Package ‘ComplexUpset’

August 5, 2021

Type Package

Title Create Complex UpSet Plots Using 'ggplot2' Components

Version 1.3.1

Description UpSet plots are an improvement over Venn Diagram for set overlap visualizations. Striving to bring the best of the ‘UpSetR’ and ‘ggplot2’, this package offers a way to create complex overlap visualisations, using simple and familiar tools, i.e. geoms of ‘ggplot2’. For introduction to UpSet concept, see Lex et al. (2014) <doi:10.1109/TVCG.2014.2346248>.

License MIT + file LICENSE

Encoding UTF-8

BugReports https://github.com/krassowski/complex-upset/issues

Suggests testthat (>= 2.1.0), knitr, rmarkdown, covr, tibble, ggplot2movies, vdiffr, jsonlite, data.table

Imports ggplot2, patchwork, scales, colorspace

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Michał Krassowski [aut, cre] (<https://orcid.org/0000-0002-9638-7785>)

Maintainer Michał Krassowski <krassowski.michal+r@gmail.com>

Repository CRAN

Date/Publication 2021-08-05 05:50:03 UTC

R topics documented:

 aes_percentage ... 2
 arrange_venn .. 3
 compare_between_intersections 4
 create_upset_abc_example .. 5
aes_percentage

Generate mapping for labeling percentages

Description

Generate mapping for labeling percentages

Usage

```r
aes_percentage(relative_to, digits = 0, sep = "")
```

Arguments

- **relative_to**: defines proportion that should be calculated, relative to 'intersection', 'group', or 'all' observed values
- **digits**: number of digits to show (default=0)
- **sep**: separator separator between the digit and percent sign (no separator by default)
arrange_venn

Arrange points for Venn diagram

Description

Arrange points for Venn diagram

Usage

```
arrange_venn(
    data,
    sets = NULL,
    radius = 1.5,
    max_iterations = 10,
    verbose = FALSE,
    outwards_adjust = 1.3,
    extract_sets = FALSE,
    extract_regions = FALSE,
    repeat_in_intersections = FALSE,
    starting_grid_size = "auto"
)
```

Arguments

data | a dataframe including binary columns representing membership in sets
sets | vector with names of columns representing membership in sets
radius | the radius of the circle
max_iterations | the maximal number of iterations
verbose | should debugging notes be printed?
outwards_adjust | the multiplier defining the distance from the centre
extract_sets | should only sets be extracted?
extract_regions | should all unique regions be extracted?
repeat_in_intersections | repeat intersection k times where k is the number of sets it belongs to?
starting_grid_size | the starting size of the grid for placement of elements
compare_between_intersections

Compare covariates between intersections

Description

Compare covariates between intersections

Usage

compare_between_intersections(
 data,
 intersect,
 test = kruskal.test,
 tests = list(),
 ignore = list(),
 ignore_mode_columns = TRUE,
 mode = "exclusive_intersection",
 ...
)

Arguments

data a dataframe including binary columns representing membership in classes
intersect which columns should be used to compose the intersection
test the default test function; it is expected to accept formula and data parameters, and a list with p.value, statistic, and method
tests a named list with tests for specific variables, overwriting the default test
ignore a list with names of variables to exclude from testing
ignore_mode_columns whether the membership columns and size columns for all modes should be ignored
mode region selection mode; note that modes other than exclusive_intersection repeat observations in different test group, introducing dependencies. See get_size_mode() for accepted values.
... passed to upset_data()
create_upset_abc_example

Create an example dataset with three sets: A, B and C

Description
Create an example dataset with three sets: A, B and C

Usage
create_upset_abc_example()

geom_venn_circle Circle for Venn diagram

Description
Circle for Venn diagram

Usage
geom_venn_circle(
data,
mapping = aes_(),
sets = NULL,
radius = 1.5,
resolution = 100,
size = 0.8,
color = "black",
...
)

Arguments

data a dataframe including binary columns representing membership in sets
mapping the aesthetics mapping
sets vector with names of columns representing membership in sets
radius the radius of the circle
resolution the resolution of the circle rasterizer
size width of the outline
color the color of the outline
... Arguments passed on to ggplot2::geom_polygon
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjustment function.

case Either "evenodd" or "winding". If polygons with holes are being drawn (using the subgroup aesthetic) this argument defines how the hole coordinates are interpreted. See the examples in `grid::pathGrob()` for an explanation.

