Package ‘CDSeq’

February 10, 2021

Type Package
Title A Complete Deconvolution Method using Sequencing Data
Depends R (>= 3.6.0)

biocViews
Version 1.0.8
Date 2021-01-29
Maintainer Kai Kang <kangkai0714@gmail.com>
License GPL-3
Imports Rcpp (>= 1.0.3), MASS, foreach, doParallel, dirmult, RcppThread, iterators, qlcMatrix, gplots, grDevices, clue, Biobase, Seurat, ggplot2, magrittr, dplyr, rlang, Matrix, matrixStats, ggpube
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
BugReports https://github.com/kkang7/CDSeq_R_Package/issues
Config/testthat/edition 3
NeedsCompilation yes
R topics documented:

CDSeq-R-package .. 3
CDSeq ... 4
cdseq.result .. 5
Cell2RNA ... 6
cellTypeAssign ... 6
cellTypeAssignMarkerGenes 7
cellTypeAssignSCRNA ... 8
gene2rpkm ... 11
gene_length .. 12
gibbsSampler .. 12
hungarian_Rcpp .. 13
intersection .. 14
logpost ... 14
max_rep ... 15
merge_df ... 15
mixtureGEP ... 16
pbmc_ggplot ... 16
pbmc_mix ... 17
read2gene ... 17
refGEP ... 18
result1 ... 18
result2 ... 19
result3 ... 19
RNA2Cell ... 20
sc_annotation .. 20
sc_gep ... 20
seedMT ... 21
SyntheticMixtureData .. 21
true_GEP_gene .. 22
true_GEP_read .. 23
true_GEP_rpkm .. 23
true_prop ... 24
ture_prop_cell ... 24
CDSeq-R-package

CDSeq: A package for complete deconvolution using sequencing data

Description

CDSeq-R-package takes bulk RNA-seq data as input and simultaneously returns estimates of both cell-type-specific gene expression profiles and sample-specific cell-type proportions.

Reduce-Recover

CDSeq uses reduce-recovery strategy and CPU parallel computing to speed up the deconvolution.

Hyperparameter estimation

Estimate hyperparameter for cell-type-specific GEPs (i.e. beta) using reference profile when cell_type_number is scalar.

Estimating number of cell type

Estimate number of cell types when cell_type_number is a vector of integers.

Partition on input bulk RNA-seq data

When block_number (number of partition on the bulk RNASeq data) is 1, whole bulk_data will be used. GEP is not from reduce-recovery.

Author(s)

Kai Kang, David Huang, <kangkai0714@gmail.com>

References

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007510
CDSeq

Complete deconvolution using sequencing data.

Description

CDSeq takes bulk RNA-seq data as input and simultaneously returns estimates of both cell-type-specific gene expression profiles and sample-specific cell-type proportions.

Usage

```r
CDSeq(
  bulk_data,
  beta = 0.5,
  alpha = 5,
  cell_type_number = NULL,
  mcmc_iterations = 700,
  dilution_factor = 1,
  gene_subset_size = NULL,
  block_number = 1,
  cpu_number = NULL,
  gene_length = NULL,
  reference_gep = NULL,
  verbose = FALSE,
  print_progress_msg_to_file = 0
)
```

Arguments

- **bulk_data** RNA-Seq read counts matrix. Columns represent samples and rows represent genes.
- **beta** beta is a scalar or a vector of length G where G is the number of genes; default value for beta is 0.5; When beta=Null, CDSeq uses reference_gep to estimate beta.
- **alpha** alpha is a scalar or a vector of length cell_type_number where cell_type_number is the number of cell type; default value for alpha is 5.
- **cell_type_number** number of cell types. cell_type_number can be an integer or a vector of different integers. To estimate the number of cell types, please provide a vector for cell_type_number, e.g. cell_type_number <- 2:30, then CDSeq will estimate the number of cell types.
- **mcmc_iterations** number of iterations for the Gibbs sampler; default value is 700.
- **dilution_factor** a scalar to dilute the read counts for speeding up; default value is 1. CDSeq will use bulk_data/dilution_factor.
gene_subset_size
number of genes randomly sampled for each block. Default is NULL.

