Package ‘DALEXtra’

September 7, 2020

Title Extension for ‘DALEX’ Package

Version 2.0

Description Provides wrapper of various machine learning models. In applied machine learning, there is a strong belief that we need to strike a balance between interpretability and accuracy. However, in field of the interpretable machine learning, there are more and more new ideas for explaining black-box models, that are implemented in ‘R’. ‘DALEXtra’ creates ‘DALEX’ Biecek (2018) <arXiv:1806.08915> explainer for many type of models including those created using ’python’’scikit-learn' and 'keras' libraries, and 'java' 'h2o' library. Important part of the package is Champion-Challenger analysis and innovative approach to model performance across subsets of test data presented in Funnel Plot. Third branch of 'DALEXtra' package is aspect importance analysis that provides instance-level explanations for the groups of explanatory variables.

Depends R (>= 3.5.0), DALEX (>= 1.3)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports reticulate, ggplot2, gridExtra

Suggests auditor, ingredients, gbm, ggrepel, h2o, iml, lime, localModel, mlr, mlr3, randomForest, recipes, rmarkdown, rpart, xgboost, testthat, tidymodels

URL https://ModelOriented.github.io/DALEXtra/, https://github.com/ModelOriented/DALEXtra

BugReports https://github.com/ModelOriented/DALEXtra/issues

NeedsCompilation no
Description

Determining if one model is better than the other one is a difficult task. Mostly because there is a lot of fields that have to be covered to make such a judgement. Overall performance, performance on the crucial subset, distribution of residuals, those are only few among many ideas related to that issue. Following function allow user to create a report based on various sections. Each says something different about relation between champion and challengers. DALEXtra package share 3 base sections which are funnel_measure overall_comparison and training_test_comparison but any object that has generic plot function can be included at report.
Usage

champion_challenger(
 sections,
 dot_size = 4,
 output_dir_path = getwd(),
 output_name = "Report",
 model_performance_table = FALSE,
 title = "ChampionChallenger",
 author = Sys.info()[["user"]],
 ...
)

Arguments

sections - list of sections to be attached to report. Could be sections available with
 DALEXtra which are funnel_measure, training_test_comparison, overall_comparison
 or any other explanation that can work with plot function. Please provide name
 for not standard sections, that will be presented as section titles. Oterwise class
 of the object will be used.

dot_size - dot_size argument passed to plot_funnel_measure if funnel_measure section present

output_dir_path - path to directory where Report should be created. By default it is current
 working directory.

output_name - name of the Report. By default it is "Report"

model_performance_table - If TRUE and overall_comparison section present, table of scores will be
 displayed.

title - Title for report, by default it is "ChampionChallenger".

author - Author of report. By default it is current user name.

... - other parameters passed to rmarkdown::render.

Value

rmarkdown report

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
champion_challenger(list(plot_data), dot_size = 3)

create_env

Create your conda virtual env with DALEX

Description

Python objects may be loaded into R. However, it requires versions of the Python and libraries to match between both machines. This function allows users to create a conda virtual environment based on provided .yml file.

Usage

create_env(yml, condaenv)

Arguments

- **yml**: a path to the .yml file. If OS is Windows, conda has to be added to the PATH first.
- **condaenv**: path to main conda folder. If OS is Unix, you may want to specify it. If OS is Windows, the parameter will be omitted.

Value

Name of created virtual env.
Author(s)
Szymon Maksymiuk

Examples

```r
## Not run:
create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))
## End(Not run)
```

explain_h2o
Create explainer from your h2o model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, we would like to make more accessible is H2O.

Usage

```r
explain_h2o(
  model,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ...,
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = TRUE,
  model_info = NULL,
  type = NULL
)
```

Arguments

- **model**
 object - a model to be explained
- **data**
 data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the `y` argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly.
- **y**
 numeric vector with outputs / scores. If provided then it shall have the same size as `data`
weights numeric vector with sampling weights. By default it's NULL. If provided then it shall have the same length as data

predict_function function that takes two arguments: model and new data and returns numeric vector with predictions

residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals \((y - \hat{y})\) are calculated.

