Package ‘CARlasso’

August 11, 2021

Title Conditional Autoregressive LASSO
Version 0.1.2
Maintainer Yunyi Shen <yshen99@wisc.edu>
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
ByteCompile TRUE
Suggests testthat, knitr, rmarkdown
RoxygenNote 7.1.1
LinkingTo Rcpp, RcppArmadillo, RcppProgress
Imports Rcpp, coda, Matrix, igraph, ggraph, ggplot2, MASS, methods
SystemRequirements C++11
VignetteBuilder knitr
URL https://github.com/YunyiShen/CAR-LASSO

BugReports https://github.com/YunyiShen/CAR-LASSO/issues

NeedsCompilation yes
Author Yunyi Shen [aut, cre] (https://orcid.org/0000-0003-2779-6507), Claudia Solis-Lemus [aut] (https://orcid.org/0000-0002-9789-8915)

Repository CRAN
Date/Publication 2021-08-11 19:00:02 UTC
R topics documented:

- bGlasso .. 2
- CARlasso ... 4
- horseshoe ... 6
- mgp154 .. 7
- mgp2592 .. 8
- plot.bglasso_out ... 8
- plot.carlasso_out .. 9
- rCARlasso_ .. 9
- rCARlasso_ .. 11
- simu_AR1 .. 12

Description

Main sampling algorithm of Glasso model, note that the mean is in CAR parameterization.

Usage

```r
bGlasso(
  data,
  link = "identity",
  r_Omega = 1,
  delta_Omega = 0.01,
  n_iter = 2000,
  n_burn_in = 1000,
  thin_by = 10,
  ns = 1000,
  m = 20,
  emax = 64,
  progress = TRUE,
  verbos = TRUE
)
```

Arguments

- `data` A data.frame with all response, row as observations
- `link` String name of link function? Currently can be "identity" for normal response, "probit" for binary, "log" for counting, "logit" for compositional. Note that when use "logit", the last response will be used as reference.
- `r_Omega` Hyper-parameter for precision matrix, shape parameter of Gamma. Should be a scalar
delta_Omega Hyper-parameter for precision matrix, rate parameter of Gamma. Should be a scalar

n_iter Number of sampling iterations (i.e. after burn in) for the Gibbs sampler

n_burn_in Number of burn in iterations for the Gibbs sampler

thin_by Final sample was thin by this number

ns parameter for ARS, maximum number of hulls, only used when link is "log" and "logit"

m parameter for ARS, initial number of hulls, only used when link is "log" and "logit"

emax parameter for ARS, tolerance for small values being 0, larger meaning we tolerate smaller values, only used when link is "log" and "logit"

progress Bool, whether report progress from C++

verbos Bool, whether show warnings and messages.

Value

A bglasso_out object with elements:

- $point_est
 - $Omega: Posterior mean of precision matrix
- $nodes
 - $responses: node name of responses
- $data
 - $response: response matrix
- $settings: all settings sent to the algorithm, exclude data
- $MCMC_output
 - $mu: A coda::mcmc object, each row was an MCMC sample of the mean vector
 - $Omega: A coda::mcmc object, each row was an MCMC sample of the upper triangular part (with diagonal) of precision matrix Omega
 - $lambda: A coda::mcmc object, first column was the shrinkage parameter lambda for regression coefficient and the second column was shrinkage parameter lambda for precision matrix

Examples

```r
glassores <- bGlasso(data = dt[,1:5])
plot(glassores)
```
CARlasso

Gibbs sampler for Conditional Autoregressive LASSO and extensions

Description

Main sampling algorithm of CAR-LASSO model

Usage

CARlasso(
 formula,
 data,
 link = "identity",
 adaptive = FALSE,
 r_beta = ifelse(adaptive, 0.01, 1),
 delta_beta = ifelse(adaptive, 1e-06, 0.01),
 r_Omega = ifelse(adaptive, 0.01, 1),
 delta_Omega = ifelse(adaptive, 1e-06, 0.01),
 lambda_diag = 0,
 n_iter = 2000,
 n_burn_in = 1000,
 thin_by = 10,
 ns = 1000,
 m = 20,
 emax = 64,
 progress = TRUE,
 verbos = TRUE
)