da.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

`show.legend` logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

`inherit.aes` If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

geom_venn_label_region

Label for a region of Venn diagram

Description

Label for a region of Venn diagram

Usage

```r
geom_venn_label_region(
  data,
  mapping = aes_(),
  sets = NULL,
  outwards_adjust = 1.3,
  fill = alpha("white", 0.85),
  size = 5,
  label.size = 0,
  ...
)
```

Arguments

- **data** a dataframe including binary columns representing membership in sets
- **mapping** the aesthetics mapping
- **sets** vector with names of columns representing membership in sets
- **outwards_adjust** the multiplier defining the distance from the centre
geom_venn_label_set

Arguments passed on to `ggplot2::geom_label`:

- **stat** The statistical transformation to use on the data for this layer, as a string.
- **position** Position adjustment, either as a string, or the result of a call to a position adjustment function. Cannot be jointly specified with `nudge_x` or `nudge_y`.
- **parse** If `TRUE`, the labels will be parsed into expressions and displayed as described in `?plotmath`.
- **nudge_x** Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with `position`.
- **nudge_y** Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with `position`.
- **label.padding** Amount of padding around label. Defaults to 0.25 lines.
- **label.r** Radius of rounded corners. Defaults to 0.15 lines.
- **na.rm** If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.
- **show.legend** logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes. It can also be a named logical vector to finely select the aesthetics to display.
- **inherit.aes** If `FALSE`, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

Description

Label for a set of Venn diagram

Usage

```r
geom_venn_label_set(
  data,
  mapping = aes_(),
  sets = NULL,
  outwards_adjust = 2.5,
  fill = alpha("white", 0.85),
)```
Arguments

data  a dataframe including binary columns representing membership in sets
mapping  the aesthetics mapping
sets  vector with names of columns representing membership in sets
outwards_adjust  the multiplier defining the distance from the centre
fill  the fill of the label
size  the text size
label.size  the size of the label outline
...  Arguments passed on to `ggplot2::geom_label`

stat  The statistical transformation to use on the data for this layer, as a string.
position  Position adjustment, either as a string, or the result of a call to a position adjustment function. Cannot be jointly specified with `nudge_x` or `nudge_y`.
parse  If TRUE, the labels will be parsed into expressions and displayed as described in `?plotmath`.
nudge_x  Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with `position`.
nudge_y  Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with `position`.
label.padding  Amount of padding around label. Defaults to 0.25 lines.
label.r  Radius of rounded corners. Defaults to 0.15 lines.
na.rm  If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend  logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes  If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.
description

Region of Venn diagram

Usage

geom_venn_region(data, mapping = aes_(), sets = NULL, resolution = 250, ...)

Arguments

data a dataframe including binary columns representing membership in sets
mapping the aesthetics mapping
sets vector with names of columns representing membership in sets
resolution the resolution of the circle rasterizer
... Arguments passed on to ggplot2::geom_polygon
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
rule Either "evenodd" or "winding". If polygons with holes are being drawn (using the subgroup aesthetic) this argument defines how the hole coordinates are interpreted. See the examples in grid::pathGrob() for an explanation.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().
**get_size_mode**

Retrieve symbol for given mode that can be used in aesthetics mapping with double bang (!!)

**Description**

Retrieve symbol for given mode that can be used in aesthetics mapping with double bang (!!)

**Usage**

```r
get_size_mode(mode, suffix = "_size")
```

**Arguments**

- `mode`: the mode to use. Accepted values: exclusive_intersection (alias distinct), inclusive_intersection (alias intersect), inclusive_union (alias union), exclusive_union.
- `suffix`: the column suffix in use as passed to upset_data()

**intersection_matrix**

Prepare layers for sets sizes plot

**Description**

Prepare layers for sets sizes plot

**Usage**

```r
intersection_matrix(
 geom = geom_point(size = 3),
 segment = geom_segment(),
 outline_color = list(active = "black", inactive = "grey70")
)
```

**Arguments**

- `geom`: a geom_point call, allowing to specify parameters (e.g. geom=geom_point(shape='square'))
- `segment`: a geom_segment call, allowing to specify parameters (e.g. segment=geom_segment(linetype='dotted'))
- `outline_color`: a named list with two colors for outlines of active and inactive dots
**intersection_ratio**  

*Barplot annotation of relative intersections sizes*

**Description**

A large intersection size can be driven by a large number of members in a group; to account for that, one can divide the intersection size by the size of a union of the same groups. This cannot be calculated for the null intersection (observations which do not belong to either of the groups).

**Usage**

