Package ‘DAISIEprep’

April 2, 2024

Type Package
Title Extracts Phylogenetic Island Community Data from Phylogenetic Trees
Version 0.4.0
Maintainer Joshua W. Lambert <j.w.l.lambert@rug.nl>
Description Extracts colonisation and branching times of island species to be used for analysis in the R package ‘DAISIE’. It uses phylogenetic and endemicity data to extract the separate island colonists and store them.

URL https://github.com/joshwlambert/DAISIEprep,
https://joshwlambert.github.io/DAISIEprep/

BugReports https://github.com/joshwlambert/DAISIEprep/issues
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.1
Depends R (>= 4.0)

biocViews
Imports methods, ape, phylobase, ggplot2, scales, ggtree, DAISIE, castor, tibble, rlang
Suggests testthat (>= 3.0.0), knitr, rmarkdown, covr, diversitree, corHMM, tidyr, dplyr, ggimage

VignetteBuilder knitr

Config/testthat/edition 3

Collate 'DAISIEprep-package.R' 'add_asr_node_states.R'
'add_island_colonist.R' 'add_missing_species.R'
'add_multi_missing_species.R' 'add_outgroup.R'
'all_descendants_conspecific.R' 'any_back_colonisation.R'
'any_outgroup.R' 'any_polyphyly.R' 'as_daisie_datatable.R'
'benchmark.R' 'bind_colonist_to_tbl.R' 'check_phylo_data.R'
'count_missing_species.R' 'create_daisie_data.R'
R topics documented:

'create_endemicity_status.R' 'create_test_phylod.R'
'default_params_doc.R' 'endemicity_to_sse_states.R'
'extract_asr_clade.R' 'extract_clade_name.R'
'extract_endemic_clade.R' 'extract_endemic_singleton.R'
'extract_island_species.R' 'extract_multi_tip_species.R'
'extract_nonendemic.R' 'extract_species_asr.R'
'extract_species_min.R' 'extract_stem_age.R'
'extract_stem_age_asr.R' 'extract_stem_age_genus.R'
'extract_stem_age_min.R' 'get_endemic_species.R'
'is_back_colonisation.R' 'is_duplicate_colonist.R'
'is_identical_island_tbl.R' 'is_multi_tip_species.R'
'island_colonist-class.R' 'island_colonist-accessors.R'
'island_tbl-class.R' 'island_tbl-accessors.R'
'island_tbl-methods.R' 'multi_extract_island_species.R'
'multi_island_tbl-class.R' 'multi_island_tbl-methods.R'
'plot_colonisation.R' 'plot_performance.R' 'plot_phylod.R'
'plot_sensitivity.R' 'print-methods.R' 'read_performance.R'
'read_sensitivity.R' 'rm_island_colonist.R'
'rm_multi_missing_species.R' 'sensitivity.R'
'translate_status.R' 'unique_island_genera.R' 'utils.R'
'write_biogeobears_input.R'

NeedsCompilation no

Author Joshua W. Lambert [aut, cre] (<https://orcid.org/0000-0001-5218-3046>),
 Luis Valente [aut] (<https://orcid.org/0000-0003-4247-8785>),
 Pedro Santos Neves [aut] (<https://orcid.org/0000-0003-2561-4677>),
 Lizzie Roeble [aut] (<https://orcid.org/0000-0003-3664-4222>),
 Theo Pannetier [aut] (<https://orcid.org/0000-0002-8424-3573>)

Repository CRAN

Date/Publication 2024-04-02 11:30:06 UTC

R topics documented:

add_asr_node_states .. 4
add_island_colonist ... 5
add_missing_species .. 7
add_multi_missing_species 8
add_outgroup .. 9
all_descendants_conspecific 10
all_endemicity_status 10
any_back_colonisation 11
any_outgroup .. 12
any_polyphyly ... 13
as_daisie_datatable .. 13
benchmark .. 14
bind_colonist_to_tbl .. 16
check_island_colonist 17
check_island_tbl .. 18
check_multi_island_tbl 18
check_phylo_data ... 19
count_missing_species 20
create_daisie_data .. 21
create_endemicity_status 23
create_test_phylod .. 24
default_params_doc .. 24
dendropy_poly spec ies_to_sse_states 30
extract_asr_clade ... 31
extract_biogeobears_ancestral_states_probs 31
extract_clade_name .. 32
extract_endemic_clade 32
extract_endemic_singleton 33
extract_island_species 34
extract_multi_tip_species 36
extract_nonendemic ... 37
extract_species_asr .. 38
extract_species_min .. 39
extract_stem_age .. 40
extract_stem_age_asr 42
extract_stem_age_genus 43
extract_stem_age_min 44
g et_clade_name ... 44
get_island_tbl .. 47
get_sse_tip_states .. 48
island_colonist ... 49
Island_colonist-class .. 50
island_tbl .. 51
Island_tbl-class ... 51
is_back_colonisation 52
is_duplicate_colonist 53
is_identical_island_tbl 54
multi_extract_island_species 55
multi_island_tbl ... 56
Multi_island_tbl-class 56
plot_colonisation .. 57
plot_performance .. 58
plot_phylod ... 58
rm_island_colonist ... 59
rm_multi_missing_species 60
round_up .. 61
select_endemicity_status 61
sensitivity .. 62
sse_states_to_endemicity 63
translate_status ... 64
unique_island_genera 64
write_biogeobears_input 65

R topics documented:
add_asr_node_states

Fits a model of ancestral state reconstruction of island presence

Usage

add_asr_node_states(
 phylod,
 asr_method,
 tie_preference = "island",
 earliest_col = FALSE,
 rate_model = NULL
)

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicty data for each species.
asr_method A character string, either "parsimony" or "mk" determines whether a maximum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods used.
tie_preference Character string, either "island" or "mainland" to choose the most probable state at each node using the max.col() function. When a node has island presence and absence equally probable we need to decide whether that species should be considered on the island. To consider it on the island use ties.method = "last" in the max.col() function, if you consider it not on the island use ties.method = "first". Default is "island".
earliest_col A boolean to determine whether to take the colonisation time as the most probable time (FALSE) or the earliest possible colonisation time (TRUE), where the probability of a species being on the island is non-zero. Default is FALSE.
rate_model Rate model to be used for fitting the transition rate matrix. Can be "ER" (all rates equal), "SYM" (transition rate i->j is equal to transition rate j->i), "ARD" (all rates can be different), "SUEDE" (only stepwise transitions i->i+1 and i->i-1 allowed, all 'up' transitions are equal, all 'down' transitions are equal) or "SRD" (only stepwise transitions i->i+1 and i->i-1 allowed, and each rate can be different). Can also be an index matrix that maps entries of the transition matrix to the corresponding independent rate parameter to be fitted. Diagonal
entries should map to 0, since diagonal entries are not treated as independent rate parameters but are calculated from the remaining entries in the transition matrix. All other entries that map to 0 represent a transition rate of zero. The format of this index matrix is similar to the format used by the ace function in the ape package. rate_model is only relevant if transition_matrix==NULL.

Details

The rate_model argument documentation is inherited from castor::asr_mk_model(), therefore, the last sentence about the transition_matrix argument does not apply to add_asr_node_states().

Value

An object of phylo4d class with tip and node data

add_island_colonist

Adds an island colonists (can be either a singleton lineage or an island clade) to the island community (island_tbl).

Description

Adds an island colonists (can be either a singleton lineage or an island clade) to the island community (island_tbl).

Usage

add_island_colonist(
 island_tbl, clade_name, status, missing_species, col_time, col_max_age, branching_times, min_age, species, clade_type
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>island_tbl</td>
<td>An instance of the Island_tbl class.</td>
</tr>
<tr>
<td>clade_name</td>
<td>Character name of the colonising clade.</td>
</tr>
<tr>
<td>status</td>
<td>Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".</td>
</tr>
</tbody>
</table>
missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is \(n - 1 \), where \(n \) is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is \(0 \) because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is \(n - 1 \) because adding the lineage already counts as one.

col_time

Numeric with the colonisation time of the island colonist

col_max_age

Boolean determining whether colonisation time should be considered a precise time of colonisation or a maximum time of colonisation

branching_times

Numeric vector of one or more elements which are the branching times on the island.

min_age

Numeric minimum age (time before the present) that the species must have colonised the island by. This is known when there is a branching on the island, either in species or subspecies.

species

Character vector of one or more elements containing the name of the species included in the colonising clade.

clade_type

Numeric determining which type of clade the island colonist is, this determines which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see https://CRAN.R-project.org/package=DAISIE/vignettes/demo_optimize.html for more information)

Value

An object of Island_tbl class

Examples

```r
# create an empty island_tbl to add to
island_tbl <- island_tbl()

# add a new island colonist
island_tbl <- add_island_colonist(
  island_tbl,
  clade_name = "new_clade",
  status = "endemic",
  missing_species = 0,
  col_time = 1,
  col_max_age = FALSE,
  branching_times = NA,
  min_age = NA,
  species = "new_clade",
  clade_type = 1
)
```
add_missing_species

Description

Adds a specified number of missing species to an existing island_tbl at the colonist specified by the species_to_add_to argument given. The species given is located within the island_tbl data and missing species are assigned. This is to be used after extract_island_species() to input missing species.