Arguments

formula
A double sided formula with response at left hand side and predictors at right hand side

data
A data.frame with all response and predictors, row as observations

link
String name of link function? Currently can be "identity" for normal response, "probit" for binary, "log" for counting, "logit" for compositional. Note that when use "logit", the last response will be used as reference.

adaptive
Bool, whether run the adaptive version of the model

r_beta
Hyper-parameter for regression coefficient, shape parameter of Gamma, if adaptive, should have row number same as number of predictors while column number of responses

delta_beta
Hyper-parameter for regression coefficient, rate parameter of Gamma, if adaptive, should have row number same as number of predictors while column number of responses
r_Omega Hyper-parameter for precision matrix, shape parameter of Gamma. If adaptive, can be a matrix with same size as precision matrix, if this is the case, only upper triangular part without diagonal will be used, or can be a vector whose size was the upper triangular part of precision matrix, if non-adaptive, a scalar.

delta_Omega Hyper-parameter for precision matrix, rate parameter of Gamma. If adaptive, can be a matrix with same size as precision matrix, if this is the case, only upper triangular part without diagonal will be used, or can be a vector whose size was the upper triangular part of precision matrix, if non-adaptive, a scalar.

lambda_diag adaptive only hyper-parameter for penalties on diagonal entries of Omega, should have dimension k and non-negative

n_iter Number of sampling iterations (i.e. after burn in) for the Gibbs sampler

n_burn_in Number of burn in iterations for the Gibbs sampler

thin_by Final sample was thin by this number

ns parameter for ARS, maximum number of hulls, only used when link is "log" and "logit"

m parameter for ARS, initial number of hulls, only used when link is "log" and "logit"

emax parameter for ARS, tolerance for small values being 0, larger meaning we tolerate smaller values, only used when link is "log" and "logit"

progress Bool, whether report progress from C++

verbos Bool, whether show warnings and messages.

Value

A `carlasso_out` object with elements:

- **$point_est**
 - $Omega: Posterior mean of precision matrix
 - $beta: Posterior mean of regression coefficient
 - $CAR
 * $C: The conditional regression coefficients among responses
 * $B: The conditional regression coefficients between response and predictors
 * $M: The conditional variance
- **$nodes**
 - $responses: node name of responses
 - $predictors: node name of predictors
- **$data**
 - $response: response matrix
 - $design: design matrix
- **$settings**: all settings sent to the algorithm, exclude data
- **$MCMC_output**
 - $beta: A coda::mcmc object, each row was an MCMC sample of the (column) vectorization of regression coefficient B
- μ: A coda::mcmc object, each row was an MCMC sample of the mean vector
- Ω: A coda::mcmc object, each row was an MCMC sample of the upper triangular part (with diagonal) of precision matrix Ω
- λ: Non-adaptive only. A coda::mcmc object, first column was the shrinkage parameter lambda for regression coefficient and the second column was shrinkage parameter lambda for precision matrix
- λ_β: Adaptive only. A coda::mcmc object, each row was an MCMC sample of the (column) vectorization of shrinkage parameter for regression coefficient B
- λ_Ω: Adaptive only. A coda::mcmc object, each row was an MCMC sample of the shrinkage parameter for the upper triangular part (without diagonal) of precision matrix Ω

Examples

```r
set.seed(42)
dt <- simu_AR1()
car_res <- CARlasso(y1+y2+y3+y4+y5~x1+x2+x3+x4+x5, data = dt, adaptive = TRUE)
plot(car_res,tol = 0.05)
# with horseshoe inference
car_res <- horseshoe(car_res)
plot(car_res)
```

horseshoe

Horseshoe method for graphical structure inference

Usage

```r
horseshoe(obj, Bbar = NULL, A = NULL, nu = 3, V = NULL, thr = 0.5)
```

Arguments

- **obj**: The carlasso_out object from CARlasso
- **Bbar**: Prior mean of regression coefficients, default all 0s
- **A**: Prior precision of regression coefficients, default 1e-8
- **nu**: Prior degree of freedom of the Wishart on precision matrix
- **V**: prior covariance matrix of the Wishart on precision matrix
- **thr**: threshold for horseshoe inference, default 0.5
Details

This method fits a linear regression with less informative prior on any parameters and compare the posterior mean with the LASSO result. If LASSO is comparably less than result without sparsity prior, we argue that the edge should be absent.