```r
intersection_ratio(
 mapping = aes(),
 counts = TRUE,
 bar_number_threshold = 0.75,
 text_colors = c(on_background = "black", on_bar = "white"),
 text = list(),
 text_mapping = aes(),
 mode = "distinct",
 denominator_mode = "union",
 ...
)
```

**Arguments**

- **mapping** additional aesthetics for `geom_bar()`
- **counts** whether to display count number labels above the bars
- **bar_number_threshold** if less than one, labels for bars height greater than this threshold will be placed on (not above) the bars
- **text_colors** a name vector of characters specifying the color when `on_background` and `on_bar` (see `bar_number_threshold`)
- **text** additional parameters passed to `geom_text()`
- **text_mapping** additional aesthetics for `geom_text()`
- **mode** region selection mode, defines which intersection regions will be accounted for when computing the size. See `get_size_mode()` for accepted values.
- **denominator_mode** region selection mode for computing the denominator in ratio. See `get_size_mode()` for accepted values.
- **...** Arguments passed on to `intersection_size` `position` position passed to `geom_bar()`
**intersection_size**

Barplot annotation of intersections sizes

**Description**

Barplot annotation of intersections sizes

**Usage**

```r
intersection_size(
 mapping = aes(),
 counts = TRUE,
 bar_number_threshold = 0.85,
 text_colors = c(on_background = "black", on_bar = "white"),
 text = list(),
 text_mapping = aes(),
 mode = "distinct",
 position = position_stack(),
 ...
)
```

**Arguments**

- **mapping**: additional aesthetics for `geom_bar()`
- **counts**: whether to display count number labels above the bars
- **bar_number_threshold**: if less than one, labels for bars height greater than this threshold will be placed on (not above) the bars
- **text_colors**: a name vector of characters specifying the color when `on_background` and `on_bar` (see `bar_number_threshold`)
- **text**: additional parameters passed to `geom_text()`
- **text_mapping**: additional aesthetics for `geom_text()`
- **mode**: region selection mode, defines which intersection regions will be accounted for when computing the size. See `get_size_mode()` for accepted values.
- **position**: position passed to `geom_bar()`
- **...**: Arguments passed on to `ggplot2::geom_bar`

**data** The data to be displayed in this layer. There are three options:

- If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
- A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
- A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data. A function can be created from a `formula` (e.g. `~ head(.x, 10)`).
width  Bar width. By default, set to 90% of the resolution of the data.
na.rm If FALSE, the default, missing values are removed with a warning. If
   TRUE, missing values are silently removed.
orientation The orientation of the layer. The default (NA) automatically de-
   termines the orientation from the aesthetic mapping. In the rare event that
   this fails it can be given explicitly by setting orientation to either "x" or
   "y". See the Orientation section for more detail.
show.legend logical. Should this layer be included in the legends? NA, the
default, includes if any aesthetics are mapped. FALSE never includes, and
   TRUE always includes. It can also be a named logical vector to finely select
   the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining
   with them. This is most useful for helper functions that define both data
   and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
   cation, e.g. borders().
stat Override the default connection between geom_bar() and stat_count().

reverse_log_trans  Logarithmic scale for use with upset_set_size()

Description
Inspired by Brian Diggs’ answer which is CC-BY-SA 4.0.

Usage
reverse_log_trans(base = 10)

Arguments
base  logarithm base (default 10)

scale_color_venn_mix  Color scale for Venn diagram

Description
Color scale for Venn diagram
Usage

scale_color_venn_mix(
  data,
  sets = NULL,
  colors = c("red", "blue", "green"),
  na.value = "grey40",
  highlight = NULL,
  active_color = "orange",
  inactive_color = "NA",
  scale = scale_color_manual,
  ...
)

Arguments

data a dataframe including binary columns representing membership in sets
sets vector with names of columns representing membership in sets
colors named list of colors for sets (one set=one color)
na.value value for elements not belonging to any of the sets
highlight which regions of the diagram to highlight
active_color color for highlight
inactive_color color for lack of highlight
scale the base scale (default=scale_color_manual())
... Arguments passed on to ggplot2::scale_color_manual
values a set of aesthetic values to map data values to. The values will be
   matched in order (usually alphabetical) with the limits of the scale, or
   with breaks if provided. If this is a named vector, then the values will
   be matched based on the names instead. Data values that don’t match will
   be given na.value.
aesthetics Character string or vector of character strings listing the name(s)
   of the aesthetic(s) that this scale works with. This can be useful, for exam-
   ple, to apply colour settings to the colour and fill aesthetics at the same
   time, via aesthetics = c("colour", "fill").
breaks One of:
   • NULL for no breaks
   • waiver() for the default breaks (the scale limits)