Usage

add_missing_species(island_tbl, num_missing_species, species_to_add_to)

Arguments

- island_tbl: An instance of the Island_tbl class.
- num_missing_species: Numeric for the number of missing species in the clade.
- species_to_add_to: Character string with the name of the species to identify which clade to assign missing species to.

Value

Object of Island_tbl class

Examples

```r
set.seed(1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(5)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- c("not_present", "not_present", "endemic", "not_present", "not_present")
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
island_tbl <- extract_island_species(phylod, extraction_method = "min")
island_tbl <- add_missing_species(island_tbl, 7, "bird_a")
```
add_multi_missing_species

Calculates the number of missing species to be assigned to each island clade in the island_tbl object and assigns the missing species to them. In the case that multiple genera are in an island clade and each have missing species the number of missing species is summed. Currently the missing species are assigned to the genus that first matches with the missing species table, however a more biologically or stochastic assignment is in development.

Description

Calculates the number of missing species to be assigned to each island clade in the island_tbl object and assigns the missing species to them. In the case that multiple genera are in an island clade and each have missing species the number of missing species is summed. Currently the missing species are assigned to the genus that first matches with the missing species table, however a more biologically or stochastic assignment is in development.

Usage

add_multi_missing_species(missing_species, missing_genus, island_tbl)

Arguments

missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is \(n - 1 \), where \(n \) is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is \(n - 1 \) because adding the lineage already counts as one.

missing_genus

A list of character vectors containing the genera in each island clade

island_tbl

An instance of the Island_tbl class.

Value

Object of Island_tbl class
add_outgroup

Examples

```r
phylod <- create_test_phylod(test_scenario = 6)
island_tbl <- suppressWarnings(extract_island_species(
    phylod = phylod,
    extraction_method = "asr",
))
phylod <- create_test_phylod(test_scenario = 7)
island_tbl <- suppressWarnings(extract_island_species(
    phylod = phylod,
    extraction_method = "asr",
    island_tbl = island_tbl
))

missing_species <- data.frame(
    clade_name = "bird",
    missing_species = 1,
    endemicity_status = "endemic"
)

missing_genus <- list("bird", character(0))

island_tbl <- add_multi_missing_species(
    missing_species = missing_species,
    missing_genus = missing_genus,
    island_tbl = island_tbl
)
```

add_outgroup

Add an outgroup species to a given phylogeny.

Description

Add an outgroup species to a given phylogeny.

Usage

```r
add_outgroup(phylo)
```

Arguments

- `phylo` A phylogeny either as a phyl0 (from the ape package) or phyl04 (from the phylbase package) object.

Value

A phyl0 object
all_endemicity_status

Examples

phylo <- ape::rcoal(10)
phylo_with_outgroup <- add_outgroup(phylo)

all_descendants_conspecific

Checks whether all species given in the descendants vector are the same species.

Description

Checks whether all species given in the descendants vector are the same species.

Usage

all_descendants_conspecific(descendants)

Arguments

descendants A vector character strings with the names of species to determine whether they are the same species.

Value

Boolean

Examples

Example where species are not conspecific
descendants <- c("bird_a", "bird_b", "bird_c")
all_descendants_conspecific(descendants = descendants)

Example where species are conspecific
descendants <- c("bird_a_1", "bird_a_2", "bird_a_3")
all_descendants_conspecific(descendants = descendants)

all_endemicity_status

All possible endemicity statuses

Description

All possible endemicity statuses

Usage

all_endemicity_status()
any_back_colonisation

_Detects any cases where a non-endemic species or species not present on the island has likely been on the island given its ancestral state reconstruction indicating ancestral presence on the island and so is likely a back colonisation from the island to the mainland (or potentially different island). This function is useful if using extraction_method = "min" in DAISIEprep::extract_island_species() as it may brake up a single colonist into multiple colonists because of back-colonisation._

Description

Detects any cases where a non-endemic species or species not present on the island has likely been on the island given its ancestral state reconstruction indicating ancestral presence on the island and so is likely a back colonisation from the island to the mainland (or potentially different island). This function is useful if using extraction_method = "min" in DAISIEprep::extract_island_species() as it may brake up a single colonist into multiple colonists because of back-colonisation.

Usage

```r
any_back_colonisation(phylod, only_tips = FALSE)
```

Arguments

- `phylod`: A phylod4d object from the package phylodbase containing phylogenetic and endemicity data for each species.
- `only_tips`: A boolean determining whether only the tips (i.e. terminal branches) are searched for back colonisation events.

Value

A single or vector of character strings. Character string is in the format ancestral_node -> focal_node, where the ancestral node is not on mainland but the focal node is. In the case of no back colonisations a different message string is returned.

Examples

```r
# Example with no back colonisation
phylod <- create_test_phylod(test_scenario = 15)
any_back_colonisation(phylod)

# Example with back colonisation
set.seed(3,
  kind = "Mersenne-Twister",
```
any_outgroup

Checks whether the phylogeny has an outgroup that is not present on the island. This is critical when extracting data from the phylogeny so the stem age (colonisation time) is correct.

Description

Checks whether the phylogeny has an outgroup that is not present on the island. This is critical when extracting data from the phylogeny so the stem age (colonisation time) is correct.

Usage

any_outgroup(phylod)

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Boolean

Examples

set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylolo <- ape::rcoal(5)
phylolo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")
phylolo <- phylobase::phylo4(phylolo)
endemicity_status <- c("endemic", "endemic", "not_present",
 "endemic", "not_present")
phylod <- phylobase::phylo4d(phylolo, as.data.frame(endemicity_status))
phylod <- add_asr_node_states(phylod = phylod, asr_method = "parsimony")
artificially modify data to produce back-colonisation
phylobase::tdata(phylod)$island_status[8] <- "endemic"
any_back_colonisation(phylod = phylod)

normal.kind = "Inversion",
sample.kind = "Rejection"
)
any_polyphyly

endemcity_status <- sample(c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemcity_status))
any_outgroup(phylod)

any_polyphyly Checks whether there are any species in the phylogeny that have multiple tips (i.e. multiple subspecies per species) and whether any of those tips are paraphyletic (i.e. are their subspecies more distantly related to each other than to other subspecies or species).

Description

Checks whether there are any species in the phylogeny that have multiple tips (i.e. multiple subspecies per species) and whether any of those tips are paraphyletic (i.e. are their subspecies more distantly related to each other than to other subspecies or species).

Usage

any_polyphyly(phylod)

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Boolean

Examples

phylod <- create_test_phylod(test_scenario = 1)
any_polyphyly(phylod)

as_daisie_datatable Converts the Island_tbl class to a data frame in the format of a DAISIE data table (see DAISIE R package for details). This can then be input into DAISIEprep::create_daisie_data() function which creates the list input into the DAISIE ML models.

Description

Converts the Island_tbl class to a data frame in the format of a DAISIE data table (see DAISIE R package for details). This can then be input into DAISIEprep::create_daisie_data() function which creates the list input into the DAISIE ML models.
Usage

`as_daisie_datatable(island_tbl, island_age, precise_col_time = TRUE)`

Arguments

- `island_tbl`: An instance of the `Island_tbl` class.
- `island_age`: Age of the island in appropriate units.
- `precise_col_time`: Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonistion and uses minimum age of colonisation if available.

