Package ‘ClustImpute’

May 31, 2021

Type Package
Title K-Means Clustering with Build-in Missing Data Imputation
Version 0.2.4
Author Oliver Pfaffel
Maintainer Oliver Pfaffel <opfaffel@gmail.com>
Description This k-means algorithm is able to cluster data with missing values and as a by-product completes the data set. The implementation can deal with missing values in multiple variables and is computationally efficient since it iteratively uses the current cluster assignment to define a plausible distribution for missing value imputation. Weights are used to shrink early random draws for missing values (i.e., draws based on the cluster assignments after few iterations) towards the global mean of each feature. This shrinkage slowly fades out after a fixed number of iterations to reflect the increasing credibility of cluster assignments. See the vignette for details.
License GPL-3
Encoding UTF-8
Imports ClusterR, copula, dplyr, magrittr, tidyr, ggplot2, rlang, knitr
Suggests ggExtra, rmarkdown, testthat (>= 2.1.0), Hmisc, tictoc, spelling, corrplot, covr
VignetteBuilder knitr
RoxygenNote 7.1.0
Language en-US
NeedsCompilation no
Repository CRAN
Date/Publication 2021-05-31 07:40:11 UTC

R topics documented:

 check_replace_dups .. 2
 ClustImpute .. 2
 default_wf .. 4
check_replace_dups
Check and replace duplicate (centroid) rows

Description
Internal function of ClustImpute: check new centroids for duplicate rows and replace with random draws in this case.

Usage
check_replace_dups(centroids, X, seed)

Arguments
- centroids: Matrix of centroids
- X: Underlying data matrix (without missings)
- seed: Seed used for random sampling

Value
Returns centroids where duplicate rows are replaced by random draws

ClustImpute
K-means clustering with build-in missing data imputation

Description
Clustering algorithm that produces a missing value imputation using on the go. The (local) imputation distribution is defined by the currently assigned cluster. The first draw is by random imputation.
Usage

ClustImpute(
 X,
 nr_cluster,
 nr_iter = 10,
 c_steps = 1,
 wf = default_wf,
 n_end = 10,
 seed_nr = 150519,
 assign_with_wf = TRUE,
 shrink_towards_global_mean = TRUE
)

Arguments

X Data frame with only numeric values or NAs
nr_cluster Number of clusters
nr_iter Iterations of procedure
c_steps Number of clustering steps per iteration
wf Weight function. Linear up to n_end by default. Used to shrink X towards zero or the global mean (default). See shrink_towards_global_mean
n_end Steps until convergence of weight function to 1
seed_nr Number for set.seed()
assign_with_wf Default is TRUE. If set to False, then the weight function is only applied in the centroid computation, but ignored in the cluster assignment.
shrink_towards_global_mean
 By default TRUE. The weight matrix w is applied on the difference of X from the global mean m, i.e, (x-m)*w+m

Value

complete_data Completed data without NAs
clusters For each row of complete_data, the associated cluster
centroids For each cluster, the coordinates of the centroids in tidy format
centroids_matrix For each cluster, the coordinates of the centroids in matrix format
imp_values_mean Mean of the imputed variables per draw
imp_values_sd Standard deviation of the imputed variables per draw

Examples

Random Dataset
set.seed(739)
n <- 750 # numer of points
nr_other_vars <- 2
mat <- matrix(rnorm(nr_other_vars*n),n,nr_other_vars)
default_wf

K-means clustering with build-in missing data imputation

Description

Default weight function. One minus the return value is multiplied with missing (=imputed) values. It starts with 1 and goes to 0 at n_end.

Usage

default_wf(n, n_end = 10)

Arguments

n current step
n_end steps until convergence of weight function to 0

Value

value between 0 and 1

Examples

x <- 0:20
plot(x,1-default_wf(x))
Description

Simulates missing at random using a normal copula to create correlations between the missing (type="MAR"). Missings appear in each column of the provided data frame with the same ratio.

