: predict function that will be passed into `explain`. If NULL, default will be used.
residual_function

residual function that will be passed into `explain`. If NULL, default will be used.

... other parameters

label

label that will be passed into `explain`. If NULL, default will be used.

verbose

bool that will be passed into `explain`. If NULL, default will be used.

precalculate

if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created. This will happen if 'verbose' is TRUE.

colorize

if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info

a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it's own.

Value

An object of the class 'explainer'.

Example of Python code avialble at documentation `explain_scikitlearn`

Errors use case

Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file

If you provide .yml file that in its header contains name exact to name of environment that already exists, existing will be set active without changing it.

You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:

```
conda env remove --name myenv
```

And execute function once again. Second is updating env via:

```
conda env create -f environment.yml
```

Conda cannot find specified packages at channels you have provided.

That error may be caused by a lot of things. One of those is that specified version is too old to be available from official conda repo. Edit Your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS yo may need to remove specific version from .yml file.

```
~numpy=1.16.4=py36h19fb1c0_0
~numpy-base=1.16.4=py36hc3f5095_0
```

In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0

If some packages are not available for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.

```
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20
```
explain_mljar

Author(s)

Szymon Maksymiuk

Examples

```r
library("DALEXtra")

# Explainer build (Keep in mind that 9th column is target)
test_data <- read.csv(
  sep = ",")
# Keep in mind that when pickle is being built and loaded,
# not only Python version but libraries versions has to match aswell
explainer <- explain_keras(system.file("extdata", "keras.pkl", package = "DALEXtra"),
                           conda = "myenv",
                           data = test_data[,1:8], y = test_data[,9])
plot(model_performance(explainer))

# Predictions with newdata
predict(explainer, test_data[1:10,1:8])
```

explain_mljar
Create explainer from your mljar model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately packages that create such models are very inconsistent between many platforms and programming languages. Different tools use different interfaces to train, validate and use models. One of those tools, we would like to make more accessible is mljar.

Usage

```r
explain_mljar(
  model,
  project_title,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ..., 
  label = NULL,
  verbose = TRUE,
)```
```r
precalculate = TRUE,
colorize = TRUE,
model_info = NULL
)

Arguments

model object - a mljar model to be explained
project_title character - a name of project_title in which model was built. Without it predictions are unreachable.
data data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities may not work properly.
y numeric vector with outputs / scores. If provided then it shall have the same size as data
weights numeric vector with sampling weights. By default it's NULL. If provided then it shall have the same length as data
predict_function function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals ($y - \hat{y}$) are calculated.
... other parameters
label character - the name of the model. By default it's extracted from the 'class' attribute of the model
verbose if TRUE (default) then diagnostic messages will be printed.
precalculate if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created. This will happen also if 'verbose' is TRUE
colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it's own.

Value

explainer object (explain) ready to work with DALEX

Examples

```
explain_mlr

Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is mlr package. We would like to present dedicated explain function for it.

Usage

explain_mlr(
  model,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ...
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = TRUE,
  model_info = NULL
)

Arguments

- **model**: object - a model to be explained
- **data**: data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities may not work properly.

Example:

```r
model <- mljar_fit(titanic_test[,1:17], titanic_test[,18],
 proj_title="Project title", exp_title="experiment title",
 algorithms = c("logreg"), metric = "logloss")

It Works
explainer <- explain_mlr(model, project_title = "Project title",
 data = titanic_test[,1:17], y = titanic_test[,18])

But it works aswell
explainer <- explain_mlr(model, project_title = "Project title",
 verbose = FALSE, precalculate = FALSE)

End(Not run)
```
y numeric vector with outputs / scores. If provided then it shall have the same size as data.
weights numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
predict_function function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals \((y - \hat{y})\) are calculated.
... other parameters
label character - the name of the model. By default it’s extracted from the ’class’ attribute of the model
verbose if TRUE (default) then diagnostic messages will be printed
precalculate if TRUE (default) then ’predicted_values’ and ’residuals’ are calculated when explainer is created. This will happen also if ’verbose’ is TRUE
colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

Value
explainer object (explain) ready to work with DALEX

Examples
library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
library("mlr")
task <- mlr::makeClassifTask(
  id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
  "classif.gbm",
  par.vals = list(
    distribution = "bernoulli",
n.trees = 500,
    interaction.depth = 4,
n.minobsinnode = 12,
    shrinkage = 0.001,
    bag.fraction = 0.5,
    train.fraction = 1
  ),

predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])

---

**explain_mlr3**

Create explainer from your mlr model

**Description**

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is mlr package. We would like to present dedicated explain function for it.

**Usage**