block_number
number of blocks. Each block contains gene_subset_size genes. Default is 1.

cpu_number
number of cpu cores that can be used for parallel computing; Default is NULL and CDSeq will detect the available number of cores on the device and use number of all cores - 1 for parallel computing.

gene_length
a vector of the effective length (gene length - read length + 1) of each gene; Default is NULL.

reference_gep
a reference gene expression profile can be used to determine the cell type and/or estimate beta; Default is NULL.

verbose
if TRUE, then print progress message to the console. Default is FALSE.

print_progress_msg_to_file
print progress message to a text file. Set 1 if need to print progress msg to a file and set 0 if no printing. Default is 0;

Value

CDSeq returns estimates of both cell-type-specific gene expression profiles and sample-specific cell-type proportions. CDSeq will also return estimated number of cell types, and the log posterior values for different number of cell types.

Examples

```r
result1 <- CDSeq(bulk_data = mixtureGEP, cell_type_number = 6, mcmc_iterations = 5, dilution_factor = 50, block_number = 1, gene_length = as.vector(gene_length), reference_gep = refGEP, cpu_number = 1, print_progress_msg_to_file = 0)
```

cdseq.result
Output of synthetic mixtures of PBMC scRNAseq data

Description

Output of synthetic mixtures of PBMC scRNAseq data

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

This is the CDSeq output of synthetic PBMC mixtures
Cell2RNA

Cell proportion to RNA proportion Cell2RNA converts Cell proportion to RNA proportion

Description

Cell proportion to RNA proportion Cell2RNA converts Cell proportion to RNA proportion

Usage

Cell2RNA(eta, cellprop)

Arguments

- **eta**
 - numeric vector represents the different amounts of RNA produced by different cell types
- **cellprop**
 - sample-specific cell-type proportion

Value

Cell2RNA returns sample-specific cell-type RNA proportion

cellTypeAssign

Assign cell types using correlation matrix computed using cell-type-specific GEPs and reference GEPs. cellTypeAssign assigns CDSeq-identified cell types to reference profile.

Description

Assign cell types using correlation matrix computed using cell-type-specific GEPs and reference GEPs. cellTypeAssign assigns CDSeq-identified cell types to reference profile.

Usage

cellTypeAssign(corMat, threshold = 0.8)

Arguments

- **corMat**
 - correlation matrix between CDSeq-estimated GEPs and reference GEPs.
- **threshold**
 - only the correlations that are above threshold will be considered.

Value

cellTypeAssign returns a vector of cell type assignment to the reference profile.
cellTypeAssignMarkerGenes

Description

cellTypeAssignMarkerGenes assigns CDSeq-identified cell types using user-provided marker gene list and plots heatmap.

Usage

```r
cellTypeAssignMarkerGenes(
  cell_gep = NULL,
  marker_gene_list = NULL,
  threshold = 2,
  fig_path = getwd(),
  rowlabels = 1,
  collabels = 1,
  margins = c(3, 0),
  fig_width = 100,
  fig_height = 100,
  keysize = 1,
  srtcol = 45,
  keypar = c(3.5, 0, 3, 0),
  heatmap_name = "cellTypeAssign_heatmap.pdf",
  heatmap_name_fuzzy_assign = "cellTypeAssign_heatmap_fuzzy.pdf",
  verbose = FALSE
)
```

Arguments

cell_gep gene expression profile matrix with G rows (genes) and M columns (cell types).

marker_gene_list a G (genes) by C (cell types with known identities) matrix or dataframe that contains the marker genes for each cell type. Column names must be CellType and GeneName.

threshold a numeric value that provides the threshold of whether a known cell type in the marker gene list can be identified.

fig_path the location where the heatmap figure is saved.

rowlabels row label size

collabels column label size

margins a vector of length 2 indicates row and column label margins

fig_width figure width for pdf figure

fig_height figure height for pdf figure
cellTypeAssignSCRNA

assigns CDSeq-identified cell types using single cell RNAseq data.