Usage

miss_sim(dat, p = 0.2, type = "MAR", seed_nr = 123)

Arguments

dat Data frame with only numeric values
p Fraction of missings (for entire data frame)
type Type of missingness. Either MCAR (=missing completely at random) or MAR (=missing at random)
seed_nr Number for set.seed()

Value

data frame with only numeric values and NAs

Examples

data(cars)
cars_with_missings <- miss_sim(cars, p = .2, seed_nr = 4)
summary(cars_with_missings)

plot.kmeans_ClustImpute

Plot showing marginal distribution by cluster assignment

Description

Returns a plot with the marginal distributions by cluster and feature. The plot shows histograms or boxplots and , as a ggplot object, can be modified further.
Usage

S3 method for class 'kmeans_ClustImpute'
plot(
 x,
 type = "hist",
 vline = "centroids",
 hist_bins = 30,
 color_bins = "#56B4E9",
 color_vline = "#E69F00",
 size_vline = 2,
 ...
)

Arguments

- **x**: an object returned from ClustImpute
- **type**: either "hist" to plot a histogram or "box" for a boxplot
- **vline**: for "hist" a vertical line is plotted showing either the centroid value or the mean of all data points grouped by cluster and feature
- **hist_bins**: number of bins for histogram
- **color_bins**: color for the histogram bins
- **color_vline**: color for the vertical line
- **size_vline**: size of the vertical line
- **...**: currently unused

Value

Returns a ggplot object

predict.kmeans_ClustImpute

Prediction method

Description

Prediction method

Usage

S3 method for class 'kmeans_ClustImpute'
predict(object, newdata, ...)

Arguments

- **object**: Object of class `kmeans_ClustImpute`
- **newdata**: Data frame
- **...**: additional arguments affecting the predictions produced - not currently used

Value

text integer value (cluster assignment)

Examples

```r
# Random Dataset
set.seed(739)
n <- 750 # numer of points
nr_other_vars <- 2
mat <- matrix(rnorm(nr_other_vars*n),n,nr_other_vars)
me<-4 # mean
x <- c(rnorm(n/3,me/2,1),rnorm(2*n/3,-me/2,1))
y <- c(rnorm(n/3,0,1),rnorm(n/3,me,1),rnorm(n/3,-me,1))
dat <- cbind(mat,x,y)
dat<- as.data.frame(scale(dat)) # scaling

# Create NAs
dat_with_miss <- miss_sim(dat,p=.1,seed_nr=120)
res <- ClustImpute(dat_with_miss,nr_cluster=3)
predict(res,newdata=dat[1,])
```

print.kmeans_ClustImpute

Print method for ClustImpute

Description

Returns a plot with the marginal distributions by cluster and feature. The plot shows histograms or boxplots and, as a ggplot object, can be modified further.

Usage

```r
## S3 method for class 'kmeans_ClustImpute'
print(x, ...)
```

Arguments

- **x**: an object returned from `ClustImpute`
- **...**: currently unused
Value

No return value (print function)

Description

Computes one minus the ratio of the sum of all within cluster variances by the overall variance

Usage

```r
var_reduction(clusterObj)
```

Arguments

- `clusterObj` Object of class `kmeans_ClustImpute`

Value

integer value typically between 0 and 1

Examples

```r
# Random Dataset
set.seed(739)
n <- 750 # number of points
nr_other_vars <- 2
mat <- matrix(rnorm(nr_other_vars*n),n,nr_other_vars)
me<-4 # mean
x <- c(rnorm(n/3,me/2,1),rnorm(2*n/3,-me/2,1))
y <- c(rnorm(n/3,0,1),rnorm(n/3,me,1),rnorm(n/3,-me,1))
dat <- cbind(mat,x,y)
dat<- as.data.frame(scale(dat)) # scaling

# Create NAs
dat_with_miss <- miss_sim(dat,p=.1,seed_nr=120)

res <- ClustImpute(dat_with_miss,nr_cluster=3)
var_reduction(res)
```
Index

check_replace_dups, 2
ClustImpute, 2

default_wf, 4

miss_sim, 5

plot.kmeans_ClustImpute, 5
predict.kmeans_ClustImpute, 6
print.kmeans_ClustImpute, 7

var_reduction, 8