```r
explain_mlr3(
 model,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...,
 label = NULL,
 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL
)
```

**Arguments**

- **model**
  - object - a fitted learned created with mlr3.
- **data**
  - data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly.
- **y**
  - numeric vector with outputs / scores. If provided then it shall have the same size as data
- **weights**
  - numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
- **predict_function**
  - function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function

function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals ($y - \hat{y}$) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the 'class' attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed.

precalculate if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created. This will happen also if 'verbose' is TRUE

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it’s own.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DAEXtra")
library(mlr3)
titanic_imputed$survived <- as.factor(titanic_imputed$survived)
task_classif <- TaskClassif$new(id = "1", backend = titanic_imputed, target = "survived")
learner_classif <- lrn("classif.rpart", predict_type = "prob")
learner_classif$train(task_classif)
explain_mlr3(learner_classif, data = titanic_imputed, y = as.numeric(as.character(titanic_imputed$survived)));

task_regr <- TaskRegr$new(id = "2", backend = apartments, target = "m2.price")
learner_regr <- lrn("regr.rpart")
learner_regr$train(task_regr)
explain_mlr3(learner_regr, data = apartments, apartments$m2.price);

explain_scikitlearn Wrapper for Python Scikit-Learn Models

Description

scikit-learn models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of scikit-learn model exported from Python via pickle file.
Usage

explain_scikitlearn(
    path,
    yml = NULL,
    condaenv = NULL,
    env = NULL,
    data = NULL,
    y = NULL,
    weights = NULL,
    predict_function = NULL,
    residual_function = NULL,
    ..., 
    label = NULL,
    verbose = TRUE,
    precalculate = TRUE,
    colorize = TRUE,
    model_info = NULL
)

Arguments

- **path** a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.
- **yml** a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first
- **condaenv** If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.
- **env** A path to python virtual environment.
- **data** test data set that will be passed to `explain`
- **y** vector that will be passed to `explain`
- **weights** numeric vector with sampling weights. By default it's NULL. If provided then it shall have the same length as data
- **predict_function** predict function that will be passed into `explain`. If NULL, default will be used.
- **residual_function** residual function that will be passed into `explain`. If NULL, default will be used.
- **...** other parameters
- **label** label that will be passed into `explain`. If NULL, default will be used.
- **verbose** bool that will be passed into `explain`. If NULL, default will be used.
- **precalculate** if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created. This will happen also if 'verbose' is TRUE.
- **colorize** if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
- **model_info** a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it's own.
**Value**

An object of the class `explainer`. It has additional field `param_set` when user can check parameters of scikitlearn model

**Example of Python code**

```python
from pandas import DataFrame, read_csv
import pandas as pd
import pickle
import sklearn.ensemble
model = sklearn.ensemble.GradientBoostingClassifier()
model = model.fit(titanic_train_X, titanic_train_Y)
pickle.dump(model, open("gbm.pkl", "wb"), protocol = 2)
```

In order to export environment into .yml, activating virtual env via `activate name_of_the_env` and execution of the following shell command is necessary:

`conda env export > environment.yml`

**Errors use case**

Here is shortened version of solution for specific errors

**There already exists environment with a name specified by given .yml file**

If you provide .yml file that in its header contains name exact to name of environment that already exists, existing will be set active without changing it.

You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:

`conda env remove --name myenv`

And execute function once again. Second is updating env via:

`conda env create -f environment.yml`

**Conda cannot find specified packages at channels you have provided.**

That error may be caused by a lot of things. One of those is that specified version is too old to be available from official conda repo. Edit Your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS you may need to remove specific version from .yml file.

