Package ‘BayesianFROC’

January 19, 2020

Type Package

Title FROC Analysis by Bayesian Approaches

Version 0.2.1

Maintainer Issei Tsunoda <tsunoda.issei1111@gmail.com>

Description Execute BayesianFROC::fit_GUI_Shiny() (or fit_GUI_Shiny_MRMC()) for a graphical user interface via Shiny. The free-response receiver operating characteristic (FROC) method developed by Chakraborty is a generalization of receiver operating characteristic analysis, but Chakraborty used a non-Bayesian approach. This package aims to reconstruct Chakraborty’s technique using a Bayesian approach and to verify that our models fit practical datasets. We also develop hierarchical Bayesian models for comparing modalities with new methods. The ultimate aim of FROC analysis is to compare observer performances, which means comparing characteristics, such as area under the curve (AUC) or figure of merit (FOM). In this package, we only use the notion of AUC for modality comparison, where by “modality”, we mean imaging methods such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), ..., etc. So there is a problem that which imaging method is better to detect lesions from shadows in radiographs. To solve modality comparison issues, this package provides new methods using hierarchical Bayesian models proposed by the author of this package. Using this package, one can obtain at least one conclusion that which imaging methods are better for finding lesions in radiographs with the case of your data. Fitting FROC statistical models is sometimes not so good, it can easily confirm by drawing FROC curves and comparing these curves and the points constructed by False Positive fractions (FPFs) and True Positive Fractions (TPFs), we can validate the goodness of fit intuitively. Such validation is also implemented by the Chi square goodness of fit statistics in the Bayesian context which means that the parameter is not deterministic, thus by integrating it with the posterior predictive measure, we get a desired value. To compare modalities (imaging methods: MRI, CT, PET, ..., etc), we evaluate AUCs for each modality. FROC is developed by Dev Chakraborty, his FROC model in his 1989 paper relies on the maximal likelihood methodology. The author modified and provided the alternative Bayesian FROC model. Strictly speaking, his model does not coincide with models in this package. In FROC context, we means by multiple reader and multiple case (MRMC) the case of the number of reader or modality is two or more. The MRMC data is available for functions of this package. I hope that medical researchers use not only the frequentist method but also alternative Bayesian methods. In medical research, many problems are considered under only frequentist meth-
ods, such as the notion of p-values. But p-value is sometimes misunderstood. Bayesian methods provide very simple, directly intuitive answers for research questions. Combining frequentist methods with Bayesian methods, we can obtain more reliable answers for research questions. Please execute the following R scripts from the R (R studio) console, demo(demo_MRC, package = "BayesianFROC"); demo(demo_srs, package = "BayesianFROC"); demo(demo_stan, package = "BayesianFROC"); demo(demo_drawcurves_srs, package = "BayesianFROC"); demo_Bayesian_FROC(); demo_Bayesian_FROC_without_pause(). References: Dev Chakraborty (1989) <doi:10.1118/1.596358> Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Pre-print: Issei Tsunoda; Bayesian Models for free-response receiver operating characteristic analysis. See the vignettes for more details.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports knitr, readxl, xlsx, stats, graphics, tcltk, grDevices,
ggplot2, methods, car, crayon, DiagrammeR, bridgingampling,
rhansontable, shiny, praca, shinydashboard, shinythemes