Value

A data frame in the format of a DAISIE data table

Author(s)

Joshua W. Lambert, Pedro Neves

Examples

```r
phylod <- create_test_phylod(10)
island_tbl <- extract_island_species(
  phylod = phylod,
  extraction_method = "asr"
)

# Example where precise colonisation times are known
daisie_datatable <- as_daisie_datatable(
  island_tbl = island_tbl,
  island_age = 0.2,
  precise_col_time = TRUE
)

# Example where colonisation times are uncertain and set to max ages
daisie_datatable <- as_daisie_datatable(
  island_tbl = island_tbl,
  island_age = 0.2,
  precise_col_time = FALSE
)
```

`benchmark`
Performance analysis of the `extract_island_species()` function. Uses `system.time()` for timing for reasons explained here: https://radfordneal.wordpress.com/2014/02/02/inaccurate-results-from-microbenchmark/#nolint
Description

Performance analysis of the extract_island_species() function. Uses system.time() for timing for reasons explained here: https://radfordneal.wordpress.com/2014/02/02/inaccurate-results-from-microbenchmark/ # nolint

Usage

```r
benchmark(
  phylod,
  tree_size_range,
  num_points,
  prob_on_island,
  prob_endemic,
  replicates,
  extraction_method,
  asr_method,
  tie_preference,
  log_scale = TRUE,
  parameter_index = NULL,
  verbose = FALSE
)
```

Arguments

- `phylod`: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- `tree_size_range`: Numeric vector of two elements, the first is the smallest tree size (number of tips) and the second is the largest tree size.
- `num_points`: Numeric determining how many points in the sequence of smallest tree size to largest tree size.
- `prob_on_island`: Numeric vector of each probability on island to use in the parameter space.
- `prob_endemic`: Numeric vector of each probability of an island species being endemic to use in the parameter space.
- `replicates`: Numeric determining the number of replicates to use to account for the stochasticity in sampling the species on the island and endemic species.
- `extraction_method`: A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).
- `asr_method`: A character string, either "parsimony" or "mk" determines whether a maximum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods used.
bind_colonist_to_tbl

Takes an existing instance of an Island_tbl class and bind the information from the instance of an Island_colonist class to it.

Description

Takes an existing instance of an Island_tbl class and bind the information from the instance of an Island_colonist class to it.

Usage

```r
bind_colonist_to_tbl(island_colonist, island_tbl)
```

Arguments

- `island_colonist`
 An instance of the Island_colonist class.

- `island_tbl`
 An instance of the Island_tbl class.

Value

An object of Island_tbl class
check_island_colonist

Examples

```r
island_colonist <- DAISIEprep::island_colonist(
  clade_name = "bird",
  status = "endemic",
  missing_species = 0,
  col_time = 1,
  col_max_age = FALSE,
  branching_times = 0.5,
  species = "bird_a",
  clade_type = 1
)
island_tbl <- island_tbl()
bind_colonist_to_tbl(
  island_colonist = island_colonist,
  island_tbl = island_tbl
)
```

Description

Checks the validity of the Island_colonist class

Usage

```r
check_island_colonist(object)
```

Arguments

- `object` Instance of the island_colonist class

Value

Boolean or errors

Examples

```r
island_colonist <- island_colonist()
check_island_colonist(island_colonist)
```
check_island_tbl

Checks the validity of the Island_tbl class

Description

Checks the validity of the Island_tbl class

Usage

```r
check_island_tbl(object)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Instance of the Island_tbl class</td>
</tr>
</tbody>
</table>

Value

Boolean or errors

Examples

```r
island_tbl <- island_tbl()
check_island_tbl(island_tbl)
```

check_multi_island_tbl

Checks the validity of the Multi_island_tbl class

Description

Checks the validity of the Multi_island_tbl class

Usage

```r
check_multi_island_tbl(object)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Instance of the Multi_island_tbl class</td>
</tr>
</tbody>
</table>

Value

Boolean or errors

Examples

```r
multi_island_tbl <- multi_island_tbl()
check_multi_island_tbl(multi_island_tbl)
```
check_phylo_data

Checks whether \linkS4class{phylo4d} object conforms to the requirements of the DAISIEprep package. If the function does not return anything the data is ready to be used, if an error is returned the data requires some pre-processing before DAISIEprep can be used.

Description

Checks whether \linkS4class{phylo4d} object conforms to the requirements of the DAISIEprep package. If the function does not return anything the data is ready to be used, if an error is returned the data requires some pre-processing before DAISIEprep can be used.

Usage

check_phylo_data(phylod)

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Nothing or error message

Examples

set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
 "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(
 c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
check_phylo_data(phylod)
count_missing_species
Reads in the checklist of all species on an island, including those that are not in the phylogeny (represented by NA) and counts the number of species missing from the phylogeny each genus

Description

Reads in the checklist of all species on an island, including those that are not in the phylogeny (represented by NA) and counts the number of species missing from the phylogeny each genus

Usage

```r
count_missing_species(
  checklist,
  phylo_name_col,
  genus_name_col,
  in_phylo_col,
  endemicity_status_col,
  rm_species_col = NULL
)
```

Arguments

- **checklist**: data frame with information on species on the island
- **phylo_name_col**: A character string specifying the column name where the names in the phylogeny are in the checklist
- **genus_name_col**: A character string specifying the column name where the genus names are in the checklist
- **in_phylo_col**: A character string specifying the column name where the status of whether a species is in the phylogeny is in the checklist
- **endemicity_status_col**: A character string specifying the column name where the endemicity status of the species are in the checklist
- **rm_species_col**: A character string specifying the column name where the information on whether to remove species from the checklist before counting the number of missing species is in the checklist. This can be NULL if no species are to be removed from the checklist. This is useful when species are in the checklist because they are on the island but need to be removed as they are not in the group of interest, e.g. a migratory bird amongst terrestrial birds

Value

Data frame
create_daisie_data

Examples

mock_checklist <- data.frame(
genus = c("bird", "bird", "bird", "bird", "bird", "bird", "bird", "bird", "bird", "bird"),
species = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),
species_names = c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e", "bird_f", "bird_g", "bird_h", "bird_i", "bird_j"),
sampled = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE),
endemicity_status = c("endemic", "endemic", "endemic", "nonendemic", "endemic", "nonendemic", "endemic", "endemic", "endemic", "endemic"),
remove_species = (rep(FALSE, 10))
)

missing_species <- count_missing_species(
checklist = mock_checklist,
phylo_name_col = "species_names",
genus_name_col = "genus",
in_phylo_col = "sampled",
endemicity_status_col = "endemicity_status",
rm_species_col = NULL
)

create_daisie_data This is a wrapper function for DAISIE::DAISIE_dataprep(). It allows the final DAISIE data structure to be produced from within DAISIEprep. For detailed documentation see the help documentation in the DAISIE package (?DAISIE::DAISIE_dataprep).

Description

This is a wrapper function for DAISIE::DAISIE_dataprep(). It allows the final DAISIE data structure to be produced from within DAISIEprep. For detailed documentation see the help documentation in the DAISIE package (?DAISIE::DAISIE_dataprep).

Usage

create_daisie_data(
data,
island_age,
um_mainland_species,
um_clade_types = 1,
list_type2_clades = NA,
prop_type2_pool = "proportional",
epss = 1e-05,
verbose = FALSE,
precise_col_time = TRUE
)
create_daisie_data

Arguments

data Either an object of class Island_tbl or a DAISIE data table object (output from as_daisie_datatable()).

island_age Age of the island in appropriate units.

num_mainland_species The size of the mainland pool, i.e. the number of species that can potentially colonise the island.

num_clade_types Number of clade types. Default num_clade_types = 1 all species are considered to belong to the same macroevolutionary process. If num_clade_types = 2, there are two types of clades with distinct macroevolutionary processes.

list_type2_clades If num_clade_types = 2, list_type2_clades specifies the names of the clades that have a distinct macroevolutionary process. The names must match those in the "Clade_name" column of the source data table. If num_clade_types = 1, then list_type2_clades = NA should be specified (default).

prop_type2_pool Specifies the fraction of potential mainland colonists that have a distinct macroevolutionary process. Applies only if number_clade_types = 2. Default "proportional" sets the fraction to be proportional to the number of clades of distinct macroevolutionary process that have colonised the island. Alternatively, the user can specify a value between 0 and 1 (e.g. if the mainland pool size is 1000 and prop_type2_pool = 0.02 then the number of type 2 species is 20).

epss Default = 1e-5 should be appropriate in most cases. This value is used to set the maximum age of colonisation of "Non_endemic_MaxAge" and "Endemic_MaxAge" species to an age that is slightly younger than the island for cases when the age provided for that species is older than the island. The new maximum age is then used as an upper bound to integrate over all possible colonisation times.

verbose Boolean. States if intermediate results should be printed to console. Defaults to FALSE

precise_col_time Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonistion and uses minimum age of colonisation if available.