... other parameters

label character - the name of the model. By default it's extracted from the 'class' attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed

precalculate if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

```r
# # load packages and data
library(h2o)
library(DALEXtra)

# data <- DALEX::titanic_imputed

# init h2o
h2o.init()

# stop h2o progress printing
h2o.no_progress()

# split the data
# h2o_split <- h2o.splitFrame(as.h2o(data))
# train <- h2o_split[[1]]
# test <- as.data.frame(h2o_split[[2]])
# h2o automl takes target as factor
```
train$survived <- as.factor(train$survived)

fit a model
automl <- h2o.automl(y = "survived",
training_frame = train,
max_runtime_secs = 30)

create an explainer for the model
explainer <- explain_h2o(automl,
data = test,
y = test$survived,
label = "h2o")

titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
 training_frame = titanic_h2o,
 y = "survived",
 distribution = "bernoulli",
 ntrees = 500,
 max_depth = 4,
 min_rows = 12,
 learn_rate = 0.001
)
explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

h2o.shutdown(prompt = FALSE)

explain_keras

Wrapper for Python Keras Models

Description

Keras models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of Keras model exported from Python via pickle file.

Usage

```r
explain_keras(path, yml = NULL, condaenv = NULL,)
```
env = NULL,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL
)

Arguments

path: a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.

yml: a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first.

condaenv: If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.

env: A path to python virtual environment.

data: test data set that will be passed to explain.

y: vector that will be passed to explain.

weights: numeric vector with sampling weights. By default it's NULL. If provided then it shall have the same length as data.

predict_function: predict function that will be passed into explain. If NULL, default will be used.

residual_function: residual function that will be passed into explain. If NULL, default will be used.

...: other parameters

label: label that will be passed into explain. If NULL, default will be used.

verbose: bool that will be passed into explain. If NULL, default will be used.

precalculate: if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize: if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info: a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type: type of a model, either classification or regression. If not specified then type will be extracted from model_info.
Value

An object of the class ‘explainer’.

Example of Python code available at documentation explain_scikitlearn

Errors use case

Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file

If you provide .yml file that in its header contains name exact to name of environment that already exists, existing will be set active without changing it.

You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:

conda env remove --name myenv

And execute function once again. Second is updating env via:

conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.

That error may be caused by a lot of things. One of those is that specified version is too old to be available from official conda repo. Edit Your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS you may need to remove specific version from .yml file.

-numpy=1.16.4=py36h19fb1c0_0
-numpy-base=1.16.4=py36hc3f5095_0

In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0

If some packages are not available for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda prompt.

conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

Examples

library("DALEXtra")
Not run:
Explainer build (Keep in mind that 9th column is target)
test_data <-
read.csv(
 sep = ",\"
)
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match aswell
explainer <- explain_keras(system.file("extdata", "keras.pkl", package = "DALEXtra"),
conda = "myenv",
data = test_data[,1:8], y = test_data[,9])plot(model_performance(explainer))

Predictions with newdata
predict(explainer, test_data[1:10,1:8])

End(Not run)

explain_mlr

Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is mlr package. We would like to present dedicated explain function for it.

Usage

```r
explain_mlr(
    model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
residual_function = NULL,
...,label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = TRUE,
model_info = NULL,
type = NULL
)
```

Arguments

- `model` object - a model to be explained
- `data` data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the `y` argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly.
- `y` numeric vector with outputs / scores. If provided then it shall have the same size as data.
weights numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data

predict_function function that takes two arguments: model and new data and returns numeric vector with predictions

residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals ($y - \hat{y}$) are calculated.

... other parameters

label character - the name of the model. By default it’s extracted from the ‘class’ attribute of the model

verbose if TRUE (default) then diagnostic messages will be printed

precalculate if TRUE (default) then ‘predicted_values’ and ‘residuals’ are calculated when explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

```r
library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
library("mlr")
task <- mlr::makeClassifTask(
  id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
  "classif.gbm",
  par.vals = list(
    distribution = "bernoulli",
n.trees = 500,
    interaction.depth = 4,
n.minobsinnode = 12,
    shrinkage = 0.001,
    bag.fraction = 0.5,
    train.fraction = 1
  ),
)```
explain_mlr3

Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is mlr3 package. We would like to present dedicated explain function for it.

Usage

```r
explain_mlr3(
 model,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...,
 label = NULL,
 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL,
 type = NULL
)
```

Arguments

- **model**: object - a fitted learner created with mlr3.
- **data**: data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities may not work properly.
- **y**: numeric vector with outputs / scores. If provided then it shall have the same size as data
- **weights**: numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data