Suggests rmarkdown, rstantools, openxlsx, hexbin, MASS, ggmcmc, magrittr

Depends rstan (>= 2.18.2), R (>= 3.5.0), Rcpp

NeedsCompilation yes

VignetteBuilder knitr

Collate 'AFROC.R' 'Author_vs_Chakraborty_for_AUC.R' 'BayesianFROC.R'
'Close_all_graphic_devices.R' 'ConfirmConvergence.R'
'DrawCurves.R' 'Draw_an_area_of_AUC_for_srs.R'
'FROC_via_ggplot.R' 'Make_TeX_file_for_summary.R'
'Phi__and__Phi_inv.R' 'QQQ.R' 'Rprofile.R'
'Simulation_Based_Calibration.R'
'Stan_model_minimal_incomplete.R' 'StartupMessage.R'
'StatisticForANOVA.R'
'Test_Null_Hypothesis_that_all_modalities_are_same.R'
'apply_foo.R' 'array_easy_example.R'
'array_of_hit_and_false_alarms_from_vector.R'
'check_hit_is_less_than_NL.R' 'check_rhat.R'
'chi_square_goodness_of_fit.R' 'clearWorkspace.R' 'color.R'
'convertFromJafroc.R' 'create_dataset.R' 'css_shiny.R'
'dark_theme.R' 'dataset_creator_by_specifying_only_M_Q.R'
'dataset_creator_for_many_Readers.R'
'dataset_creator_new_version.R' 'demo_Bayesian_FROC.R'
'demo_Bayesian_FROC_without_pause.R'
'development_Tools_and_Memorandum.R' 'document_dataset_MRC.R'
'document_dataset_srs.R' 'document_true_param.R'
'draw_latent_distribution.R' 'empty_cell_shiny.R'
'error_message.R'
R topics documented:

'error_message_on_imaging_device_rhat_values.R' 'ex.R'
'ex.R'
'explanation_about_package_BayesianFROC.R'
'explanation_for_what_curves_are_drawn.R'
'extract_EAP_by_array.R'
'extract_data_frame_from_dataList_MRMC.R' 'fffaaabbb.R'
'fit_Bayesian_FROC.R' 'fit_GUI.R' 'fit_GUI_MRMC.R'
'fit_GUI_MRMC_new.R' 'fit_GUI_Shiny.R' 'fit_GUI_dashboard.R'
'fit_GUI_simple_from_appnp_file.R' 'fit_MRMC_versionTWO.R'
'foo_of_a_List_of_Arrays.R' 'fut_GUI_MRMC_shiny.R'
'get_posterior_variance.R' 'give_name_srsc_data.R'
'initial_values_specification_for_stan_in_case_of_MRMC.R'
'install_imports.R' 'layout.R' 'm_q_e_vector_from_M_Q_C.R'
'make_true_parameter_MRMC.R' 'metadata.R' 'stanfitExtended.R'
'methods.R' 'methods_print.R' 'minimal_model_MRMC.R'
'minimal_model_MRMC2.R' 'minimal_model_MRMC2_to_check_causes.R'
'minimal_model_MRMC_development.R' 'modelComparison.R'
'operator.R'
'p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit.R'
'pairs_plot_if_divergent_transition_occurred.R' 'pause.R'
'plotFROC.R' 'plot_FPF_and_TPF_from_a_dataset.R'
'plot_curve_and_hit_rate_and_false_rate_simultaneously.R'
'pnorm_or_qnorm.R' 'ppp.R' 'prior_predictor.R' 'prior_print.R'
'save_an_R_object.R' 'sbc.R' 'sbc_MRMC.R'
'showGraphicalModel.R' 'size_of_return_value.R'
'small_margin.R' 'snippet_for_BayesianFROC.R' 'sortAUC.R'
'stability_of_AUC_ranking_in_case_of_MRMC_data.R'
'summarise_MRMC.R' 'summary_AUC_comparison_MRMC.R'
'summary_AUC_comparison_MRMC_with_crayon.R'
'summary_AUC_comparison_MRMC_without_crayon.R'
'summary_EAP_CI_srsc.R' 'the_row_number_of_logical_vector.R'
'validation_MRMC_Create_dataList_MRMC_Hit_from_rate_etc.R'
'validation_MRMC_UNDER_CONSTRUCTION.R'
'validation_error_srsc.R' 'viewdata.R' 'waic.R'
'without_double_quote.R'

Author Issei Tsunoda [aut, cre]
Repository CRAN
Date/Publication 2020-01-19 19:20:06 UTC

R topics documented:

AFROC ... 7
AFROC_curve .. 8
array_easy_example ... 9
array_of_hit_and_false_alarms_from_vector 10
Author_vs_classic_for_AUC 12
BayesianFROC ... 13
check_hit_is_less_than_NL 27
check_rhat ... 31
chi_square_at_replicated_data_and_MCMC_samples_MRMC 32
chi_square_goodness_of_fit 34
chi_square_goodness_of_fit_from_input_all_param 37
chi_square_goodness_of_fit_from_input_all_param_MRMC 42
Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean 46
clearWorkspace ... 49
Close_all_graphic_devices 50
compare .. 50
comparison .. 51
ConfirmConvergence 51
Confirm_hit_rates_are_correctly_made_in_case_of_MRMC 54
certFromJafroc .. 55
create_dataList_MRMC 62
create_dataset ... 68
credible Interval_for_curve 69
d .. 72
dark_theme ... 73
data.bad.fit ... 74
data.hier.ficitious 76
data.MultiReaderMultiModality 76
data.nonconverge.srsc 77
data.SingleReaderSingleModality 78
dataList.Chakra.1 79
dataList.Chakra.1.with.explantation 80
dataList.Chakra.2 82
dataList.Chakra.3 84
dataList.Chakra.4 86
dataList.Chakra.Web 87
dataList.Chakra.Web.orderd 90
dataList.divergent.transition.in.case.of.srsc 93
dataList.High .. 95
dataList.high.ability 96
dataList.Low ... 96
dataList.low.ability 97
dataList.one.modality 97
dataset_creator_by_specifying_only_M_Q 98
dataset_creator_for_many_Readers 99
dataset_creator_new_version 99
data_2modaities_2readers_3confidence 100
data_of_36_readers_and_a_single_modality 101
dd .. 107
dd.orderd .. 111
ddd .. 115
dddd ... 118
ddddd ... 121
ddddddd ... 123
/dddddddd .. 126
R topics documented:

- demo_Bayesian_FROC . 129
- demo_Bayesian_FROC_without_pause . 130
- draw.CFP.CTP.from.data_list . 130
- DrawCurves . 135
- DrawCurves_MRMC . 142
- DrawCurves_MRMC_pairwise . 143
- DrawCurves_MRMC_pairwise_BlackWhite . 145
- DrawCurves_MRMC_pairwise_col . 147
- DrawCurves_src . 148
- Draw_an_area_of_AUC_for_src . 149
- Draw_AUC . 150
- Draw_a_prior_sample . 150
- Draw_a_simulated_data_set . 151
- Draw_a_simulated_data_set_and_Draw_posterior_samples 154
- draw_latent_noise_distribution . 157
- draw_latent_signal_distribution . 160
- dz . 163
- Empirical_FROC_via_ggplot . 164
- error_message . 167
- error_message_on_imaging_device_rhat_values 168
- error_MRMC . 170
- error_src . 173
- error_src_error_visualization . 181
- error_src_variance_visualization . 184
- explanation_about_package_BayesianFROC . 185
- explanation_for_what_curves_are_drawn . 185
- extractAUC . 186
- extract_data_frame_from_dataList_MRMC . 187
- extract_EAP_by_array . 188
- extract_EAP_CI . 190
- extract_estimates_MRMC . 193
- extract_parameters_from_replicated_models . 194
- false_and_its_rate_creator . 197
- false_and_its_rate_creator_MRMC . 201
- fffaaabb . 204
- fit_Bayesian_FROC . 204
- fit_GUI . 230
- fit_GUI_dashboard . 231
- fit_GUI_MRMC . 233
- fit_GUI_MRMC_new . 234
- fit_GUI_Shiny . 234
- fit_GUI_Shiny_MRMC . 237
- fit_GUI_simple_from_apppp_file . 239
- fit_MRMC . 240
- fit_MRMC_versionTWO . 248
- fit_Null_hypothesis_model_to_ . 254
- fit_src . 257
- foo . 263
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fooo</td>
<td>263</td>
</tr>
<tr>
<td>foo_of_a_List_of_Arrays</td>
<td>264</td>
</tr>
<tr>
<td>FROC_curve</td>
<td>265</td>
</tr>
<tr>
<td>from_array_to_vector</td>
<td>266</td>
</tr>
<tr>
<td>get_posterior_variance</td>
<td>267</td>
</tr>
<tr>
<td>get_samples_from_Posterior_Predictive_distribution</td>
<td>268</td>
</tr>
<tr>
<td>gglplotFROC</td>
<td>270</td>
</tr>
<tr>
<td>gglplotFROC.EAP</td>
<td>273</td>
</tr>
<tr>
<td>give_name_srsc_CFP_CTP_vector</td>
<td>277</td>
</tr>
<tr>
<td>give_name_srsc_data</td>
<td>280</td>
</tr>
<tr>
<td>hits_creator_from_rate</td>
<td>284</td>
</tr>
<tr>
<td>hits_false_alarms_creator_from_thresholds</td>
<td>288</td>
</tr>
<tr>
<td>hits_from_thresholds</td>
<td>292</td>
</tr>
<tr>
<td>hits_rate_creator</td>
<td>293</td>
</tr>
<tr>
<td>initial_values_specification_for_stan_in_case_of_MRMC</td>
<td>294</td>
</tr>
<tr>
<td>install_imports</td>
<td>298</td>
</tr>
<tr>
<td>make_TeX</td>
<td>298</td>
</tr>
<tr>
<td>make_true_parameter_MRMC</td>
<td>299</td>
</tr>
<tr>
<td>metadata_srsc_per_image</td>
<td>299</td>
</tr>
<tr>
<td>metadata_to_DrawCurve_MRMC</td>
<td>302</td>
</tr>
<tr>
<td>metadata_to_fit_MRMC</td>
<td>303</td>
</tr>
<tr>
<td>mu</td>
<td>308</td>
</tr>
<tr>
<td>mu_truth</td>
<td>309</td>
</tr>
<tr>
<td>mu_truth_creator_for_many_readers_MRMC_data</td>
<td>310</td>
</tr>
<tr>
<td>m_q_c_vector_from_M_Q_C</td>
<td>312</td>
</tr>
<tr>
<td>p</td>
<td>314</td>
</tr>
<tr>
<td>pairs_plot_if_divergent_transition_occurred</td>
<td>315</td>
</tr>
<tr>
<td>pause</td>
<td>316</td>
</tr>
<tr>
<td>Phi</td>
<td>316</td>
</tr>
<tr>
<td>Phi_inv</td>
<td>318</td>
</tr>
<tr>
<td>plot-methods</td>
<td>319</td>
</tr>
<tr>
<td>plotFROC</td>
<td>319</td>
</tr>
<tr>
<td>plot_FPF_and_TPF_from_a_dataset</td>
<td>320</td>
</tr>
<tr>
<td>plot_test</td>
<td>322</td>
</tr>
<tr>
<td>pnorm_or_qnorm</td>
<td>328</td>
</tr>
<tr>
<td>ppp</td>
<td>328</td>
</tr>
<tr>
<td>ppp_MRMC</td>
<td>332</td>
</tr>
<tr>
<td>ppp_srsc</td>
<td>334</td>
</tr>
<tr>
<td>print</td>
<td>338</td>
</tr>
<tr>
<td>print_stanfitExtended</td>
<td>340</td>
</tr>
<tr>
<td>prior_predictor</td>
<td>341</td>
</tr>
<tr>
<td>prior_print_MRMC</td>
<td>341</td>
</tr>
<tr>
<td>prior_print_srsc</td>
<td>342</td>
</tr>
<tr>
<td>p_truth</td>
<td>342</td>
</tr>
<tr>
<td>p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit</td>
<td>343</td>
</tr>
<tr>
<td>rank_statistics_with_two_parameters</td>
<td>346</td>
</tr>
<tr>
<td>replicate_model_MRMC</td>
<td>347</td>
</tr>
</tbody>
</table>
AFROC

Description

AFROC curve

Usage

\[
\text{AFROC}(x, a = 0.13, b = 0.19, x\text{.coordinate.also} = \text{FALSE})
\]
AFROC_curve

Arguments

 x A real number which moves in the domain of FROC curve
 a a generated parameter of model which characterize AFROC curve
 b a generated parameter of model which characterize AFROC curve
 x.coordinate.also
 Logical, whether a vector of 1-exp(-x) is included in a return value.

Value

 A list, contains two vectors of x,y coordinates for drawing curves. Or A vector, of y coordinate only, (x coordinates is omitted.)