Value

DAISIE data list

Examples

```r
phylod <- create_test_phylod(3)
island_tbl <- extract_island_species(
    phylod = phylod,
    extraction_method = "min"
)
```
create_endemicity_status

Creates a data frame with the endemicity status (either 'endemic', 'nonendemic', or 'not_present') of every species in the phylogeny using a phylogeny and a data frame of the island species and their endemicity (either 'endemic' or 'nonendemic') provided.

Description

Creates a data frame with the endemicity status (either 'endemic', 'nonendemic', 'not_present') of every species in the phylogeny using a phylogeny and a data frame of the island species and their endemicity (either 'endemic' or 'nonendemic') provided.

Usage

create_endemicity_status(phylo, island_species)

Arguments

phylo A phylogeny either as a phylo (from the ape package) or phylo4 (from the phylod package) object.

island_species Data frame with two columns. The first is a character string of the tip_labels with the tip names of the species on the island. The second column a character string of the endemicity status of the species, either endemic or nonendemic.

Value

Data frame with single column of character strings and row names

Examples

```r
set.seed(1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
```
```r
phylo <- ape::rcoal(4)
phylo$tip.label <- c("species_a", "species_b", "species_c", "species_d")
phylo <- methods::as(phylo, "phylo4")
island_species <- data.frame(
  tip_labels = c("species_a", "species_b", "species_c", "species_d"),
  tip_endemicity_status = c("endemic", "endemic", "endemic", "nonendemic")
)
endemicity_status <- create_endemicity_status(
  phylo = phylo,
  island_species = island_species
)
```

create_test_phylod
Creates phylod objects.

Description
A helper function that is useful in tests and examples to easily create phylod objects (i.e. phylogenetic trees with data).

Usage
```r
create_test_phylod(test_scenario)
```

Arguments
- `test_scenario` Integer specifying which test phylod object to create.

Value
A phylod object

Examples
```r
create_test_phylod(test_scenario = 1)
```
Usage

default_params_doc(
 island_colonist, island_tbl, phylod,
extraction_method, species_label, species_endemicity,
x, value, clade_name, status,
missing_species, col_time, col_max_age,
branching_times, min_age, species,
clade_type, endemic_clade, phylo,
island_species, descendants, clade,
asr_method, tie_preference,
earliest_col, include_not_present,
num_missing_species, species_to_add_to, node_pies,
test_scenario, data, island_age,
num_mainland_species, num_clade_types,
list_type2_clades, prop_type2_pool, epss,
verbose, precise_col_time,
n, digits, include_crown_age,
only_tips, node_label, multi_phylod,
island_tbl_1,
island_tbl_2,
unique_clade_name,
genus_name,
stem,
genus_in_tree,
missing_genus,
checklist,
phylo_name_col,
genus_name_col,
in_phylo_col,
endemicity_status_col,
rm_species_col,
tree_size_range,
num_points,
prob_on_island,
prob_endemic,
replicates,
log_scale,
parameter_index,
sse_model
)

Arguments

island_colonist
An instance of the Island_colonist class.

island_tbl
An instance of the Island_tbl class.

phylod
A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

extraction_method
A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

species_label
The tip label of the species of interest.

species_endemicity
A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

x
An object whose class is determined by the signature.

value
A value which can take several forms to be assigned to an object of a class.

clade_name
Character name of the colonising clade.

status
Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

missing_species
Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is $n - 1$, where n is
the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is \(n - 1 \) because adding the lineage already counts as one.

col_time
Numeric with the colonisation time of the island colonist

col_max_age
Boolean determining whether colonisation time should be considered a precise time of colonisation or a maximum time of colonisation

branching_times
Numeric vector of one or more elements which are the branching times on the island.

min_age
Numeric minimum age (time before the present) that the species must have colonised the island by. This is known when there is a branching on the island, either in species or subspecies.

species
Character vector of one or more elements containing the name of the species included in the colonising clade.

clade_type
Numeric determining which type of clade the island colonist is, this determines which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see https://CRAN.R-project.org/package=DAISIE/vignettes/demo_optimize.html for more information)

endemic_clade
Named vector with all the species from a clade.

phylo
A phylogeny either as a phylo (from the ape package) or phylo4 (from the phylod package) object.

island_species
Data frame with two columns. The first is a character string of the tip_labels with the tip names of the species on the island. The second column a character string of the endemcity status of the species, either endemic or nonendemic.

descendants
A vector character strings with the names of species to determine whether they are the same species.

clade
A numeric vector which the indices of the species which are in the island clade.

asr_method
A character string, either "parsimony" or "mk" determines whether a maximum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods used.

tie_preference
Character string, either "island" or "mainland" to choose the most probable state at each node using the max.col() function. When a node has island presence and absence equally probable we need to decide whether that species should be considered on the island. To consider it on the island use ties.method = "last" in the max.col() function, if you consider it not on the island use ties.method = "first". Default is "island".

earliest_col
A boolean to determine whether to take the colonisation time as the most probable time (FALSE) or the earliest possible colonisation time (TRUE), where the probability of a species being on the island is non-zero. Default is FALSE.
include_not_present
A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

num_missing_species
Numeric for the number of missing species in the clade.

species_to_add_to
Character string with the name of the species to identify which clade to assign missing species to.

node_pies
Boolean determining if pie charts of the probabilities of a species being present on the island. If TRUE the correct data is required in the phylod object.

test_scenario
Integer specifying which test phylod object to create.

data
Either an object of class Island_tbl or a DAISIE data table object (output from as_daisie_datatable()).

island_age
Age of the island in appropriate units.

num_mainland_species
The size of the mainland pool, i.e. the number of species that can potentially colonise the island.

num_clade_types
Number of clade types. Default num_clade_types = 1 all species are considered to belong to the same macroevolutionary process. If num_clade_types = 2, there are two types of clades with distinct macroevolutionary processes.

list_type2_clades
If num_clade_types = 2, list_type2_clades specifies the names of the clades that have a distinct macroevolutionary process. The names must match those in the "Clade_name" column of the source data table. If num_clade_types = 1, then list_type2_clades = NA should be specified (default).

prop_type2_pool
Specifies the fraction of potential mainland colonists that have a distinct macroevolutionary process. Applies only if number_clade_types = 2. Default "proportional" sets the fraction to be proportional to the number of clades of distinct macroevolutionary process that have colonised the island. Alternatively, the user can specify a value between 0 and 1 (e.g. if the mainland pool size is 1000 and prop_type2_pool = 0.02 then the number of type 2 species is 20).

epss
Default = 1e-5 should be appropriate in most cases. This value is used to set the maximum age of colonisation of "Non_endemic_MaxAge" and "Endemic_MaxAge" species to an age that is slightly younger than the island for cases when the age provided for that species is older than the island. The new maximum age is then used as an upper bound to integrate over all possible colonisation times.

verbose
Boolean. States if intermediate results should be printed to console. Defaults to FALSE

precise_col_time
Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonisation and uses minimum age of colonisation if available.
n A numeric to be rounded.
digits A numeric specifying which decimal places to round to
include_crown_age A boolean determining whether the crown age gets plotted with the stem age.
only_tips A boolean determining whether only the tips (i.e. terminal branches) are searched for back colonisation events.
node_label A numeric label for a node within a phylogeny.
multi_phylo A list of phylod objects.
island_tbl_1 An object of Island_tbl class to be compared
island_tbl_2 An object of Island_tbl class to be compared
unique_clade_name Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations
genus_name Character string of genus name to be matched with a genus name from the tip labels in the phylogeny
stem Character string, either "genus" or "island_presence". The former will extract the stem age of the genus based on the genus name provided, the latter will extract the stem age based on the ancestral presence on the island either based on the "min" or "asr" extraction algorithms.
genus_in_tree A numeric vector that indicates which species in the genus are in the tree
missing_genus A list of character vectors containing the genera in each island clade
checklist data frame with information on species on the island
phylo_name_col A character string specifying the column name where the names in the phylogeny are in the checklist
genus_name_col A character string specifying the column name where the genus names are in the checklist
in_phylo_col A character string specifying the column name where the status of whether a species is in the phylogeny is in the checklist
endemicity_status_col A character string specifying the column name where the endemicity status of the species are in the checklist
rm_species_col A character string specifying the column name where the information on whether to remove species from the checklist before counting the number of missing species is in the checklist. This can be NULL if no species are to be removed from the checklist. This is useful when species are in the checklist because they are on the island but need to be removed as they are not in the group of interest, e.g. a migratory bird amongst terrestrial birds
tree_size_range Numeric vector of two elements, the first is the smallest tree size (number of tips) and the second is the largest tree size
num_points Numeric determining how many points in the sequence of smallest tree size to largest tree size
endemicity_to_sse_states

prob_on_island Numeric vector of each probability on island to use in the parameter space
prob_endemic Numeric vector of each probability of an island species being endemic to use in the parameter space
replicates Numeric determining the number of replicates to use to account for the stochasticity in sampling the species on the island and endemic species
log_scale A boolean determining whether the sequence of tree sizes are on a linear (FALSE) or log (TRUE) scale
parameter_index Numeric determining which parameter set to use (i.e which row in the parameter space data frame), if this is NULL all parameter sets will be looped over
sse_model either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.