```r
predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
```
**predict_function**

function that takes two arguments: model and new data and returns numeric vector with predictions

**residual_function**

function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals $(y - \hat{y})$ are calculated.

... other parameters

**label** character - the name of the model. By default it's extracted from the 'class' attribute of the model

**verbose** if TRUE (default) then diagnostic messages will be printed.

**precalculate** if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

**colorize** if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

**model_info** a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

**type** type of a model, either classification or regression. If not specified then type will be extracted from model_info.

**Value**

explainer object (explain) ready to work with DALEX

**Examples**

```r
library("DALEXtra")
library(mlr3)
titanic_imputed$survived <- as.factor(titanic_imputed$survived)
task_classif <- TaskClassif$new(id = "1", backend = titanic_imputed, target = "survived")
learner_classif <- lrn("classif.rpart", predict_type = "prob")
learner_classif$train(task_classif)
explain_mlr3(learner_classif, data = titanic_imputed, y = as.numeric(as.character(titanic_imputed$survived)))

task_regr <- TaskRegr$new(id = "2", backend = apartments, target = "m2.price")
learner_regr <- lrn("regr.rpart")
learner_regr$train(task_regr)
explain_mlr3(learner_regr, data = apartments, apartments$m2.price)
```
**explain_scikitlearn**  
*Wrapper for Python Scikit-Learn Models*

**Description**

scikit-learn models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of scikit-learn model exported from Python via pickle file.

**Usage**

```r
explain_scikitlearn(
 path,
 yml = NULL,
 condaenv = NULL,
 env = NULL,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...,
 label = NULL,
 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL,
 type = NULL
)
```

**Arguments**

- `path`  
a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.

- `yml`  
a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first

- `condaenv`  
If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.

- `env`  
A path to python virtual environment.

- `data`  
test data set that will be passed to `explain`.

- `y`  
vector that will be passed to `explain`.

- `weights`  
numeric vector with sampling weights. By default it’s `NULL`. If provided then it shall have the same length as `data`
predict_function
predict function that will be passed into explain. If NULL, default will be used.
residual_function
residual function that will be passed into explain. If NULL, default will be used.
... other parameters
label
label that will be passed into explain. If NULL, default will be used.
verbose
bool that will be passed into explain. If NULL, default will be used.
precalculate
if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.
colorize
if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
model_info
a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.
type
type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value
An object of the class 'explainer'. It has additional field param_set when user can check parameters of scikitlearn model.

Example of Python code

from pandas import DataFrame, read_csv
import pandas as pd
import pickle
import sklearn.ensemble
model = sklearn.ensemble.GradientBoostingClassifier()
model = model.fit(titanic_train_X, titanic_train_Y)
pickle.dump(model, open("gbm.pkl", "wb"), protocol = 2)

In order to export environment into .yml, activating virtual env via activate name_of_the_env and execution of the following shell command is necessary
conda env export > environment.yml

Errors use case
Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contains name exact to name of environment that already exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be caused by a lot of things. One of those is that specified version is too old to be available from official conda repo. Edit your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS you may need to remove specific version from .yml file.
- numpy=1.16.4=py36h19fb1c0_0
- numpy-base=1.16.4=py36hc3f5095_0
In the example above you have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not available for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda prompt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

Examples

## Not run:

```r
Explainer build (Keep in mind that 18th column is target)
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match as well
explainer <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
data = titanic_test[,1:17], y = titanic_test$survived)
plot(model_performance(explainer))

Predictions with newdata
predict(explainer, titanic_test[1:10,1:17])
```

## End(Not run)

---

explain_tidymodels

Create explainer from your tidymodels workflow.
**Description**

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is tidymodels package. We would like to present dedicated explain function for it.

**Usage**