   • A character vector of breaks
   • A function that takes the limits as input and returns breaks as output
scale_fill_venn_mix

Fill scale for Venn diagram

Description
Fill scale for Venn diagram

Usage
scale_fill_venn_mix(..., na.value = "NA")

Arguments
...  Arguments passed on to scale_color_venn_mix
data  a dataframe including binary columns representing membership in sets
sets  vector with names of columns representing membership in sets
colors  named list of colors for sets (one set=one color)
highlight  which regions of the diagram to highlight
active_color  color for highlight
inactive_color  color for lack of highlight
scale  the base scale (default=scale_color_manual())
na.value  value for elements not belonging to any of the known sets

upset
Compose an UpSet plot

Description
Compose an UpSet plot

Usage
upset(
data,
intersect,
base_annotations = "auto",
name = "group",
annotations = list(),
themes = upset_themes,
stripes = upset_stripes(),
labeller = identity,
height_ratio = 0.5,
width_ratio = 0.3,
wrap = FALSE,
set_sizes = upset_set_size(),
mode = "distinct",
queries = list(),
guides = NULL,
encode_sets = TRUE,
matrix = intersection_matrix(),
...
)

Arguments

data a dataframe including binary columns representing membership in classes
intersect which columns should be used to compose the intersection
base_annotations a named list with default annotations (i.e. the intersection size barplot)
name the label shown below the intersection matrix
annotations a named list of annotations, each being a list with: list(aes=mapping, geom=geom or list of geoms):

- (optional) highlight_geom=list of geoms geoms which can be highlighted with queries,
- (optional) top_geom=list of geoms which should show up on top of highlighted queries.

themes a named list of themes for components and annotations, see upset_default_themes()/upset_modify_themes()
stripes specification of the stripes appearance created with upset_stripes()
labeller function modifying the names of the sets (rows in the matrix)
height_ratio ratio of the intersection matrix to intersection size height
width_ratio ratio of the overall set size width to intersection matrix width
wrap whether the plot should be wrapped into a group (makes adding a tile/combining with other plots easier)
set_sizes the overall set sizes plot, e.g. from upset_set_size() (FALSE to hide)
mode region selection mode for computing the number of elements in intersection fragment. See get_size_mode() for accepted values.
queries a list of queries generated with upset_query()
guides action for legends aggregation and placement ("keep", "collect", "over" the set sizes)
encode_sets whether set names (column in input data) should be encoded as numbers (set to TRUE to overcome R limitations of max 10 kB for variable names for datasets with huge numbers of sets); default TRUE for upset() and FALSE for upset_data().
matrix the intersection matrix plot
...
Arguments passed on to upset_data
min_size minimal number of observations in an intersection for it to be included
max_size  maximal number of observations in an intersection for it to be included
min_degree  minimal degree of an intersection for it to be included
max_degree  maximal degree of an intersection for it to be included
n_intersections  the exact number of the intersections to be displayed; n largest intersections that meet the size and degree criteria will be shown
keep_empty_groups  whether empty sets should be kept (including sets which are only empty after filtering by size)
warn_when_dropping_groups  whether a warning should be issued when empty sets are being removed
warn_when_converting  whether a warning should be issued when input is not boolean
sort_sets  whether to sort the rows in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE
sort_intersections  whether to sort the columns in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE
sort_intersections_by  the mode of sorting, the size of the intersection (cardinality) by default; one of: 'cardinality', 'degree', 'ratio', or any combination of these (e.g. c('degree', 'cardinality'))
sort_ratio_numerator  the mode for numerator when sorting by ratio
sort_ratio_denominator  the mode for denominator when sorting by ratio
group_by  the mode of grouping intersections; one of: 'degree', 'sets'
size_columns_suffix  suffix for the columns to store the sizes (adjust if conflicts with your data)
intersections  whether only the intersections present in data (observed, default), or all intersections (all) should be computed; using all intersections for a high number of sets is not computationally feasible - use min_degree and max_degree to narrow down the selection; this is only useful for modes different from the default exclusive intersection. You can also provide a list with a custom selection of intersections (order is respected when you set sort_intersections=FALSE)
max_combinations_datapoints_n  a fail-safe limit preventing accidental use of intersections='all' with a high number of sets and observations

<table>
<thead>
<tr>
<th>upset_annotate</th>
<th>Annotation panel shorthand</th>
</tr>
</thead>
</table>

**Description**

Simplifies creation of annotation panels, automatically building aesthetics mappings, at a cost of lower flexibility than when providing a custom mapping; `aes(x=intersection)` is prespecified.

**Usage**