Value
Nothing

Author(s)
Joshua W. Lambert

description
Convert endemicity to SSE states

Usage
endemicity_to_sse_states(endemicity_status, sse_model = "musse")

Arguments
endemicity_status character vector with values "endemic", "nonendemic" and/or "not_present"
sse_model either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.

Value
an integer vector of tip states, following the encoding expected by the MuSSE/GeoSSE
extract_asr_clade

Extracts an island clade based on the ancestral state reconstruction of the species presence on the island, therefore this clade can contain non-endemic species as well as endemic species.

Description

Extracts an island clade based on the ancestral state reconstruction of the species presence on the island, therefore this clade can contain non-endemic species as well as endemic species.

Usage

```
extract_asr_clade(phylod, species_label, clade, include_not_present)
```

Arguments

- `phylod`: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- `species_label`: The tip label of the species of interest.
- `clade`: A numeric vector which the indices of the species which are in the island clade.
- `include_not_present`: A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

Value

An object of Island_colonist class

extract_biogeobears_ancestral_states_probs

Extract ancestral state probabilities from BioGeoBEARS output

Description

Extract the probabilities of each endemicity status for tip and internal node states from the output of an optimisation performed with BioGeoBEARS

Usage

```
extract_biogeobears_ancestral_states_probs(biogeobears_res)
```

Arguments

- `biogeobears_res`: a list, the output of BioGeoBEARS::bears_optim_run()
Value

A data frame with one row per node (tips and internals) and four columns: \texttt{label | not_present | endemic | nonendemic}, the last three columns containing the probability of each endemicity status (and summing to 1).

extract_clade_name

Creates a name for a clade depending on whether all the species of the clade have the same genus name or whether the clade is composed of multiple genera, in which case it will create a unique clade name by concatenating the genus names.

Description

Creates a name for a clade depending on whether all the species of the clade have the same genus name or whether the clade is composed of multiple genera, in which case it will create a unique clade name by concatenating the genus names.

Usage

\texttt{extract_clade_name(clade)}

Arguments

- \texttt{clade} A numeric vector which the indices of the species which are in the island clade.

Value

Character

extract_endemic_clade

Extracts the information for an endemic clade (i.e. more than one species on the island more closely related to each other than other mainland species) from a phylogeny (specifically \texttt{phylo4d} object from \texttt{phylobase} package) and stores it in an \texttt{Island_colonist} class.

Description

Extracts the information for an endemic clade (i.e. more than one species on the island more closely related to each other than other mainland species) from a phylogeny (specifically \texttt{phylo4d} object from \texttt{phylobase} package) and stores it in an \texttt{Island_colonist} class.

Usage

\texttt{extract_endemic_clade(phylod, species_label, unique_clade_name)}
Arguments

- **phylod**: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- **species_label**: The tip label of the species of interest.
- **unique_clade_name**: Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations.

Value

An object of Island_colonist class

Examples

```r
set.seed(3,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
  "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- methods::as(phylo, "phylo4")
endemicity_status <- sample(
  x = c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.7, 0.3, 0)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
island_colonist <- extract_endemic_clade(
  phylod = phylod,
  species_label = "bird_i",
  unique_clade_name = TRUE
)
```

extract_endemic_singleton

Extracts the information for an endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class

Description

Extracts the information for an endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class.
Usage

```r
extract_endemic_singleton(phylod, species_label)
```

Arguments

- **phylod**
 A `phylo4d` object from the package `phylobase` containing phylogenetic and endemicity data for each species.

- **species_label**
 The tip label of the species of interest.

Value

An object of `Island_colonist` class

Examples

```r
set.seed(1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
                     "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(
  x = c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
extract_endemic_singleton(phylod = phylod, species_label = "bird_i")
```

extract_island_species

Extracts the colonisation, diversification, and endemicity data from phylogenetic and endemicity data and stores it in an Island_tbl object

Description

Extracts the colonisation, diversification, and endemicity data from phylogenetic and endemicity data and stores it in an Island_tbl object
extract_island_species

Usage

extract_island_species(
 phylod,
 extraction_method,
 island_tbl = NULL,
 include_not_present = FALSE,
 unique_clade_name = TRUE
)

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

extraction_method A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

island_tbl An instance of the Island_tbl class.

include_not_present A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

unique_clade_name Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value

An object of Island_tbl class

Examples

set.seed(1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)

phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
 "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")

phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
)
extract_multi_tip_species

Extracts the information for a species (endemic or non-endemic) which has multiple tips in the phylogeny (i.e. more than one sample per species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class.

Description

Extracts the information for a species (endemic or non-endemic) which has multiple tips in the phylogeny (i.e. more than one sample per species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class.

Usage

extract_multi_tip_species(phylod, species_label, species_endemicity)

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

species_label The tip label of the species of interest.

species_endemicity A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

Value

An object of Island_colonist class

Examples

set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion", sample.kind = "Rejection")

phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e", "bird_f", "bird_g", "bird_h_1", "bird_h_2", "bird_i")

phylo <- phylobase::phylo4(phylo)
endemicity_status <- c("not_present", "not_present", "not_present", "not_present", "not_present", "not_present", "not_present", "not_present", "endemic", "endemic", "not_present")

```
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
extract_island_species(phylod, extraction_method = "min")
```
```r
extract_nonendemic <- function(phylod, species_label) {
  extract_multi_tip_species(
    phylod = phylod,
    species_label = "bird_h_1",
    species_endemicity = "endemic"
  )
}
```

Description

Extracts the information for a non-endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an island_colonist class.

Usage

```r
extract_nonendemic(phylod, species_label)
```

Arguments

- `phylod`: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- `species_label`: The tip label of the species of interest.

Value

An object of island_colonist class

Examples

```r
set.seed(1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
                    "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(
  x = c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
extract_nonendemic(phylod = phylod, species_label = "bird_g")
```
extract_species_asr

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "asr" algorithm that extract island species given their ancestral states of either island presence or absence.

Description

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "asr" algorithm that extract island species given their ancestral states of either island presence or absence.

Usage

```r
extract_species_asr(
  phylod,
  species_label,
  species_endemicity,
  island_tbl,
  include_not_present
)
```

Arguments

- **phylod**: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- **species_label**: The tip label of the species of interest.
- **species_endemicity**: A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.
- **island_tbl**: An instance of the Island_tbl class.
- **include_not_present**: A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

Value

An object of island_tbl class

Examples

```r
set.seed(1, kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)`
```r
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
 "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE, prob = c(0.8, 0.1, 0.1))
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
phylod <- add_asr_node_states(
 phylod = phylod,
 asr_method = "parsimony"
)
island_tbl <- island_tbl()
extract_species_asr(
 phylod = phylod,
 species_label = "bird_i",
 species_endemicity = "endemic",
 island_tbl = island_tbl,
 include_not_present = FALSE
)
```

**Description**

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "min" algorithm that extract island species as the shortest time to the present.

**Usage**

```r
extract_species_min(
 phylod,
 species_label,
 species_endemicity,
 island_tbl,
 unique_clade_name
)
```

**Arguments**

- `phylod`: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- `species_label`: The tip label of the species of interest.
species_endemicity
A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

island_tbl An instance of the Island_tbl class.

unique_clade_name
Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value
An object of island_tbl class

Examples

```r
set.seed(1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
 "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2))
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
island_tbl <- island_tbl()
extract_species_min(
 phylod = phylod,
 species_label = "bird_g",
 species_endemicity = "nonendemic",
 island_tbl = island_tbl,
 unique_clade_name = TRUE
)```
extract_stem_age

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus in the phylogeny. The stem age can either be for the genus (or several genera) in the tree (stem = "genus") or use an extraction algorithm to find the stem of when the species colonised the island (stem = "island_presence").