Examples

 AFROC(stats::runif(1000,3,100),x.coordinate.also=TRUE)

AFROC_curve FROC curve as an embedding map

Description

 FROC curve as an embedding map

Usage

 AFROC_curve(x, a = 0.13, b = 0.19)

Arguments

 x A real number which moves in the domain of FROC curve
 a a generated parameter of model which characterize AFROC curve
 b a generated parameter of model which characterize AFROC curve

Details

 Technique of plotting AFROC is difficult because it has two points in which the gradients are infinity and it causes the following warnings. Revised 2019 Nov. 20

 Warning messages: 1: In stats::qnorm(exp(1 - x)) : NaNs produced 2: In stats::qnorm(exp(1 - x)) : NaNs produced 3: Removed 50 rows containing missing values (geom_path).
array_easy_example

Value

none

Examples

This function is under construction.
x <- runif(1000,1,10)
y <- AFROC_curve(x)
plot(x,y)

array_easy_example Example array

Description

Make a three dim array whose component is its index. For example
a[2,3,4] = 234

Usage

array_easy_example(I = 2, J = 3, K = 4)

Arguments

I natural number less than 10
J natural number less than 10
K natural number less than 10

Value

An array of three dimension.

Examples

a <- array_easy_example(2,3,4)
array_of_hit_and_false_alarms_from_vector

Array of hits and false alarms; 2019 Jun 18

Description
Return value is a three dimensional array of type \([C,M,Q]\) representing the number of confidence levels and modalities and readers, respectively. This array includes the number of hit and the number of false alarms.

Revised 2019 Nov. 20

Usage
array_of_hit_and_false_alarms_from_vector(dataList)

Arguments
dataList A list, consisting of the following R objects: m, q, c, h, f, NL, C, M, Q each of which means from the right
m : A vector, indicating the modality ID = 1,2,... which does not include zero.
q : A vector, indicating the reader ID = 1,2,... which does not include zero.
c : A vector, indicating the confidence = 1,2,... which does not include zero.
h : A vector, indicating the number of hits
f : A vector, indicating the number of false alarm
NL : An positive integer, indicating the number of lesions for all images
C : An positive integer, indicating the highest number of confidence level
M : An positive integer, indicating the number of modalities
Q : An positive integer, indicating the number of readers.
The detail of these dataset, please see the example datasets, e.g. dd.

Details
The author also implemented this in the metadata_to_fit_MRMC which is an old version. However, the old version uses "for" sentences, and it is not so better. On the other hand, this function use the function aperm() and array() and they are better than "for" sentence.
Revised 2019 Nov. 20 Revised 2019 Dec. 12

Value
A list, whose components are arrays of the number of hits h and the number of false alarms f of dimension \([c,M,Q]\). Do not confuse \([c,Q,M]\) or \([M,Q,c]\), etc. Revised 2019 Nov. 20

See Also
Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean
Examples

Validation of program

h1 <- array_of_hit_and_false_alarms_from_vector(dd)$harray
h2 <- metadata_to_fit_MRMC(dd)$harray
h1 == h2

f1 <- array_of_hit_and_false_alarms_from_vector(dd)$farray
f2 <- metadata_to_fit_MRMC(dd)$farray
f1 == f2

subtraction for (hit - hit.expected)
Chi square calculation, we need to subtract expected value of hit from hit rate,
thus the author made this function.

Prepare data
dd <- BayesianFROC::dd

Fit a data
fit <- fit_Bayesian_FROC(dataList = dd)

Extract a expected hits by array
harray.expected <- extract_EAP_by_array(fit, ppp) * dd$NL

Prepare hits data by array
harray <- array_of_hit_and_false_alarms_from_vector(dd)$harray
Calculate the difference of hits and its expectation..

Difference <- harray - harray.expected

Such calculation is required in the chi square goodness of fit

harray <- array_of_hit_and_false_alarms_from_vector(dataList = ddd)$harray
farray <- array_of_hit_and_false_alarms_from_vector(dataList = ddd)$farray

Author_vs_classic_for_AUC

Validation of AUC calculation

Description

This is for the author.

Usage

Author_vs_classic_for_AUC(StanS4class)

Arguments

- **StanS4class**

 An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
Description

The following Shiny based GUI would be helpful.

- `fit_GUI_Shiny()` Interactive GUI for a single reader and single modality
- `fit_GUI_Shiny_MRMC()` Interactive GUI for multiple readers and multiple modalities

The aim of FROC analysis is to compare imaging modalities, which are imaging methods such as MRI, CT, PET, etc. We want to find an imaging method with which we can find more lesions in radiographs.

To investigate this, we have to do a trial in order to obtain dataset consisting of TP and FP.