```r
explain_tidymodels(
 model,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...,
 label = NULL,
 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL,
 type = NULL
)
```

**Arguments**

- `model` object - a fitted workflow created with mlr3.
- `data` data.frame or matrix - data that was used for fitting. Data should be passed without target column (this shall be provided as the `y` argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly. Tibble will be converted into data.frame
- `y` numeric vector with outputs / scores. If provided then it shall have the same size as data
- `weights` numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
- `predict_function` function that takes two arguments: model and new data and returns numeric vector with predictions
- `residual_function` function that takes three arguments: model, data and response vector `y`. It should return a numeric vector with model residuals for given data. If not provided, response residuals \((y - \hat{y})\) are calculated.
- `...` other parameters
- `label` character - the name of the model. By default it’s extracted from the ‘class’ attribute of the model
explain_xgboost

verbose if TRUE (default) then diagnostic messages will be printed.

precalculate if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
library("tidymodels")
library("recipes")
data <- titanic_imputed
data$survived <- as.factor(data$survived)
rec <- recipe(survived ~ ., data = data) %>%
  step_normalize(fare)
model <- decision_tree(tree_depth = 25) %>%
  set_engine("rpart") %>%
  set_mode("classification")

wflow <- workflow() %>%
  add_recipe(rec) %>%
  add_model(model)

model_fitted <- wflow %>%
  fit(data = data)

explain_tidymodels(model_fitted, data = titanic_imputed, y = titanic_imputed$survived)

explain_xgboost Create explainer from your xgboost model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, we would like to make more accessible is xgboost.
Usage

```
explain_xgboost(
 model,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...,
 label = NULL,
 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL,
 type = NULL,
 encode_function = NULL,
 true_labels = NULL
)
```

Arguments

- **model**: object - a model to be explained
- **data**: data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the `y` argument). NOTE: If target variable is present in the data, some of the functionalities may not work properly.
- **y**: numeric vector with outputs / scores. If provided then it shall have the same size as data. For classification task has to be numerical in range `[0, nclasses)`
- **weights**: numeric vector with sampling weights. By default it’s `NULL`. If provided then it shall have the same length as `data`
- **predict_function**: function that takes two arguments: model and new data and returns numeric vector with predictions
- **residual_function**: function that takes three arguments: model, data and response vector `y`. It should return a numeric vector with model residuals for given data. If not provided, response residuals (`y - \hat{y}`) are calculated.
- **...**: other parameters
- **label**: character - the name of the model. By default it’s extracted from the 'class' attribute of the model
- **verbose**: if `TRUE` (default) then diagnostic messages will be printed
- **precalculate**: if `TRUE` (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.
- **colorize**: if `TRUE` (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
funnel_measure

model_info  a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type  type of a model, either classification or regression. If not specified then type will be extracted from model_info.
encode_function  function(data, ...) that if executed with data parameters returns encoded dataframe that was used to fit model. Xgboost does not handle factors on its own so such function is needed to acquire better explanations.
true_labels  vector of y before encoding.

Value

explainer object (explain) ready to work with DALEX

Examples

library("xgboost")
library("DALEXtra")
library("mlr")

# 8th column is target that has to be omitted in X data
data <- as.matrix(createDummyFeatures(titanic_imputed[, -8]))
model <- xgboost(data, titanic_imputed$survived, nrounds = 10,
                  params = list(objective = "binary:logistic"),
                  prediction = TRUE)

# explainer with encode function
explainer_1 <- explain_xgboost(model, data = titanic_imputed[, -8],
                                titanic_imputed$survived,
                                encode_function = function(data) {
                                    as.matrix(createDummyFeatures(data))
                                })
plot(predict_parts(explainer_1, titanic_imputed[1, -8]))

# explainer without encode function
explainer_2 <- explain_xgboost(model, data = data, titanic_imputed$survived)
plot(predict_parts(explainer_2, data[1, , drop = FALSE]))

funnel_measure  Calculate difference in performance in models across different categories

Description

Function funnel_measure allows users to compare two models based on their explainers. It partitions dataset on which models were build and creates categories according to quantiles of columns in partition data. nbins parameter determinates number of quantiles. For each category difference in provided measure is being calculated. Positive value of that difference means that Champion model has better performance in specified category, while negative value means that one of the Challengers was better. Function allows to compare multiple Challengers at once.
funnel_measure

Usage

funnel_measure(
  champion,
  challengers,
  measure_function = NULL,
  nbins = 5,
  partition_data = champion$data,
  cutoff = 0.01,
  cutoff_name = "Other",
  factor_conversion_threshold = 7,
  show_info = TRUE,
  categories = NULL
)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
measure_function - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be (y, y_hat). The measure calculated by the function should have the property that lower score value indicates better model. If NULL, RMSE will be used for regression, one minus auc for classification and crossentropy for multiclass classification.
nbins - Number of quantiles (partition points) for numeric columns. In case when more than one quantile have the same value, there will be less partition points.
partition_data - Data by which test dataset will be partitioned for computation. Can be either data.frame or character vector. When second is passed, it has to indicate names of columns that will be extracted from test data. By default full test data. If data.frame, number of rows has to be equal to number of rows in test data.
cutoff - Threshold for categorical data. Entries less frequent than specified value will be merged into one category.
cutoff_name - Name for new category that arised after merging entries less frequent than cutoff
factor_conversion_threshold - Numeric columns with lower number of unique values than value of this parameter will be treated as factors
show_info - Logical value indicating if progress bar should be shown.
categories - a named list of variable names that will be plotted in a different colour. By deafult it is partitioned on Explanatory, External and Target.

Value

An object of the class funnel_measure

It is a named list containing following fields:
• data data.frame that consists of columns:
  – Variable Variable according to which partitions were made
  – Measure Difference in measures. Positive value indicates that champion was better, while negative that challenger.
  – Label String that defines subset of Variable values (partition rule).
  – Challenger Label of challenger explainer that was used in Measure
  – Category a category of the variable passed to function

• models_info data.frame containing information about models used in analysis

Examples

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
plot(plot_data)
```
Description