description

cellTypeAssignSCRNA assigns CDSeq-identified cell types using single cell RNAseq data.

usage

cellTypeAssignSCRNA(
 cdseq_gep = NULL,
 cdseq_prop = NULL,
 cdseq_gep_sample_specific = NULL,
 sc_gep = NULL,
 sc_annotation = NULL,
 nb_size = NULL,
 nb_mu = NULL,
 seurat_count_threshold = 100,
 seurat_scale_factor = 10000,
 seurat_norm_method = "LogNormalize",

 keysize color key size for heatmap
 srtcol column label angle
 keypar color key layout
 heatmap_name the name of heatmap figure of one-to-one assignment.
 heatmap_name_fuzzy_assign
 the name of heatmap figure of fuzzy assignment.
 verbose if TRUE, some information will be printed.

value

cellTypeAssignMarkerGenes returns a list containing:

- GEP_markerSum (a A by B matrix where A is nrow(marker_gene_list), B is ncol(cell_gep)),
- GEP_markerSum_zscore (row-wise z score of GEP_markerSum),
- GEP_matched is cell_gep[,cell_type_idx],
- cell_type_idx (column index of cell_gep that are considered matching with cell types in marker_gene_list),
- cell_type_matched stores the cell types in marker_gene_list that are considered to be matched with cell_gep,
- GEP_markerSum_zscore_matched contains only the rows of GEP_markerSum_zscore that are considered to be matched with some cell types in cell_gep. GEP_markerSum_zscore_matched and GEP_markerSum_zscore have same columns.
- cell_type_matched_fuzzy is a zero-one matrix that has the same size as GEP_markerSum_zscore_matched. If (i,j) element is one, means ith cell type in marker_gene_list is assigned to jth element in cell_gep.
seurat_select_method = "vst",
seurat_nfeatures = 100,
seurat_npcs = 50,
seurat_dims = 1:10,
seurat_reduction = "pca",
seurat_resolution = 0.8,
seurat_find_marker = FALSE,
seurat_DE_test = "wilcox",
seurat_DE_logfc = 0.25,
seurat_top_n_markers = 10,
sc_pt_size = 1,
cdseq_pt_size = 3,
plot_umap = 1,
plot_tsne = 1,
plot_per_sample = 0,
fig_save = 0,
fig_path = getwd(),
fig_name = "cellTypeAssignSCRNA",
fig_format = "pdf",
fig_dpi = 300,
verbose = FALSE
)

Arguments

cdseq_gep CDSeq-estimated gene expression profile matrix with G rows (genes) and T columns (cell types).
cdseq_prop CDSeq-estimated sample-specific cell-type proportion, a matrix with T rows (cell type) and M (sample size).
cdseq_gep_sample_specific
 CDSeq-estimated sample-specific cell type gene expression, in the form of read counts. It is a 3 dimension array, i.e. gene by sample by cell type. The element cdseq_gep_sample_specific[i,j,k] represents the reads mapped to gene i from cell type k in sample j.
sc_gep a G (genes) by N (cell) matrix or dataframe that contains the gene expression profile for N single cells.
sc_annotation a dataframe contains two columns "cell_id" and "cell_type". cell_id needs to match with the cell_id in sc_gep but not required to have the same size. cell_type is the cell type annotation for the single cells.
nb_size size parameter for negative binomial distribution, check rnbinom for details.
nb_mu mu parameter for negative binomial distribution, check rnbinom for details.
seurat_count_threshold
 this parameter will be passed to Seurat subset function (subset = nCount_RNA > seurat_count_threshold) for filtering out single cells whose total counts is less this threshold.
seurat_scale_factor
 this parameter will be passed to scale.factor in Seurat function NormalizeData.
seurat_norm_method
 this parameter will be passed to normalization.method in Seurat function NormalizeData.
seurat_select_method
 this parameter will be passed to selection.method in Seurat function FindVariableFeatures
seurat_nfeatures
 this parameter will be passed to nfeatures in Seurat function FindVariableFeatures.
seurat_npcs
 this parameter will be passed tonpcs in Seurat function RunPCA.
seuratDims
 this parameter will be passed to dims in Seurat function FindNeighbors.
seurat_reduction
 this parameter will be passed to reduction in Seurat function FindNeighbors.
seurat_resolution
 this parameter will be passed to resolution in Seurat function FindClusters.
seurat_find_marker
 this parameter controls if run seurat FindMarker function, default is FALSE.
seurat_DE_test
 this parameter will be passed to test.use in Seurat function FindAllMarkers.
seurat_DE_logfc
 this parameter will be passed to logfc.threshold in Seurat function FindAllMarkers.
seurat_top_n_markers
 the number of top DE markers saved from Seurat output.
sc_pt_size
 point size of single cell data in umap and tsne plots
cdseq_pt_size
 point size of CDSeq-estimated cell types in umap and tsne plots
plot_umap
 set 1 to plot umap figure of scRNAseq and CDSeq-estimated cell types, 0 otherwise.
plot_tsne
 set 1 to plot tsne figure of scRNAseq and CDSeq-estimated cell types, 0 otherwise.
plot_per_sample
 currently disabled for debugging
fig_save
 1 or 0. 1 means save figures to local and 0 means do not save figures to local.
fig_path
 the location where the heatmap figure is saved.
fig_name
 the name of umap and tsne figures. Umap figure will have the name of fig_name_umap_date
 and tsne figure will be named fig_name_tsne_date.
fig_format
 "pdf", "jpeg", or "png".
fig_dpi
 figure dpi
verbose
 if TRUE, some calculation information will be print.