Value

A `carlasso_out` object with learned binary adjacency matrix and multi-response linear regression MCMC output.

Examples

```r
set.seed(42)
dt <- simu_AR1()
car_res <- CARlasso(y1+y2+y3+y4+y5~x1+x2+x3+x4+x5, data = dt, adaptive = TRUE)
car_res <- horseshoe(car_res)
plot(car_res)
```

Description

This study is based on pyrosequencing of 16S rDNA amplicons from faecal samples collected from 178 elderly Irish citizens and 13 healthy young control subjects. A subset of these samples were also subjected to shotgun sequencing using Illumina HiSeq 2000 2x91bp reads. Antibiotic treatment was an exclusion criterion.

Usage

`data(mgp154)`

Format

An data.frame with genus and predictors.

Source

MG-RAST-mgp154

References

This study is to examine soil microbial community composition and structure of both bacteria and fungi at a microbially-relevant scale. The researchers isolated soil aggregates from three land management systems in central Iowa to test if the aggregate-level microbial responses are related to plant community and management practices. The clean dataset has 120 samples with 17 genus under consideration.

Usage

```r
data(mgp2592)
```

Format

An `data.frame` with genus and predictors.

Source

MG-RAST-mgp2592

References

plot.bglasso_out

plot the graph estimated by graphical lasso with threshold method using `ggraph`

Description

plot the graph estimated by graphical lasso with threshold method using `ggraph`

Usage

```r
## S3 method for class 'bglasso_out'
plot(x, ...)
```

Arguments

- `x`: The `bglasso_out`
  ```r
dot
  • `tol`: threshold for plotting default 0.01, if horseshoed, then horseshoe result is used
  ```
plot.carlasso_out

Value

A ggplot xect

plot.carlasso_out

plot the chain graph estimated by CAR-LASSO with threshold or horseshoe method using ggraph

Description

plot the chain graph estimated by CAR-LASSO with threshold or horseshoe method using ggraph

Usage

S3 method for class 'carlasso_out'
plot(x, ...)

Arguments

x
The carlasso_out xect

...
• tol: threshold for plotting default 0.01, if horseshoe, then horseshoe result is used

Value

A ggplot xect

rCARAlasso_

Block Gibbs sampler for adaptive CAR-LASSO

Description

This function is for advanced users to build their own sampler use adaptive CARlasso as core. It will execute one round of Gibbs sampler of adaptive CAR-LASSO model. Be aware that the function is a void function implemented in C++, and all updated parameters e.g. Omega will be manipulate directly in memory to save space. Users should manage to do their own work to save the state. Also be aware that R uses shallow copy by default, which means one cannot save the state by simply give it to another object e.g. first Omega.old <- Omega.curr then update Omega_curr, Omega_old will also change. **This function will NOT check dimensions of input.** Below we assume n samples, k responses and p predictors.
Usage

rCARAlasso_(
 Z_curr,
 design,
 lambda2_beta,
 tau2_curr,
 beta_curr,
 lambda_Omega,
 Omega_curr,
 mu_curr,
 r_beta,
 delta_beta,
 r_Omega,
 delta_Omega,
 lambda_diag,
 k,
 p,
 n
)