```r
upset_annotate(y, geom)
```
### Arguments

- **y**: A string with the name of the y aesthetic
- **geom**: A geom to be used as an annotation

### Description

Prepare data for UpSet plots

### Usage

```r
upset_data(
 data,
 intersect,
 min_size = 0,
 max_size = Inf,
 min_degree = 0,
 max_degree = Inf,
 n_intersections = NULL,
 keep_empty_groups = FALSE,
 warn_when_dropping_groups = FALSE,
 warn_when_converting = "auto",
 sort_sets = "descending",
 sort_intersections = "descending",
 sort_intersections_by = "cardinality",
 sort_ratio_numerator = "exclusive_intersection",
 sort_ratio_denominator = "inclusive_union",
 group_by = "degree",
 mode = "exclusive_intersection",
 size_columns_suffix = "_size",
 encode_sets = FALSE,
 max_combinations_datapoints_n = 10^10,
 intersections = "observed"
)
```

### Arguments

- **data**: a dataframe including binary columns representing membership in classes
- **intersect**: which columns should be used to compose the intersection
- **min_size**: minimal number of observations in an intersection for it to be included
- **max_size**: maximal number of observations in an intersection for it to be included
- **min_degree**: minimal degree of an intersection for it to be included
- **max_degree**: maximal degree of an intersection for it to be included
n_intersections
the exact number of the intersections to be displayed; n largest intersections that
meet the size and degree criteria will be shown

keep_empty_groups
whether empty sets should be kept (including sets which are only empty after
filtering by size)

warn_when_dropping_groups
whether a warning should be issued when empty sets are being removed

warn_when_converting
whether a warning should be issued when input is not boolean

sort_sets
whether to sort the rows in the intersection matrix (descending sort by default);
one of: 'ascending', 'descending', FALSE

sort_intersections
whether to sort the columns in the intersection matrix (descending sort by de-
default); one of: 'ascending', 'descending', FALSE

sort_intersections_by
the mode of sorting, the size of the intersection (cardinality) by default; one
of: 'cardinality', 'degree', 'ratio', or any combination of these (e.g.
c('degree', 'cardinality'))

sort_ratio_numerator
the mode for numerator when sorting by ratio

sort_ratio_denominator
the mode for denominator when sorting by ratio

group_by
the mode of grouping intersections; one of: 'degree', 'sets'

mode
region selection mode for sorting and trimming by size. See get_size_mode() for accepted values.

size_columns_suffix
suffix for the columns to store the sizes (adjust if conflicts with your data)

encode_sets
whether set names (column in input data) should be encoded as numbers (set to
TRUE to overcome R limitations of max 10 kB for variable names for datasets
with huge numbers of sets); default TRUE for upset() and FALSE for upset_data()

max_combinations_datapoints_n
a fail-safe limit preventing accidental use of intersections='all' with a high
number of sets and observations

intersections
whether only the intersections present in data (observed, default), or all inter-
sections (all) should be computed; using all intersections for a high number of
sets is not computationally feasible - use min_degree and max_degree to nar-
row down the selection; this is only useful for modes different from the default
exclusive intersection. You can also provide a list with a custom selection of
intersections (order is respected when you set sort_intersections=FALSE)
### upset_default_themes

**Description**

Return the default UpSet themes with all themes modified with provided arguments

**Usage**

```r
call upset_default_themes(...)```

Arguments

- `...` arguments passed to `theme()`

upset_mode

Description

Layer defining the intersection mode for the data to be displayed

Usage

```r
call upset_mode(mode)```

**Arguments**

- `mode` region selection mode, defines which mode data will be made available for the annotation. See `get_size_mode()` for accepted values.

### upset_modify_themes

**Description**

Return the default UpSet themes with specific themes modified with provided themes

**Usage**

```r
call upset_modify_themes(to_update)```

Arguments

- `to_update` a named list of themes to be used to modify themes of specific components; see `names(upset_themes)` for components names.
upset_query

Highlight chosen sets or intersections

Description

Highlight sets or intersections matching specified query.