Value

cellTypeAssignSCRNA returns a list containing following fields: fig_path: same as the input
fig_path
fig_name: same as the input fig_name
gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.

gene2rpkm outputs the rpkm normalizations of the CDSeq-estimated GEPs.
gibbsSampler

Value
gene2rpkm returns rpkm normalization of the CDSeq-estimated GEPs.

gene_length | Gene length

Description
Gene length

Usage
data(SyntheticMixtureData)

Format
numeric vector

Author(s)
Kai Kang

gibbsSampler | This is the Gibbs sampler for CDSeq. GibbsSampler returns estimated GEPs and cell type proportions.

Description
This is the Gibbs sampler for CDSeq. gibbsSampler returns estimated GEPs and cell type proportions.

Usage
gibbsSampler(
 ALPHA,
 BETA,
 mixtureSamples,
 T,
 NN,
 OUTPUT,
 processID,
 data_block_idx,
 CDSeq_tmp_log,
 write_2_file,
 verbose
)
Arguments

ALPHA
hyperparameter for cell type proportion.

BETA
hyperparameter for cell-type-specific GEPs.

mixtureSamples
bulk RNA-seq data in form of read counts.

T
number of cell types.

NN
number of MCMC iteration.

OUTPUT
MCMC progress output control.

processID
worker process ID when using parallel computing.

data_block_idx
index for data blocks from bulk RNA-seq input.

CDSeq_tmp_log
temporary log file recording the workers’ jobs.

write_2_file
print to progress msg to CDSeq_tmp_log if it is 1, not printing otherwise.

verbose
if greater than or equal to 1, then print working progress in console, otherwise do not print in console.

Value

random integers uniformly distributed in 0..(2^32 - 1).

Description

This is the Hungarian algorithm wrapper for cell type assignment hungarian_Rcpp returns cell type assignment given reference GEPs

Usage

hungarian_Rcpp(costMat)

Arguments

costMat
correlation matrix

Value

cost for the assignment and cell type assignment
intersection

* intersection take intersection of multiple lists and return the common set and index

Description

intersection take intersection of multiple lists and return the common set and index

Usage

```
intersection(list.vector, order = "sort")
```

Arguments

- **list.vector**
 - this is a list of list contain all the data.
- **order**
 - this is either sort or stable. If choose sort, the output common value will be sorted. If choose stable, the output common value will be in the same order as appear in the first element in list.vector.

Value

The common values among lists and their indices. intersection function: input: list.vector is a list of list contain all the data for example, if we need to find the common elements of a, b, c, then input should be list(a,b,c)

logpost

* logpost computes the log posterior of the CDSeq model. logpost outputs the value of log posterior.