This generic function lets the user extract basic information about the model. The function returns a named list of class `model_info` containing information about the package of the model, version, and task type. For wrappers like `mlr` or `caret`, both package and wrapper information are stored.

Usage

```r
S3 method for class 'WrappedModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2ORegressionModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OBinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OMultinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'scikitlearn_model'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'keras'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerRegr'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerClassif'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'GraphLearner'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'xgb.Booster'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'workflow'
model_info(model, is_multiclass = FALSE, ...)
```

Arguments

- `model` - model object
- `is_multiclass` - if TRUE and task is classification, then multitask classification is set. Else is omitted. If `model_info` was executed withing `explain` function, DALEX will recognize subtype on its own. @param is_multiclass
- `...` - another arguments

Currently supported packages are:
overall_comparison

- mlr models created with mlr package
- h2o models created with h2o package
- scikit-learn models created with scikit-learn python library and accessed via reticulate
- keras models created with keras python library and accessed via reticulate
- mlr3 models created with mlr3 package
- xgboost models created with xgboost package
- tidymodels models created with tidymodels package

Value

A named list of class model_info

---

**overall_comparison**  
*Compare champion with challengers globally*

**Description**

The function creates objects that present global model performance using various measures. Those data can be easily plotted with plot function. It uses auditor package to create model_performance of all passed explainers. Keep in mind that type of task has to be specified.

**Usage**

overall_comparison(champion, challengers, type)

**Arguments**

- **champion** - explainer of champion model.
- **challengers** - explainer of challenger model or list of explainers.
- **type** - type of the task. Either classification or regression

**Value**

An object of the class overall_comparison

It is a named list containing following fields:

- radar list of model_performance objects and other parameters that will be passed to generic plot function
- accordance data.frame object of champion responses and challenger’s corresponding to them. Used to plot accordance.
- models_info data.frame containing information about models used in analysis.
Examples

```r
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
 "regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
 "regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
 "regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)
```

---

**plot.funnel_measure**  
Funnel plot for difference in measures

**Description**

Function `plot.funnel_measure` creates funnel plot of differences in measures for two models across variable areas. It uses data created with `funnel_measure` function.

**Usage**

```
S3 method for class 'funnel_measure'
plot(x, ..., dot_size = 0.5)
```

**Arguments**

- `x` - funnel_measure object created with `funnel_measure` function.
- `...` - other parameters
- `dot_size` - size of the dot on plots. Passed to `geom_point`.
Value

ggplot object

Examples

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
 "regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
 "regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
 "regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
plot(plot_data)
```

---

plot.overall_comparison

Plot function for overall_comparison

Description

The function plots data created with overall_comparison. For radar plot it uses auditor’s plot_radar. Keep in mind that the function creates two plots returned as list.

Usage

```r
S3 method for class 'overall_comparison'
plot(x, ...)
```
Arguments

x - data created with `overall_comparison`
...
- other parameters

Value

A named list of ggplot objects.

It consists of:

- `radar_plot` plot created with `plot_radar`
- `accordance_plot` accordance plot of responses. OX axis stand for champion response, while OY for one of challengers responses. Colour indicates on challenger.

Examples

```r
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)
```
plot.training_test_comparison

Plot and compare performance of model between training and test set

Description

Function plot.training_test_comparison plots dependency between model performance on test and training dataset based on training_test_comparison object. Green line indicates y = x line.

Usage

## S3 method for class 'training_test_comparison'
plot(x, ...)

Arguments

x - object created with training_test_comparison function.

... - other parameters

Value

ggplot object

Examples

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
```
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
  training_data = apartments,
  training_y = apartments$m2.price)

plot(data)

**predict_surrogate**  
*Instance Level Surrogate Models*

**Description**

Interface to different implementations of the LIME method. Find information how the LIME method works here: [https://pbiecek.github.io/ema/LIME.html](https://pbiecek.github.io/ema/LIME.html).