```yaml
-numpy=1.16.4=py36h19fb1c0_0
-numpy-base=1.16.4=py36hc3f5095_0
```

In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0

If some packages are not available for anaconda at all, use pip statement

```bash
If .yml file seems not to work, virtual env can be created manually using anaconda prompt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20
```
funnel_measure

Author(s)
Szymon Maksymiuk

Examples
library("DALEXtra")
if(DALEXtra:::is_conda()) {
  # Explainer build (Keep in mind that 18th column is target)
  titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
  # Keep in mind that when pickle is being built and loaded,
  # not only Python version but libraries versions has to match aswell
  explainer <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
                                   yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
                                   data = titanic_test[,1:17], y = titanic_test$survived)
  plot(model_performance(explainer))
  # Predictions with newdata
  predict(explainer, titanic_test[1:10,1:17])
} else {
  print('Conda is required. ')
}

funnel_measure

Caluculate difference in performance in models across different categories

Description
Function funnel_measure allows users to compare two models based on their explainers. It partitions dataset on which models were builded and creates categories according to quantiles of columns in partition data. nbins parameter determinates number of qunatiles. For each category difference in provided measure is being calculated. Positive value of that differnece means that Champion model has better performance in specified category, while negative value means that one of the Challengers was better. Function allows to compare multiple Challengers at once.

Usage
funnel_measure(
  champion,
  challengers,
  measure_function = DALEX::loss_root_mean_square,
  nbins = 5,
  partition_data = champion$data,
  cutoff = 0.01,
  cutoff_name = "Other",
  factor_conversion_threshold = 7,
)
funnel_measure

show_info = TRUE,
categories = NULL
)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
measure_function - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be (y, y_hat). The measure calculated by the function should have the property that lower score value indicates better model. By default it is RMSE.
nbins - Number of quantiles (partition points) for numeric columns. In case when more than one quantile have the same value, there will be less partition points.
partition_data - Data by which test dataset will be partitioned for computation. Can be either data.frame or character vector. When second is passed, it has to indicate names of columns that will be extracted from test data. By default full test data. If data.frame, number of rows has to be equal to number of rows in test data.
cutoff - Threshold for categorical data. Entries less frequent than specified value will be merged into one category.
cutoff_name - Name for new category that arised after merging entries less frequent than cutoff
factor_conversion_threshold - Numeric columns with lower number of unique values than value of this parameter will be treated as factors
show_info - Logical value indicating if progress bar should be shown.
categories - a named list of variable names that will be plotted in a different colour. By default it is partitioned on Explanatory, External and Target.

Value

An object of the class funnel_measure

It is a named list containing following fields:

- data data.frame that consists of columns:
  - Variable Variable according to which partitions were made
  - Measure Difference in measures. Positive value indicates that champion was better, while negative that challenger.
  - Label String that defines subset of Variable values (partition rule).
  - Challenger Label of challenger explainer that was used in Measure
  - Category a category of the variable passed to function

- models_info data.frame containing information about models used in analysis
get_sample

Function for getting binary matrix

Description

Function creates binary matrix, to be used in aspect_importance method. It starts with a zero matrix. Then it replaces some zeros with ones. It either randomly replaces one or two zeros per row. Or replace random number of zeros per row - average number of replaced zeros can be controlled by parameter f. Function doesn’t allow the returned matrix to have rows with only zeros.

Usage

get_sample(n, p, sample_method = c("default", "binom"), f = 2)
**Arguments**

- **n**  
  number of rows
- **p**  
  number of columns
- **sample_method**  
  sampling method
- **f**  
  frequency for binomial sampling

**Value**

a binary matrix

**Examples**

```r
Not run:
get_sample(100, 6, "binom", 3)
End(Not run)
```

---

**group_variables**  
*Groups numeric features into aspects*

**Description**

Divides correlated features into groups, called aspects. Division is based on correlation cutoff level.

**Usage**