Usage

upset_query(
 set = NULL,
 intersect = NULL,
 group = NULL,
 only_components = NULL,
 ...
)

Arguments

* set name of the set to highlight
* intersect a vector of names for the intersection to highlight; pass NA to select the empty intersection
* group name of the set to highlight when using group_by='sets'
* only_components

 which components to modify; by default all eligible components will be modified; the available components are 'overall_sizes', 'intersections_matrix', 'Intersection size', and any annotations specified

 • passed to geoms in modified components

Examples

upset_query(intersect=c('Drama', 'Comedy'), color='red', fill='red')
upset_query(set='Drama', fill='blue')

upset_set_size

Prepare layers for sets sizes plot

Description

Prepare layers for sets sizes plot
Usage

```r
upset_set_size(
    mapping = aes(),
    geom = geom_bar(width = 0.6),
    position = "left",
    filter_intersections = FALSE
)
```

Arguments

- **mapping**: additional aesthetics
- **geom**: a geom to use
- **position**: on which side of the plot should the set sizes be displayed ("left" or "right")
- **filter_intersections**: whether the intersections filters (e.g. n_intersections or min_size) should influence displayed set sizes

upset_stripes

Define appearance of the stripes

Description

Define appearance of the stripes

Usage

```r
upset_stripes(
    mapping = aes(),
    geom = geom_segment(size = 7),
    colors = c("white", "grey95"),
    data = NULL
)
```

Arguments

- **mapping**: additional aesthetics
- **geom**: a geom to use, should accept x, y, xend, yend and color aesthetics
- **colors**: a vector of colors to repeat as many times as needed for the fill of stripes, or a named vector specifying colors for values of the variable mapped to the color aesthetics in the mapping argument
- **data**: the dataset describing the sets with a column named set and any other columns as needed for mapping
upset_test

Test for differences between intersections

Description

This is a wrapper around compare_between_intersections(), adding sorting by FDR, warnings, etc.

Usage

upset_test(data, intersect, ...)

Arguments

data a dataframe including binary columns representing membership in classes
intersect which columns should be used to compose the intersection
... Arguments passed on to compare_between_intersections

test the default test function; it is expected to accept formula and data parameters, and a list with p.value, statistic, and method

tests a named list with tests for specific variables, overwriting the default test

ignore a list with names of variables to exclude from testing

ignore_mode_columns whether the membership columns and size columns for all modes should be ignored

mode region selection mode; note that modes other than exclusive_intersection repeat observations in different test group, introducing dependencies. See get_size_mode() for accepted values.

upset_text_percentage Generate percentage label of the intersection/union sizes ratio

Description

For use together with intersection_size or intersection_ratio

Usage

upset_text_percentage(digits = 0, sep = "", mode = "distinct")

Arguments

digits How many digits to show when rounding the percentage?

sep set to space (" ") if you prefer a whitespace between the number and the % sign.

mode region selection mode for computing the numerator in ratio. See get_size_mode() for accepted values.
Examples

```r
ggplot2::aes(label=!!upset_text_percentage())
```

Description

List of default themes for upset components

Usage

```r
upset_themes
```

Format

An object of class `list` of length 4.
Index

* datasets
 upset_themes, 24
 upset_set_size, 21
 upset_stripes, 22
 upset_test, 23
 upset_text_percentage, 23
 upset_themes, 24

aes_percentage, 2
arrange_venn, 3

borders(), 6–9, 13

calculate_between_intersections, 4, 23
create_upset_abc_example, 5

fortify(), 12

ggplot(), 12
ggplot2::geom_bar, 12
ggplot2::geom_label, 7, 8

geom_venn_circle, 5
geom_venn_label_region, 6
geom_venn_label_set, 7
geom_venn_region, 9

get_size_mode, 10

ggplot2::geom_polygon, 5, 9

geom_venn_label_region, 6

ggplot2::geom_polygon, 5

geom_venn_label_set, 7

ggplot2::geom_polygon, 5

grid::pathGrob(), 6, 9

intersection_matrix, 10

intersection_ratio, 11

intersection_size, 11, 12

reverse_log_trans, 13

scale_color_venn_mix, 13, 15
scale_fill_venn_mix, 15

upset, 15

upset_annotate, 17

upset_data, 16, 18

upset_default_themes, 20

upset_mode, 20

upset_modify_themes, 20

upset_query, 21