**Usage**

```r
predict_surrogate(explainer, new_observation, ..., type = "localModel")

predict_surrogate_local_model(
 explainer,
 new_observation,
 size = 1000,
 seed = 1313,
 ...
)

predict_model.dalex_explainer(x, newdata, ...)

model_type.dalex_explainer(x, ...)

predict_surrogate_lime(
 explainer,
 new_observation,
 n_features = 4,
 n_permutations = 1000,
 labels = unique(explainer$y)[1],
 ...
)

S3 method for class 'predict_surrogate_lime'
plot(x, ...)

predict_surrogate_iml(explainer, new_observation, k = 4, ...)
```
print.funnel_measure

**Arguments**

- **explainer**: a model to be explained, preprocessed by the `explain` function
- **new_observation**: a new observation for which predictions need to be explained
- **...**: other parameters that will be passed to
- **type**: which implementation of the LIME method should be used. Either `localModel` (default), `lime` or `iml`.
- **size**: will be passed to the `localModel` implementation, by default 1000
- **seed**: seed for random number generator, by default 1313
- **x**: an object to be plotted
- **newdata**: alias for `new_observation`
- **n_features**: will be passed to the `lime` implementation, by default 4
- **n_permutations**: will be passed to the `lime` implementation, by default 1000
- **labels**: will be passed to the `lime` implementation, by default first value in the y vector
- **k**: will be passed to the `iml` implementation, by default 4

**Value**

Depending on the type there are different classes of the resulting object.

**References**


---

**print.funnel_measure**  
*Print funnel_measure object*

**Description**

Print funnel_measure object

**Usage**

```r
S3 method for class 'funnel_measure'
print(x, ...)
```

**Arguments**

- **x**: an object of class `funnel_measure`
- **...**: other parameters
Examples

```r
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
print(plot_data)
```

print.overall_comparison

Print overall_comparison object

Description

Print overall_comparison object

Usage

```r
S3 method for class 'overall_comparison'
print(x, ...)
```

Arguments

- `x` an object of class overall_comparison
- `...` other parameters
Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
  id = "R",
  data = apartments,
  target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")
learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")
learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
print(data)

print.scikitlearn_set  Prints scikitlearn_set class

Description
Prints scikitlearn_set class

Usage
## S3 method for class 'scikitlearn_set'
print(x, ...)

Arguments
  x a list from explainer created with explain_scikitlearn
  ... other arguments
print.training_test_comparison

Print funnel_measure object

Description

Print funnel_measure object

Usage

## S3 method for class 'training_test_comparison'
print(x, ...)

Arguments

x an object of class funnel_measure
...
other parameters

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
  id = "R",
  data = apartments,
  target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
  training_data = apartments,
  training_y = apartments$m2.price)

print(data)
training_test_comparison

*Compare performance of model between training and test set*

Description

Function `training_test_comparison` calculates performance of the provided model based on specified measure function. Response of the model is calculated based on test data, extracted from the explainer and training data, provided by the user. Output can be easily shown with `print` or `plot` function.

Usage

```r
training_test_comparison(
 champion,
 challengers,
 training_data,
 training_y,
 measure_function = NULL
)
```

Arguments

- **champion** - explainer of champion model.
- **challengers** - explainer of challenger model or list of explainers.
- **training_data** - data without target column that will be passed to predict function and then to measure function. Keep in mind that they have to differ from data passed to an explainer.
- **training_y** - target column for `training_data`
- **measure_function** - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be `(y, y_hat)`. By default it is RMSE.

Value

An object of the class `training_test_comparison`.