```r
group_variables(
 x,
 p = 0.5,
 clust_method = "complete",
 draw_tree = FALSE,
 draw_abline = TRUE
)
```

**Arguments**

- **x**  
  dataframe with only numeric columns
- **p**  
  correlation value for cut-off level
- **clust_method**  
  the agglomeration method to be used, see `hclust` methods
- **draw_tree**  
  if TRUE, function plots tree that illustrates grouping
- **draw_abline**  
  if TRUE, function plots vertical line at cut-off level

**Value**

list of aspects
model_info.WrappedModel

Examples

library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete")

Description

This generic function let user extract base information about model. The function returns a named list of class model_info that contain about package of model, version and task type. For wrappers like mlr or caret both, package and wrapper information are stored

Usage

## S3 method for class 'WrappedModel'
model_info(model, ...)

## S3 method for class 'H2ORegressionModel'
model_info(model, ...)

## S3 method for class 'H2OBinomialModel'
model_info(model, ...)

## S3 method for class 'scikitlearn_model'
model_info(model, ...)

## S3 method for class 'keras'
model_info(model, ...)

## S3 method for class 'mljar_model'
model_info(model, ...)

## S3 method for class 'LearnerRegr'
model_info(model, ...)

## S3 method for class 'LearnerClassif'
model_info(model, ...)

Arguments

model - model object
...
- another arguments

Currently supported packages are:
overall_comparison

- m1r models created with m1r package
- h2o models created with h2o package
- scikit-learn models created with scikit-learn pyhton library and acessed via reticulate
- keras models created with keras pyhton library and acessed via reticulate
- mljar models created with mljar API and accessed via mljar R package
- m1r3 models created with m1r3 package

Value

A named list of class model_info

overall_comparison   Compare champion with challengers globally

Description

The function creates objects that present global model performance using various measures. Those data can be easily plotted with plot function. It uses auditor package to create model_performance of all passed explainers. Keep in mind that type of task has to be specified.

Usage

overall_comparison(champion, challengers, type)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
type - type of the task. Either classification or regression

Value

An object of the class overall_comparison

It is a named list containing following fields:

- radar list of model_performance objects and other parameters that will be passed to generic plot function
- accordance data.frame object of champion responses and challenger’s corresponding to them. Used to plot accordance.
- models_info data.frame containig informaition about models used in analysys.
Examples

```r
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)
```

### plot.aspect_importance

**Function for plotting aspect_importance results**

This function plots the results of aspect_importance.

#### Usage

```r
S3 method for class 'aspect_importance'
plot(
 x,
 ...,
 bar_width = 10,
 aspects_on_axis = TRUE,
 add_importance = FALSE,
 digits_to_round = 2,
```
Arguments

x object of aspect_importance class
...
bar_width bar width
aspects_on_axis if TRUE, labels on axis Y show aspect names, otherwise they show features names
add_importance if TRUE, plot is annotated with values of aspects importance
digits_to_round integer indicating the number of decimal places used for rounding values of aspects importance shown on the plot
text_size size of labels annotating values of aspects importance, if applicable

Value

a ggplot2 object

Examples

library("DALEX")

titanic_imputed$country <- NULL

model_titanic_glm <- glm(survived == "yes" ~
class+gender+age+sibsp+parch+fare+embarked,
data = titanic_imputed,
family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed[-8],
y = titanic_imputed$survived == "yes",
verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
family = c("sibsp", "parch"),
personal = c("gender", "age"),
embarked = "embarked")

plot(aspect_importance(explain_titanic_glm,
new_observation = titanic_imputed[1],
aspects = aspects))
**Description**

Function `plot.funnel_measure` creates funnel plot of differences in measures for two models across variable areas. It uses data created with `funnel_measure` function.

**Usage**

```r
S3 method for class 'funnel_measure'
plot(x, ..., dot_size = 0.5)
```

**Arguments**

- `x` - funnel_measure object created with `funnel_measure` function.
- `...` - other parameters
- `dot_size` - size of the dot on plots. Passed to `geom_point`.

**Value**

ggplot object

**Examples**

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
```
plot.overall_comparison

explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
                           nbins = 5, measure_function = DALEX::loss_root_mean_square)
plot(plot_data)

plot.overall_comparison

Plot function for overall_comparison

Description

The function plots data created with overall_comparison. For radar plot it uses auditor’s plot_radar. Keep in mind that the function creates two plots returned as list.