Description

logpost computes the log posterior of the CDSeq model. logpost outputs the value of log posterior.

Usage

```
logpost(estProp, estGEP, mydata, alpha, beta)
```

Arguments

- **estProp**
 - CDSeq-estimated cell type proportions.
- **estGEP**
 - CDSeq-estimated cell-type-specific GEPs.
- **mydata**
 - input bulk RNA-seq data.
- **alpha**
 - hyperparameter for cell type proportion estimation.
- **beta**
 - hyperparameter for cell-type-specific GEP estimation.
max_rep

Value
logpost returns log posterior values.

max_rep

Find the element that repeats the most in a given vector and calculate its proportion.

Usage
max_rep(v)

Arguments
v a vector

Value
max_rep_value contains two elements: max_element and max_element_proportion. max_element is the element that repeats the most in v, and max_element_proportion is its proportion.

merge_df

Data frame for keeping the CDSeq-estimated cell type proportions for PBMC mixtures

Description
Data frame for keeping the CDSeq-estimated cell type proportions for PBMC mixtures

Usage
data(SyntheticMixtureData)

Format
data frame

Author(s)
Kai Kang

Source
CDSeq estimated cell type proportions for cell type number 3, 6, 9 and 12
mixtureGEP: Synthetic bulk RNA-seq read counts data of six cell types

Description
Synthetic bulk RNA-seq read counts data of six cell types

Usage
data(SyntheticMixtureData)

Format
numeric matrix

Author(s)
Kai Kang

Source
we downloaded the pure cell line RNA-seq data and generated the mixing proportions randomly and produced the mixtures

pbmc_ggplot: ggplot figures of comparison between CDSeq-estimated cell type proportion and ground truth

Description
ggplot figures of comparison between CDSeq-estimated cell type proportion and ground truth

Usage
data(SyntheticMixtureData)

Format
ggplot object

Author(s)
Kai Kang

Source
CDseq-estimated cell type proportion and ground truth
pbmc_mix

pbmc_mix
Synthetic bulk RNA-seq read counts data of PBMC single cell data

Description

Synthetic bulk RNA-seq read counts data of PBMC single cell data

Usage

```r
data(SyntheticMixtureData)
```

Format

numeric matrix

Author(s)

Kai Kang

Source

we downloaded the PBMC scRNAseq and generated the mixing proportions randomly and produced the mixtures

read2gene
read2gene outputs the GEP normalized by gene length of the CDSeq-estimated GEPs. read2gene outputs the gene length normalized CDSeq-estimated GEP.

Description

read2gene outputs the GEP normalized by gene length of the CDSeq-estimated GEPs. read2gene outputs the gene length normalized CDSeq-estimated GEP.

Usage

```r
read2gene(read_rate, gene_effective_length)
```

Arguments

- `read_rate` CDSeq-estimated GEP before normalized by gene length.
- `gene_effective_length` gene effective length which is the gene length minus the read length plus one.

Value

read2gene returns gene length normalized CDSeq-estimated GEPs.
refGEP

Description

GEPs of six component pure cell lines

Usage

`data(SyntheticMixtureData)`

Format

numeric matrix

Author(s)

Kai Kang

result1

Description

CDSeq result of synthetic bulk RNA-seq read counts data of six cell types

Usage

`data(SyntheticMixtureData)`

Format

numeric matrix

Author(s)

Kai Kang

Source

CDSeq-estimates of mixtureGEP
<table>
<thead>
<tr>
<th>result2</th>
<th>CDSeq result of synthetic bulk RNA-seq read counts data of six cell types</th>
</tr>
</thead>
</table>

Description

CDSeq result of synthetic bulk RNA-seq read counts data of six cell types

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

CDSeq estimates of mixtureGEP

<table>
<thead>
<tr>
<th>result3</th>
<th>CDSeq result of synthetic bulk RNA-seq read counts data of six cell types</th>
</tr>
</thead>
</table>