It is a named list containing:

- `data` data.frame with following columns
  - `measure_test` performance on test set
  - `measure_train` performance on training set
  - `label` label of explainer
  - `type` flag that indicates if explainer was passed as champion or as challenger.
- `models_info` data.frame containing information about models used in analysis
**Examples**

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explaner_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
 training_data = apartments,
 training_y = apartments$m2.price)
plot(data)
```

---

**yhat.WrappedModel**

*Wrapper over the predict function*

**Description**

These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since information from many models have to be extracted with various techniques.

**Usage**

```r
S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2OBinomialModel'
```
yhat(X.model, newdata, ...)  
## S3 method for class 'H2OMultinomialModel'
yhat(X.model, newdata, ...)  
## S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...)  
## S3 method for class 'keras'
yhat(X.model, newdata, ...)  
## S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...)  
## S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...)  
## S3 method for class 'GraphLearner'
yhat(X.model, newdata, ...)  
## S3 method for class 'xgb.Booster'
yhat(X.model, newdata, ...)  
## S3 method for class 'workflow'
yhat(X.model, newdata, ...)

**Arguments**

- `X.model` - object - a model to be explained
- `newdata` - data.frame or matrix - observations for prediction
- `...` - other parameters that will be passed to the predict function

**Details**

Currently supported packages are:

- `mlr` see more in `explain_mlr`
- `h2o` see more in `explain_h2o`
- `scikit-learn` see more in `explain_scikitlearn`
- `keras` see more in `explain_keras`
- `mlr3` see more in `explain_mlr3`
- `xgboost` see more in `explain_xgboost`
- `tidymodels` see more in `explain_tidymodels`

**Value**

An numeric vector of predictions
Index

champion_challenger, 2
create_env, 4

explain, 6, 8, 11, 13–15, 18, 20
explain_h2o, 5, 36
explain_keras, 7, 36
explain_mlr, 10, 36
explain_mlr3, 12, 36
explain_scikitlearn, 9, 14, 32, 36
explain_tidymodels, 16, 36
explain_xgboost, 18, 36

funnel_measure, 2, 3, 20, 25
geom_point, 25

model_info.GraphLearner
  (model_info.WrappedModel), 22
model_info.H2OBinomialModel
  (model_info.WrappedModel), 22
model_info.H2OMultinomialModel
  (model_info.WrappedModel), 22
model_info.H2ORegressionModel
  (model_info.WrappedModel), 22
model_info.keras
  (model_info.WrappedModel), 22
model_info.LearnerClassif
  (model_info.WrappedModel), 22
model_info.LearnerRegr
  (model_info.WrappedModel), 22
model_info.scikitlearn_model
  (model_info.WrappedModel), 22
model_info.workflow
  (model_info.WrappedModel), 22
model_info.xgb.Booster
  (model_info.WrappedModel), 22
model_performance, 24
model_type.dalex_explainer
  (predict_surrogate), 29
overall_comparison, 2, 3, 24, 26, 27

plot.funnel_measure, 3, 25
plot.overall_comparison, 26
plot.predict_surrogate_lime
  (predict_surrogate), 29
plot.training_test_comparison, 28
plot.radar, 26, 27
predict_model.dalex_explainer
  (predict_surrogate), 29
predict_parts (predict_surrogate), 29
predict_parts_break_down
  (predict_surrogate), 29
predict_parts_ibreak_down
  (predict_surrogate), 29
predict_parts_shap (predict_surrogate), 29
predict_surrogate, 29
predict_surrogate_ilm
  (predict_surrogate), 29
predict_surrogate_lime
  (predict_surrogate), 29
predict_surrogate_local_model
  (predict_surrogate), 29
print.funnel_measure, 30
print.overall_comparison, 31
print.scikitlearn_set, 32
print.training_test_comparison, 33

training_test_comparison, 2, 3, 28, 34

yhat.GraphLearner (yhat.WrappedModel), 35
yhat.H2OBinomialModel
  (yhat.WrappedModel), 35
yhat.H2OMultinomialModel
  (yhat.WrappedModel), 35
yhat.H2ORegressionModel
  (yhat.WrappedModel), 35
yhat.keras (yhat.WrappedModel), 35
yhat.LearnerClassif (yhat.WrappedModel), 35
yhat.LearnerRegr (yhat.WrappedModel), 35
yhat.scikitlearn_model (yhat.WrappedModel), 35
yhat.workflow (yhat.WrappedModel), 35
yhat.WrappedModel, 35
yhat.xgb.Booster (yhat.WrappedModel), 35