Usage

## S3 method for class 'overall_comparison'
plot(x, ...)

Arguments

x - data created with overall_comparison
...
- other parameters

Value

A named list of ggplot objects.

It consists of:

- radar_plot plot created with plot_radar
- accordance_plot accordance plot of responses. OX axis stand for champion response, while OY for one of challengers responses. Colour indicates on challenger.

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm"

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm"
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

plot.training_test_comparison

*Plot and compare performance of model between training and test set*

**Description**

Function plot.training_test_comparison plots dependency between model performance on test and training dataset based on training_test_comparison object. Green line indicates \( y = x \) line.

**Usage**

```r
S3 method for class 'training_test_comparison'
plot(x, ...)
```

**Arguments**

- `x` - object created with `training_test_comparison` function.
- `...` - other parameters

**Value**

ggplot object

**Examples**

```r
library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
```
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
    training_frame = titanic_h2o,
    y = "survived",
    distribution = "bernoulli",
    ntrees = 500,
    max_depth = 4,
    min_rows = 12,
    learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

explainer_scikit <- explain_scikitlearn(system.file("extdata",  
    "scikitlearn.pkl",  
    package = "DALEXtra"),  
    yml = system.file("extdata",  
        "testing_environment.yml",  
        package = "DALEXtra"),  
    data = titanic_test[,1:17],  
    y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(  
    id = "R",  
    data = titanic_train,  
    target = "survived"
)
learner <- mlr::makeLearner("classif.gbm",  
    par.vals = list(  
        distribution = "bernoulli",  
        n.trees = 500,  
        interaction.depth = 4,  
        n.minobsinnode = 12,  
        shrinkage = 0.001,  
        bag.fraction = 0.5,  
        train.fraction = 1
    ),  
    predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
    training_data = titanic_train[,-18],
    training_y = titanic_train[,18])
plot(data)
plot_aspects_importance_grouping

Function plots tree with aspect importance values

Description

This function plots tree that shows order of feature grouping and aspect importance values of every newly created aspect.

Usage

plot_aspects_importance_grouping(
  x, data,
  predict_function = predict,
  new_observation,
  N = 100,
  clust_method = "complete",
  absolute_value = FALSE,
  cumulative_max = FALSE,
  show_labels = TRUE,
  axis_lab_size = 10,
  text_size = 3
)

Arguments

x a model to be explained

data dataset, should be without target variable

predict_function predict function

new_observation selected observation with columns that corresponds to variables used in the model, should be without target variable

N number of observations to be sampled (with replacement) from data

clust_method the agglomeration method to be used, see hclust methods

absolute_value if TRUE, aspect importance values will be drawn as absolute values

cumulative_max if TRUE, aspect importance shown on tree will be max value of children and node aspect importance values

show_labels if TRUE, plot will have annotated axis Y

axis_lab_size size of labels on axis Y, if applicable

text_size size of labels annotating values of aspects importance
Value

ggplot

Examples

library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[2,-1]
apartments_num_mod <- apartments_num[-1]
plot_aspects_importance_grouping(x = apartments_num_lm_model,
data = apartments_num_mod, new_observation = apartments_num_new_observation)

---

plot_group_variables  
Plots tree with correlation values

Description

Plots tree that illustrates the results of group_variables function.

Usage

plot_group_variables(
  x,
  p,
  show_labels = TRUE,
  draw_abline = TRUE,
  axis_lab_size = 10,
  text_size = 3
)

Arguments

x hclust object
p correlation value for cutoff level
show_labels if TRUE, plot will have annotated axis Y
draw_abline if TRUE, cutoff line will be drawn
axis_lab_size size of labels on axis Y, if applicable
text_size size of labels annotating values of correlations

Value

tree plot
print.funnel_measure

Examples

```r
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete",
 draw_tree = TRUE)

print.funnel_measure

Description

Print funnel_measure object

Usage

```r
## S3 method for class 'funnel_measure'
print(x, ...)
```n

Arguments

- `x` an object of class funnel_measure
- `...` other parameters

Examples