Description

CDSeq result of synthetic bulk RNA-seq read counts data of six cell types

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

CDSeq estimates of mixtureGEP
RNA2Cell

RNA proportion to cell proportion RNA2Cell converts RNA proportion to cell proportion

Description

RNA proportion to cell proportion RNA2Cell converts RNA proportion to cell proportion

Usage

RNA2Cell(eta, rnaprop)

Arguments

- **eta**
 numeric vector represents the different amounts of RNA produced by different cell types
- **rnaprop**
 sample-specific cell-type RNA proportion

Value

RNA2Cell returns sample-specific cell-type proportion

SC_annotation

Cell type annotation of the PBMC single cell data

Description

Cell type annotation of the PBMC single cell data

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

We used the annotation provided by the single cell data
sc_gep

PBMC single cell RNAseq read counts that used for creating synthetic PBMC mixtures

Description

PBMC single cell RNAseq read counts that used for creating synthetic PBMC mixtures

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

we downloaded the PBMC RNA-seq data and generated the mixing proportions randomly and produced the mixtures

seedMT

This is the Mersenne Twister random number generator. cokus generates pseudorandom integers uniformly distributed in 0..(2^32 - 1).

Description

This is the Mersenne Twister random number generator. cokus generates pseudorandom integers uniformly distributed in 0..(2^32 - 1).

Usage

seedMT(seed)

Arguments

seed odd number for seeding

Value

random integers uniformly distributed in 0..(2^32 - 1).
Author(s)

Shawn Cokus (Cokus@math.washington.edu)

SyntheticMixtureData

Synthetic bulk RNA-seq read counts data of six cell types, PBMC mixtures using scRNASeq and some preliminary results

Description

Synthetic bulk RNA-seq read counts data of six cell types, PBMC mixtures using scRNASeq and some preliminary results

Usage

`data(SyntheticMixtureData)`

Format

A matrix of read counts data containing 40 synthetic mixtures with 500 genes

Author(s)

Kai Kang

Source

we downloaded the pure cell line RNA-seq data and generated the mixing proportions randomly and produced the mixtures

Examples

`data(SyntheticMixtureData)`

true_GEP_gene

True GEPs of the six component cell types normalized by gene length

Description

True GEPs of the six component cell types normalized by gene length

Usage

`data(SyntheticMixtureData)`

Format

numeric matrix
true_GEP_read

Author(s)
Kai Kang

true_GEP_read

True GEPs of the six component cell types unnormalized by gene length

Description
True GEPs of the six component cell types unnormalized by gene length

Usage
data(SyntheticMixtureData)

Format
numeric matrix

Author(s)
Kai Kang

true_GEP_rpkm

True GEPs of the six component cell types RPKM normalization

Description
True GEPs of the six component cell types RPKM normalization

Usage
data(SyntheticMixtureData)

Format
numeric matrix

Author(s)
Kai Kang
true_prop_cell

Description

True cell type proportion in the PBMC synthetic mixtures

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

randomly generated

true_prop_cell

Description

True cell proportions of the mixtures

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

cell type proportions are randomly generated
| true_prop_RNA | True cell type RNA proportions |

Description

True cell type RNA proportions

Usage

data(SyntheticMixtureData)

Format

numeric matrix

Author(s)

Kai Kang

Source

randomly generated
Index

CDSeq, 4
CDSeq-R-package, 3
cdseq.result, 5
Cell2RNA, 6
cellTypeAssign, 6
cellTypeAssignMarkerGenes, 7
cellTypeAssignSCRNA, 8
gene2rpkm, 11
gene_length, 12
gibbsSampler, 12
hungarian_Rcpp, 13
intersection, 14
logpost, 14
max_rep, 15
merge_df, 15
mixtureGEP, 16
pbmc_ggplot, 16
pbmc_mix, 17
read2gene, 17
refGEP, 18
result1, 18
result2, 19
result3, 19
RNA2Cell, 20
sc_annotation, 20
sc_gep, 21
seedMT, 21
SyntheticMixtureData, 22
true_GEP_gene, 22
true_GEP_read, 23
true_GEP_rpkm, 23
true_prop, 24
true_prop_cell, 24
true_prop_RNA, 25