Usage

extract_stem_age(genus_name, phylod, stem, extraction_method = NULL)

Arguments

genus_name: Character string of genus name to be matched with a genus name from the tip labels in the phylogeny

phylod: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

stem: Character string, either "genus" or "island_presence". The former will extract the stem age of the genus based on the genus name provided, the latter will extract the stem age based on the ancestral presence on the island either based on the "min" or "asr" extraction algorithms.

extraction_method: A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

Value

Numeric

Examples

In this example the parrot clade is the genus of interest only the parrots are endemic to the island and all the passerines are not on the island
set.seed(1)
tree <- ape::rcoal(10)
tree$tip.label <- c(
 "passerine_a", "passerine_b", "passerine_c", "passerine_d", "passerine_e",
 "passerine_f", "parrot_a", "parrot_b", "parrot_c", "passerine_j")
tree <- phylobase::phylo4(tree)
endemicity_status <- c(
 "not_present", "not_present", "not_present", "not_present", "not_present",
 "not_present", "endemic", "endemic", "endemic", "not_present")
phylod <- phylobase::phylo4d(tree, as.data.frame(endemicity_status))

DAISIEprep::plot_phylod(phylod)
the species 'parrot_a' is removed and becomes the missing species we want
to the know the stem age for
phylod <- phylobase::subset(x = phylod, tips.exclude = "parrot_a")
DAISIEprep::plot_phylod(phylod)

extract_stem_age(
 genus_name = "parrot",
 phylod = phylod,
 stem = "island_presence",
 extraction_method = "min"
)

here we use the extraction_method = "asr" which requires ancestral node
states in the tree.
phylod <- add_asr_node_states(
 phylod = phylod,
 asr_method = "parsimony",
 tie_preference = "mainland"
)
DAISIEprep::plot_phylod(phylod)

extract_stem_age(
 genus_name = "parrot",
 phylod = phylod,
 stem = "island_presence",
 extraction_method = "asr"
)

lastly we extract the stem age based on the genus name
extract_stem_age(
 genus_name = "parrot",
 phylod = phylod,
 stem = "genus",
 extraction_method = NULL
)
extract_stem_age_genus

Description

Extracts the stem age from the phylogeny when a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus in the phylogeny using the 'asr' extraction method.

Usage

```
extract_stem_age_genus(genus_in_tree, phylod)
```

Arguments

- `genus_in_tree` A numeric vector that indicates which species in the genus are in the tree.
- `phylod` A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Numeric
extract_stem_age_min

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'min' extraction method.

Description

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'min' extraction method.

Usage

`extract_stem_age_min(genus_in_tree, phylod)`

Arguments

- `genus_in_tree` A numeric vector that indicates which species in the genus are in the tree.
- `phylod` A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Numeric

get_clade_name

Accessor functions for the data (slots) in objects of the Island_colonist class.

Description

Accessor functions for the data (slots) in objects of the Island_colonist class.

Usage

```r
get_clade_name(x)
```

```r
## S4 method for signature 'Island_colonist'
get_clade_name(x)
```

```r
set_clade_name(x) <- value
```

```r
## S4 replacement method for signature 'Island_colonist'
set_clade_name(x) <- value
```
get_status(x)

S4 method for signature 'Island_colonist'
get_status(x)

set_status(x) <- value

S4 replacement method for signature 'Island_colonist'
set_status(x) <- value

get_missing_species(x)

S4 method for signature 'Island_colonist'
get_missing_species(x)

set_missing_species(x) <- value

S4 replacement method for signature 'Island_colonist'
set_missing_species(x) <- value

get_col_time(x)

S4 method for signature 'Island_colonist'
get_col_time(x)

set_col_time(x) <- value

S4 replacement method for signature 'Island_colonist'
set_col_time(x) <- value

get_col_max_age(x)

S4 method for signature 'Island_colonist'
get_col_max_age(x)

set_col_max_age(x) <- value

S4 replacement method for signature 'Island_colonist'
set_col_max_age(x) <- value

get_branching_times(x)

S4 method for signature 'Island_colonist'
get_branching_times(x)

set_branching_times(x) <- value
S4 replacement method for signature 'Island_colonist'

```
set_branching_times(x) <- value
```

```
get_min_age(x)
```

S4 method for signature 'Island_colonist'

```
set_min_age(x) <- value
```

S4 replacement method for signature 'Island_colonist'

```
set_min_age(x) <- value
```

```
get_species(x)
```

S4 method for signature 'Island_colonist'

```
set_species(x) <- value
```

S4 replacement method for signature 'Island_colonist'

```
set Species(x) <- value
```

```
get_clade_type(x)
```

S4 method for signature 'Island_colonist'

```
set_clade_type(x) <- value
```

S4 replacement method for signature 'Island_colonist'

```
set_clade_type(x) <- value
```

Arguments

- **x**: An object whose class is determined by the signature.
- **value**: A value which can take several forms to be assigned to an object of a class.

Value

Getter functions (get_) return a variable from the Island_colonist class, the setter functions (set_) return the modified Island_colonist class.

Author(s)

Joshua W. Lambert
Examples

```r
colonist <- island_colonist()
get_clade_name(colonist)
set_clade_name(colonist) <- "abc"
get_status(colonist)
set_status(colonist) <- "abc"
get_missing_species(colonist)
set_missing_species(colonist) <- 0
get_col_time(colonist)
set_col_time(colonist) <- 1
get_col_max_age(colonist)
set_col_max_age(colonist) <- FALSE
get_branching_times(colonist)
set_branching_times(colonist) <- 0
get_min_age(colonist)
set_min_age(colonist) <- 0.1
get_species(colonist)
set_species(colonist) <- "abc_a"
get_clade_type(colonist)
set_clade_type(colonist) <- 1
```

get_island_tbl

Accessor functions for the data (slots) in objects of the Island_tbl *class*

Description

Accessor functions for the data (slots) in objects of the Island_tbl class

Usage

```r
get_island_tbl(x)

## S4 method for signature 'Island_tbl'
get_island_tbl(x)

set_island_tbl(x) <- value

## S4 replacement method for signature 'Island_tbl'
set_island_tbl(x) <- value

get_extracted_species(x)

## S4 method for signature 'Island_tbl'
get_extracted_species(x)

set_extracted_species(x) <- value
```
S4 replacement method for signature 'Island_tbl'
set_extracted_species(x) <- value

get_num_phylo_used(x)

S4 method for signature 'Island_tbl'
get_num_phylo_used(x)

set_num_phylo_used(x) <- value

S4 replacement method for signature 'Island_tbl'
set_num_phylo_used(x) <- value

Arguments

- **x** An object whose class is determined by the signature.
- **value** A value which can take several forms to be assigned to an object of a class.

Value

Getter function (get_) returns a data frame, the setter function (set_) returns the modified Island_tbl class.

Author(s)

Joshua W. Lambert

Examples

```r
island_tbl <- island_tbl()
get_island_tbl(island_tbl)
set_island_tbl(island_tbl) <- data.frame(
  clade_name = "birds",
  status = "endemic",
  missing_species = 0,
  branching_times = I(list(c(1.0, 0.5)))
)
```

Description

Extract tip states from a phylod object

Usage

```r
get_sse_tip_states(phylod, sse_model = "musse")
```
Arguments

- **phylo4d**: A `phylo4d` object from the package `phylodebase` containing phylogenetic and endemicity data for each species.
- **sse_model**: Either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.

Value

- an integer vector of tip states, as expected by SSE models

island_colonist

Constructor for Island_colonist

Description

Constructor for Island_colonist

Usage

```r
island_colonist(
  clade_name = NA_character_,
  status = NA_character_,
  missing_species = NA_real_,
  col_time = NA_real_,
  col_max_age = NA,
  branching_times = NA_real_,
  min_age = NA_real_,
  species = NA_character_,
  clade_type = NA_integer_,
)
```

Arguments

- **clade_name**: Character name of the colonising clade.
- **status**: Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".
- **missing_species**: Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is \(n - 1 \), where \(n \) is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is \(n - 1 \) because adding the lineage already counts as one.
- **col_time**: Numeric with the colonisation time of the island colonist.
col_max_age Boolean determining whether colonisation time should be considered a precise time of colonisation or a maximum time of colonisation
branching_times Numeric vector of one or more elements which are the branching times on the island.
min_age Numeric minimum age (time before the present) that the species must have colonised the island by. This is known when there is a branching on the island, either in species or subspecies.
species Character vector of one or more elements containing the name of the species included in the colonising clade.
clade_type Numeric determining which type of clade the island colonist is, this determines which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see https://CRAN.R-project.org/package=DAISIE/vignettes/demo_optimize.html for more information)

Value
Object of Island_colonist class.