Arguments

Z_curr the current (latent) normal Z_curr, should be n*k. Will not be changed
design the design matrix, should be n*p. Will not be changed
lambda2_beta the current shrinkage parameter of regression coefficients, should be a vector
 with p*k entries. Will be updated
tau2_curr the current latent scale parameter in the normal mixture representation of Laplace,
 for regression coefficients, should be a vector with p*k entries. Will be updated.
beta_curr the current regression coefficients, should be a matrix sized p*k (p row and k
 columns). Will be updated.
lambda_Omega the current shrinkage parameter for Omega, should be a vector with k*(k-1)/2
 entries. Will be updated.
Omega_curr the current Omega matrix, should be a matrix of size k*k. Will be updated.
mu_curr the current mu, intercept, should be a vector of size k. Will be updated.
r_beta hyperprior's parameter of shrinkage for regression coefficients, should be a scalar
 of type 'double' and positive. Will not be updated.
delta_beta hyperprior's parameter of shrinkage for regression coefficients, should be a scalar
 of type 'double' and positive. Will not be updated.
r_Omega hyperprior's parameter of shrinkage for precision Omega, should be a scalar of
 type 'double' and positive. Will not be updated.
delta_Omega hyperprior's parameter of shrinkage for precision Omega, should be a scalar of
 type 'double' and positive. Will not be updated.
lambda_diag shrinkage parameter of the diagonal of Omega, should be a vector of size k,
 should be non-negative. Will not be updated
Description

This function is for advanced users to build their own sampler use CARlasso as core. It will execute one round of Gibbs sampler of CAR-LASSO model. Be aware that the function is a void function implemented in C++, and all updated parameters e.g. Omega will be manipulate directly in memory to save space. Users should manage to do their own work to save the state. Also be aware that R uses shallow copy by default, which means one cannot save the state by simply give it to another object e.g. first Omega_old <- Omega_curr then update Omega_curr, Omega_old will also change. This function will NOT check dimensions of input. Below we assume n samples, k responses and p predictors.

Usage

```r
rCARlasso_(
    Z_curr, design, lambda2_beta, tau2_curr, beta_curr, lambda_Omega, Omega_curr, mu_curr, r_beta, delta_beta, r_Omega, delta_Omega, k, p, n
)
```

Arguments

- `Z_curr`: the current (latent) normal data, should be n*k. Will not be changed
- `design`: the design matrix, should be n*p. Will not be changed
lambda2_beta the current shrinkage parameter of regression coefficients, should be a scalar of type double. Will be updated.

tau2_curr the current latent scale parameter in the normal mixture representation of Laplace, for regression coefficients, should be a vector with p\times k entries. Will be updated.

beta_curr the current regression coefficients, should be a matrix sized p\times k (p row and k columns). Will be updated.

lambda_Omega the current shrinkage parameter for Omega, should be a scalar of type double. Will be updated.

Omega_curr the current Omega matrix, should be a matrix of size k\times k. Will be updated.

mu_curr the current mu, intercept, should be a vector of size k. Will be updated.

r_beta hyperprior's parameter of shrinkage for regression coefficients, should be a scalar of type 'double' and positive. Will not be updated.

delta_beta hyperprior's parameter of shrinkage for regression coefficients, should be a scalar of type 'double' and positive. Will not be updated.

r_Omega hyperprior's parameter of shrinkage for precision Omega, should be a scalar of type 'double' and positive. Will not be updated.

delta_Omega hyperprior's parameter of shrinkage for precision Omega, should be a scalar of type 'double' and positive. Will not be updated.

k integer, number of responses

p integer, number of predictors

n integer, number of data points

Value

Again this is a void function and will not return anything. All update happened in memory directly.

simu_AR1

Simulate a simple AR1 model with specific predictor

Description

Simulate a simple AR1 model with specific predictor

Usage

`simu_AR1(n = 100, k = 5, rho = 0.7)`

Arguments

- `n` sample size
- `k` number of responses
- `rho` partial correlation in AR1
Details

Simulate a simple AR1 model with k responses and k predictors, each predictor has effect on exact one response node.

Value

a dataframe, with y1 to yk as responses and x1 to xk as predictors
Index

* datasets
 mgp154, 7
 mgp2592, 8

bGlasso, 2

CARlasso, 4

horseshoe, 6

mgp154, 7
mgp2592, 8

plot.bglasso_out, 8
plot.carlasso_out, 9

rCARAlasso_, 9
rCARlasso_, 11

simu_AR1, 12