```r
library("DALEXextra")
library("mlr")
task <- mlr::makeRegrTask(
  id = "R",
  data = apartments,
  target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
```
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
print(plot_data)

print.overall_comparison

Print overall_comparison object

Description
Print overall_comparison object

Usage
S3 method for class 'overall_comparison'
print(x, ...)

Arguments
x an object of class overall_comparison
... other parameters

Examples
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")
learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")
learner_gbm <- mlr::makeLearner(}
model.gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
print(data)
library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
 training_frame = titanic_h2o,
 y = "survived",
 distribution = "bernoulli",
 ntree = 500,
 max_depth = 4,
 min_rows = 12,
 learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

explainer_scikit <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
 yml = system.file("extdata",
 "testing_environment.yml",
 package = "DALEXtra"),
 data = titanic_test[,1:17],
 y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(
 id = "R",
 data = titanic_train,
 target = "survived"
)
learner <- mlr::makeLearner(

 classif.gbm",
 par.vals = list(
 distribution = "bernoulli",
 n.trees = 500,
 interaction.depth = 4,
 n.minobsinnode = 12,
 shrinkage = 0.001,
 bag.fraction = 0.5,
 train.fraction = 1
),
 predict.type = "prob"
)

gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
training_test_comparison

Function `training_test_comparison` calculates performance of the provided model based on specified measure function. Response of the model is calculated based on test data, extracted from the explainer and training data, provided by the user. Output can be easily shown with `print` or `plot` function.

Usage

```r
training_test_comparison(
  champion,
  challengers,
  training_data,
  training_y,
  measure_function = DALEX::loss_root_mean_square
)
```

Arguments

- `champion` - explainer of champion model.
- `challengers` - explainer of challenger model or list of explainers.
- `training_data` - data without target column that will be passed to `predict` function and then to `measure` function. Keep in mind that they have to differ from data passed to an explainer.
- `training_y` - target column for `training_data`
- `measure_function` - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be `(y, y_hat)`. By default it is RMSE.

Value

An object of the class `training_test_comparison`.

It is a named list containing:

- `data` data.frame with following columns

```r
data <- training_test_comparison(  
explainer_scikit, list(explainer_h2o, explainer_mlr),
  training_data = titanic_train[, -18],
  training_y = titanic_train[, 18])
print(data)
```
- measure_test performance on test set
- measure_train performance on training set
- label label of explainer
- type flag that indicates if explainer was passed as champion or as challenger.

- models_info data.frame containing information about models used in analysis

Examples

```r
library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
  training_frame = titanic_h2o,
  y = "survived",
  distribution = "bernoulli",
  n.trees = 500,
  max_depth = 4,
  min_rows = 12,
  learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

explainer_scikit <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
  yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
  data = titanic_test[,1:17],
  y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(
  id = "R",
  data = titanic_train,
  target = "survived"
)
learner <- mlr::makeLearner(
  "classif.gbm",
  par.vals = list(
    distribution = "bernoulli",
    n.trees = 500,
    interaction.depth = 4,
    n.minobsinnode = 12,
    shrinkage = 0.001,
    bag.fraction = 0.5,
```
train.fraction = 1
),
predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
 training_data = titanic_train[,-18],
 training_y = titanic_train[,18])
plot(data)

triplot

Three plots that sum up automatic aspect importance grouping

Description

This function shows:

- plot for `aspect_importance` with single aspect
- tree that shows `aspect_importance` for every newly expanded aspect
- clustering tree.

Usage

```r
triplot(x, ...)
```

S3 method for class 'explainer'

```r
triplot(
  x,
  new_observation,
  N = 500,
  clust_method = "complete",
  absolute_value = FALSE,
  cumulative_max = FALSE,
  add_importance_labels = TRUE,
  show_axis_y_duplicated_labels = FALSE,
  axis_lab_size = 10,
  text_size = 3,
  ...
)
```

Default S3 method:

```r
triplot(
  x,
  data,
  predict_function = predict,
  ...
)
```
new_observation,
N = 500,
clust_method = "complete",
absolute_value = FALSE,
cumulative_max = FALSE,
add_importance_labels = TRUE,
show_axis_y_duplicated_labels = FALSE,
abbrev_labels = 0,
axis_lab_size = 10,
text_size = 3,
...
)

Arguments

x
an explainer created with the DALEX::explain() function or a model to be explained.

...
other parameters

new_observation
selected observation with columns that corresponds to variables used in the model, should be without target variable

N
number of rows to be sampled from data

clust_method
the agglomeration method to be used, see hclust methods

absolute_value
if TRUE, aspect importance values will be drawn as absolute values

cumulative_max
if TRUE, aspect importance shown on tree will be max value of children and node aspect importance values

add_importance_labels
if TRUE, first plot is annotated with values of aspects importance

show_axis_y_duplicated_labels
if TRUE, every plot will have annotated axis Y

axis_lab_size
size of labels on axis

text_size
size of labels annotating values of aspects importance and correlations

data
dataset, it will be extracted from x if it's an explainer NOTE: Target variable shouldn't be present in the data

predict_function
predict function, it will be extracted from x if it's an explainer

abbrev_labels
if greater than 0, labels for axis Y in single aspect importance plot will be abbreviated according to this parameter

Examples

library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[30,-1]
apartments_num_mod <- apartments_num[,-1]
triplot(x = apartments_num_lm_model,
 data = apartments_num_mod,
 new_observation = apartments_num_new_observation,
 add_importance_labels = FALSE)

yhat.WrappedModel

Wrapper over the predict function

Description

These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since informations from many models have to be extracted with various techniques.

Usage

```r
## S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...

## S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...

## S3 method for class 'H2OBinomialModel'
yhat(X.model, newdata, ...

## S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...

## S3 method for class 'keras'
yhat(X.model, newdata, ...

## S3 method for class 'mljar_model'
yhat(X.model, newdata, ...

## S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...

## S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...
```

Arguments

- **X.model**
 - object - a model to be explained
- **newdata**
 - data.frame or matrix - observations for prediction
- **...**
 - other parameters that will be passed to the predict function
Details

Currently supported packages are:

- mlr see more in explain_mlr
- h2o see more in explain_h2o
- scikit-learn see more in explain_scikitlearn
- keras see more in explain_keras
- mljar see more in explain_mljar
- mlr3 see more in explain_mlr3

Value

An numeric vector of predictions
Index

aspect_importance, 2
aspect_importance_single, 5
champion_challenger, 6
create_env, 8
explain, 10–12, 14, 16, 18, 19
explain_h2o, 9, 44
explain_keras, 11, 44
explain_mljar, 13, 44
explain_mlr, 15, 44
explain_mlr3, 17, 44
explain_scikitlearn, 12, 18, 37, 44
funnel_measure, 6, 7, 21, 29
geom_point, 29
get_sample, 3, 4, 6, 23
group_variables, 24
hclust, 24, 33, 42
lime (aspect_importance), 2
model_info.H2OBinomialModel
 (model_info.WrappedModel), 25
model_info.H2ORegressionModel
 (model_info.WrappedModel), 25
model_info.keras
 (model_info.WrappedModel), 25
model_info.LearnerClassif
 (model_info.WrappedModel), 25
model_info.LearnerRegr
 (model_info.WrappedModel), 25
model_info.mljar_model
 (model_info.WrappedModel), 25
model_info.scikitlearn_model
 (model_info.WrappedModel), 25
model_performance, 26
overall_comparison, 6, 7, 26, 30
plot.aspect_importance, 27
plot.funnel_measure, 7, 29
plot.overall_comparison, 30
plot.training_test_comparison, 31
plot_aspects_importance_grouping, 33
plot_group_variables, 34
plot_radar, 30
print.funnel_measure, 35
print.overall_comparison, 36
print.scikitlearn_set, 37
print.training_test_comparison, 37
training_test_comparison, 6, 7, 31, 39
triplot, 41
yhat.H2OBinomialModel
 (yhat.WrappedModel), 43
yhat.H2ORegressionModel
 (yhat.WrappedModel), 43
yhat.keras (yhat.WrappedModel), 43
yhat.LearnerClassif
 (yhat.WrappedModel), 43
yhat.LearnerRegr (yhat.WrappedModel), 43
yhat.mljar_model (yhat.WrappedModel), 43
yhat.scikitlearn_model
 (yhat.WrappedModel), 43
yhat.WrappedModel, 43