Examples
Without initial values
colonist <- island_colonist()

With initial values
colonist <- island_colonist(
 clade_name = "bird",
 status = "endemic",
 missing_species = 0,
 col_time = 0.5,
 col_max_age = FALSE,
 branching_times = 0.5,
 min_age = NA_real_,
 species = "bird_a",
 clade_type = 1
)

Island_colonist-class Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Description
Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl
Slots

clade_name character.
status character.
missing_species character.
col_time numeric.
col_max_age logical.
branching_times numeric.
min_age numeric.
species character.
clade_type numeric.

island_tbl Constructor function for Island_tbl class

Description

Constructor function for Island_tbl class

Usage

island_tbl()

Value

An Island_tbl object.

Island_tbl-class Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Description

Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Slots

island_tbl data frame.
metadata list.
is_back_colonisation

Description
Checks whether species has undergone back-colonisation from

Usage
is_back_colonisation(phylod, node_label)

Arguments
- **phylod**: A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- **node_label**: A numeric label for a node within a phylogeny.

Value
A character string or FALSE. Character string is in the format ancestral_node -> focal_node, where the ancestral node is not on mainland but the focal node is.

Examples
```r
set.seed(3,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(5)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- c("endemic", "endemic", "not_present",
  "endemic", "not_present")
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
phylod <- add_asr_node_states(phylod = phylod, asr_method = "parsimony")
# artifically modify data to produce back-colonisation
phylobase::tdata(phylod)$island_status[8] <- "endemic"
# Example without back colonisation
is_back_colonisation(phylod = phylod, node_label = 2)
# Example with back colonisation
is_back_colonisation(phylod = phylod, node_label = 3)
```
is_duplicate_colonist

Determines if colonist has already been stored in Island_tbl class. This is used to stop endemic clades from being stored multiple times in the island table by checking if the endemicity status and branching times are identical.

Description

Determines if colonist has already been stored in Island_tbl class. This is used to stop endemic clades from being stored multiple times in the island table by checking if the endemicity status and branching times are identical.

Usage

is_duplicate_colonist(island_colonist, island_tbl)

Arguments

island_colonist
An instance of the Island_colonist class.

island_tbl
An instance of the Island_tbl class.

Value

Boolean

Examples

with empty island_tbl
island_colonist <- island_colonist(
 clade_name = "bird",
 status = "endemic",
 missing_species = 0,
 col_time = 1.0,
 col_max_age = FALSE,
 branching_times = 0.5,
 species = "bird_a",
 clade_type = 1
)

island_tbl <- island_tbl()
is_duplicate_colonist(
island_colonist = island_colonist,
 island_tbl = island_tbl
)

with non-empty island_tbl
island_colonist <- island_colonist(
 clade_name = "bird",
 status = "endemic",
 missing_species = 0,
 col_time = 1.0,
 col_max_age = FALSE,
 branching_times = 0.5,
 species = "bird_a",
 clade_type = 1
)
is_identical_island_tbl

Checks whether two Island_tbl objects are identical. If they are different comparisons are made to report which components of the Island_tlbs are different.

Description

Checks whether two Island_tbl objects are identical. If they are different comparisons are made to report which components of the Island_tlbs are different.

Usage

is_identical_island_tbl(island_tbl_1, island_tbl_2)

Arguments

island_tbl_1 An object of Island_tbl class to be compared
island_tbl_2 An object of Island_tbl class to be compared

Value

Either TRUE or a character string with the differences
multi_extract_island_species

Examples

```r
multi_island_tbl <- multi_extract_island_species(
  multi_phylod = list(
    create_test_phylod(test_scenario = 1),
    create_test_phylod(test_scenario = 1)),
  extraction_method = "min")
is_identical_island_tbl(multi_island_tbl[[1]], multi_island_tbl[[2]])
```

multi_extract_island_species

Extracts the colonisation, diversification, and endemicity data from multiple phylod (phylo4d class from phylobase) objects (composed of phylogenetic and endemicity data) and stores each in an Island_tbl object which are stored in a Multi_island_tbl object.

Description

Extracts the colonisation, diversification, and endemicity data from multiple phylod (phylo4d class from phylobase) objects (composed of phylogenetic and endemicity data) and stores each in an Island_tbl object which are stored in a Multi_island_tbl object.

Usage

```r
multi_extract_island_species(
  multi_phylod,
  extraction_method,
  island_tbl = NULL,
  include_not_present = FALSE,
  verbose = FALSE,
  unique_clade_name = TRUE
)
```

Arguments

- **multi_phylod**: A list of phylod objects.
- **extraction_method**: A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).
- **island_tbl**: An instance of the Island_tbl class.
- **include_not_present**: A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.
- **verbose**: Boolean. States if intermediate results should be printed to console. Defaults to FALSE.
- **unique_clade_name**: Boolean. States if intermediate results should be printed to console. Defaults to TRUE.
unique_clade_name

Boolean determining whether a unique species identifier is used as the clade
name in the Island_tbl object or a genus name which may not be unique if that
genus has several independent island colonisations

Value

An object of Multi_island_tbl class

Examples

multi_phylod <- list()
multi_phylod[[1]] <- create_test_phylo(test_scenario = 1)
multi_phylod[[2]] <- create_test_phylo(test_scenario = 2)
multi_island_tbl <- multi_extract_island_species(
 multi_phylod = multi_phylod,
 extraction_method = "min",
 island_tbl = NULL,
 include_not_present = FALSE
)

multi_island_tbl

Constructor function for Multi_island_tbl class

Description

Constructor function for Multi_island_tbl class

Usage

multi_island_tbl()

Value

A Multi_island_tbl object.

Multi_island_tbl-class

Defines the Multi_island_tbl class which is multiple Island_tbls.

Description

Defines the Multi_island_tbl class which is multiple Island_tbls.

Slots

.Data a list of Island_tbl.
plot_colonisation

Plots a dot plot (cleveland dot plot when include_crown_age = TRUE) of the stem and potentially crown ages of a community of island colonists.

Description

Plots a dot plot (cleveland dot plot when include_crown_age = TRUE) of the stem and potentially crown ages of a community of island colonists.

Usage

plot_colonisation(island_tbl, island_age, include_crown_age = TRUE)

Arguments

island_tbl An instance of the Island_tbl class.

island_age Age of the island in appropriate units.

include_crown_age A boolean determining whether the crown age gets plotted with the stem age.

Value

ggplot object

Examples

set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
 "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylode::phylo4(phylo)
endemicity_status <- sample(
 c("not_present", "endemic", "nonendemic"),
 size = length(phylode::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
)
phylod <- phylode::phylo4d(phylo, as.data.frame(endemicity_status))
island_tbl <- extract_island_species(phylod, extraction_method = "min")
plot_colonisation(island_tbl, island_age = 2)
plot_performance

Plots performance results for a grouping variable (prob_on_island or prob_endemic).

Description

Plots performance results for a grouping variable (prob_on_island or prob_endemic).

Usage

```r
plot_performance(performance_data, group_by)
```

Arguments

- `performance_data` Tibble of collated performance results
- `group_by` A variable to partition by for plotting. Uses data masking so variable does not need to be quoted.

Value

ggplot2 object

plot_phylod

Plots the phylogenetic tree and its associated tip and/or node data

Description

Plots the phylogenetic tree and its associated tip and/or node data

Usage

```r
plot_phylod(phylod, node_pies = FALSE)
```

Arguments

- `phylod` A phylo4d object from the package phyl(base containing phylogenetic and endemicity data for each species.
- `node_pies` Boolean determining if pie charts of the probabilities of a species being present on the island. If TRUE the correct data is required in the phylod object.

Value

ggplot object
Examples

```r
set.seed(1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
  "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)
endemicity_status <- sample(
  c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))
plot_phylod(phylod)
```

Description

Removes an island colonist from an Island_tbl object

Usage

```r
rm_island_colonist(island_tbl, clade_name)
```

Arguments

- `island_tbl`: An instance of the Island_tbl class.
- `clade_name`: Character name of the colonising clade.

Value

Object of Island_tbl class

Examples

```r
phylod <- create_test_phylod(test_scenario = 1)
island_tbl <- extract_island_species(
  phylo = phylod,
  extraction_method = "min"
)
island_tbl <- rm_island_colonist(
  island_tbl = island_tbl,
```
rm_multi_missing_species

Loops through the genera that have missing species and removes the ones that are found in the missing genus list which have phylogenetic data. This is useful when wanting to know which missing species have not been assigned to the island_tbl using add_multi_missing_species().

Description

Loops through the genera that have missing species and removes the ones that are found in the missing genus list which have phylogenetic data. This is useful when wanting to know which missing species have not been assigned to the island_tbl using add_multi_missing_species().

Usage

rm_multi_missing_species(missing_species, missing_genus, island_tbl)

Arguments

- missing_species
 Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is \(n - 1 \), where \(n \) is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is \(n - 1 \) because adding the lineage already counts as one.

- missing_genus
 A list of character vectors containing the genera in each island clade

- island_tbl
 An instance of the Island_tbl class.

Value

Data frame

Examples

```r
phylod <- create_test_phylod(test_scenario = 6)
island_tbl <- suppressWarnings(extract_island_species(
  phylod = phylod,
  extraction_method = "asr",
))
phylod <- create_test_phylod(test_scenario = 7)
island_tbl <- suppressWarnings(extract_island_species(
  phylod = phylod,
  extraction_method = "asr",
))
```
round_up = island_tbl

missing_species <- data.frame(
 clade_name = "bird",
 missing_species = 1,
 endemicity_status = "endemic"
)

missing_genus <- list("bird", character(0))

rm_missing_species <- rm_multi_missing_species(
 missing_species = missing_species,
 missing_genus = missing_genus,
 island_tbl = island_tbl
)

round_up

Rounds numbers using the round up method, rather than the round to the nearest even number method used by the base function round.

Description

Rounds numbers using the round up method, rather than the round to the nearest even number method used by the base function round.

Usage

`round_up(n, digits = 0)`

Arguments

- `n`: A numeric to be rounded.
- `digits`: A numeric specifying which decimal places to round to

Value

Numeric

select_endemicity_status

Select endemicity status from ancestral states probabilities

Description

Selects a state for each node (both internal nodes, i.e. ancestral states, and tips, if included) from a table of probabilities.
sensitivity

Usage

```r
select_endemicity_status(asr_df, method = "max")
```

Arguments

- **asr_df**: A data frame containing at least these three columns: `not_present_prob` | `endemic_prob` | `nonendemic_prob` (in any order). Each column should contain the estimated probability of the state for each node (rows) and these columns should sum to 1.
- **method**: "max" or "random". "max" will select the state with highest probability (selecting last state in event of a tie), while "random" will sample the states randomly with the probabilities as weight for each state.

Value

A character vector, with the selected endemicity status for each node.

sensitivity

Runs a sensitivity analysis to test the influences of changing the data on the parameter estimates for the DAISIE maximum likelihood inference model

Description

Runs a sensitivity analysis to test the influences of changing the data on the parameter estimates for the DAISIE maximum likelihood inference model

Usage

```r
sensitivity(
  phylo,
  island_species,
  extraction_method,
  asr_method,
  tie_preference,
  island_age,
  num_mainland_species,
  verbose = FALSE
)
```

Arguments

- **phylo**: A phylogeny either as a `phylo` (from the ape package) or `phylo4` (from the phylobase package) object.
- **island_species**: Data frame with two columns. The first is a character string of the `tip_labels` with the tip names of the species on the island. The second column a character string of the endemicity status of the species, either endemic or nonendemic.
sse_states_to_endemicity

Convert SSE states back to endemicity status

Description

Convert SSE states back to endemicity status

Usage

```r
sse_states_to_endemicity(states, sse_model = "musse")
```

Arguments

- **states**: integer vector of tip states, as expected by SSE models
- **sse_model**: either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.
Value

character vector with values "endemic", "nonendemic" and/or "not_present"

translate_status

Takes a string of the various ways the island species status can be and returns a uniform all lower-case string of the same status to make handling statuses easier in other function

Description

Takes a string of the various ways the island species status can be and returns a uniform all lower-case string of the same status to make handling statuses easier in other function

Usage

translate_status(status)

Arguments

status

Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

Value

Character string

Examples

translate_status("Endemic")

unique_island_genera

Determines the unique endemic genera that are included in the island clades contained within the island_tbl object and stores them as a list with each genus only occurring once in the first island clade it appears in

Description

Determines the unique endemic genera that are included in the island clades contained within the island_tbl object and stores them as a list with each genus only occurring once in the first island clade it appears in

Usage

unique_island_genera(island_tbl)
Arguments

`island_tbl` An instance of the `Island_tbl` class.

Value

list of character vectors

Examples

```r
phylod <- create_test_phylod(test_scenario = 6)
island_tbl <- suppressWarnings(extract_island_species(
    phylod = phylod,
    extraction_method = "asr",
))
phylod <- create_test_phylod(test_scenario = 7)
island_tbl <- suppressWarnings(extract_island_species(
    phylod = phylod,
    extraction_method = "asr",
    island_tbl = island_tbl
))
unique_genera <- unique_island_genera(island_tbl = island_tbl)
```

write_biogeobears_input

Write input files for BioGeoBEARS

Description

Write input files for a BioGeoBEARS analysis, i.e. a phylogenetic tree in Newick format and occurrence data in PHYLIP format.

Usage

`write_biogeobears_input(phylod, path_to_phylo, path_to_biogeo)`

Arguments

- `phylod` A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.
- `path_to_phylo` string specifying the path and name to write the phylogeny file to.
- `path_to_biogeo` string specifying the path and name to write the biogeography file to.

Value

Nothing, called for side-effects
write_newick_file

Write tree input file for BioGeoBEARS

Description

Write a text file containing a phylogenetic tree in the Newick format expected by BioGeoBEARS

Usage

```r
write_newick_file(phylod, path_to_phylo)
```

Arguments

- `phylod`: A phylo4d object from the package phylodbase containing phylogenetic and endemicity data for each species.
- `path_to_phylo`: String specifying the path and name to write the file to.

Value

Nothing, called for side-effects.

write_phylip_biogeo_file

Write biogeography input file for BioGeoBEARS

Description

Write a text file containing occurrence data for all tips in the PHYLIP format expected by BioGeoBEARS

Usage

```r
write_phylip_biogeo_file(phylod, path_to_biogeo)
```

Arguments

- `phylod`: A phylo4d object from the package phylodbase containing phylogenetic and endemicity data for each species.
- `path_to_biogeo`: String specifying the path and name to write the file to.

Value

Nothing, called for side-effects.
get_sse_tip_states, 48
get_status(get_clade_name), 44
get_status, Island_colonist-method (get_clade_name), 44

is_back_colonisation, 52
is_duplicate_colonist, 53
is_identical_island_tbl, 54
Island_colonist, 44
island_colonist, 49
Island_colonist-class, 50
Island_tbl, 47
island_tbl, 51
Island_tbl-class, 51

multi_extract_island_species, 55
multi_island_tbl, 56
Multi_island_tbl-class, 56

plot_colonisation, 57
plot_performance, 58
plot_phylod, 58

rm_island_colonist, 59
rm_multi_missing_species, 60
round_up, 61

select_endemicity_status, 61
sensitivity, 62
set_branching_times<- (get_clade_name), 44
set_branching_times<-, Island_colonist-method (get_clade_name), 44
set_clade_name<- (get_clade_name), 44
set_clade_name<-, Island_colonist-method (get_clade_name), 44
set_clade_type<- (get_clade_name), 44
set_clade_type<-, Island_colonist-method (get_clade_name), 44
set_col_max_age<- (get_clade_name), 44
set_col_max_age<-, Island_colonist-method (get_clade_name), 44
set_col_time<- (get_clade_name), 44
set_col_time<-, Island_colonist-method (get_clade_name), 44
set_extracted_species<- (get_island_tbl), 47
set_extracted_species<-, Island_tbl-method (get_island_tbl), 47

set_island_tbl<-(get_island_tbl), 47
set_island_tbl<-, Island_tbl-method (get_island_tbl), 47
set_min_age<- (get_clade_name), 44
set_min_age<-, Island_colonist-method (get_clade_name), 44
set_missing_species<- (get_clade_name), 44
set_missing_species<-, Island_colonist-method (get_clade_name), 44
set_num_phylo_used<- (get_island_tbl), 47
set_num_phylo_used<-, Island_tbl-method (get_island_tbl), 47
set_species<- (get_clade_name), 44
set_species<-, Island_colonist-method (get_clade_name), 44
set_status<- (get_clade_name), 44
set_status<-, Island_colonist-method (get_clade_name), 44
sse_states_to_endemicity, 63
translate_status, 64
unique_island_genera, 64
write_biogeobears_input, 65
write_newick_file, 66
write_phylip_biogeo_file, 66