Details

Here is what this package implements.

trial → **Data** → **modeling**

In the sequel, we give a complete description about the following three terms.

- **Trial** from which data arise.
- **Data** consist of the number of TPs and FPs.
- **Modeling** calculates the probability law in which data (TPs and FPs) arise

Trial.

Suppose that there are followings.

- **a reader** who is a physician or radiologist tries to find lesions (in other words, it is called signals, targets, nodules, ...) from radiographs.
- **N images** contains shadows caused by noises or signals (each image can contain one more signal, and this multi signal for a single image distinct FROC trial from ROC trial).
- **a researcher** knows true lesion locations (signal) and counts readers True Positives and False Positives.

FROC trial and data

1. **First trial start** The researcher gives the reader the first image which contains suspicious shadows, each of which is noise or lesion.
2. **LESION FINDING TASK for the first image (trial)** The reader marks his suspicious locations (multiple answer is allowed) with an integer indicating their **confidence** levels (if he or she thinks it is obviously lesion, then he or she gives a higher integer). So, reader marks two things: location and confidence for each suspicious shadow.

3. **Second trial and LESION FINDING TASK for the second image (trial)** The researcher gives the reader the second image and reader do the above LESION FINDING TASK for the second image.

4. **repeat this trial for all images.** The reader do the **LESION FINDING TASK** for all images.

5. **evaluation of TP and FP** The researcher count the number of their true marking positions (hit) and false making positions (false alarm).

Consequently, we obtain the following table.

Example data and its Format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

By the R code `BayesianFROC::viewdata(BayesianFROC::dataList.Chakra.1.with.explantation)`, we can see example data named “dataList.Chakra.1.with.explantation”.

Modeling

First, we shall discuss our model **rigorously** (ignore the confidence). First, to simplify our argument, first we reduce the FP and TP dataset from \(H, F \) to \(H, F \) by ignoring the confidence level. Suppose that there are \(N_L \) targets (signal), and radiological context, target is lesion. Suppose that a radiologist try to find these lesions from radiographs. Suppose that now, the reader fined \(H \) lesions from radiographs which contains \(N_L \) lesions, then it is natrual to assume that

\[
H \sim Binomial(\theta, N_L)
\]

where, the Bernoulli success rate \(\theta \) is a parameter of our model, which should be estimated.

In addition, suppose that the reader fined \(F \) times, that is, reader marked \(F \) false positives. Then it natrual to assume that

\[
F \sim Poisson(\lambda)
\]

where, \(\lambda \) is a parameter of model, which should be estimated.
The above two is very simple, since data is only H,F, indicating the number of TP and the number of FP.

Unfortunately, the FROC data is more complex than above. That is, reader answers with his confidence levels, which is usually number of 1, 2, 3, 4, 5:

We give a probability law for the random variables $F_c, H_c, c = 1, \ldots, 5$.

Suppose that there are N_L targets, and radiological context, each target is a lesion in N_I Radiographs. Suppose that a radiologist try to find lesions. Suppose that now, he or she fined H_c lesions with his c-th confidence, then we assume that

\[
H_5 \sim \text{Binomial}(p_5(\theta), N_L)
\]
\[
H_4 \sim \text{Binomial}(\frac{p_4(\theta)}{1 - p_5(\theta)}, N_L - H_5)
\]
\[
H_3 \sim \text{Binomial}(\frac{p_3(\theta)}{1 - p_5(\theta) - p_4(\theta)}, N_L - H_5 - H_4)
\]
\[
H_2 \sim \text{Binomial}(\frac{p_2(\theta)}{1 - p_5(\theta) - p_4(\theta) - p_3(\theta)}, N_L - H_5 - H_4 - H_3)
\]
\[
H_1 \sim \text{Binomial}(\frac{p_1(\theta)}{1 - p_5(\theta) - p_4(\theta) - p_3(\theta) - p_2(\theta)}, N_L - H_5 - H_4 - H_3 - H_2)
\]

where, hit rates $p_1(\theta), p_2(\theta), p_3(\theta), p_4(\theta)$ and $p_5(\theta)$ are functions of a model parameter θ. In addition, suppose that the reader fails F_c times with his c-th confidence, that is, the reader marked F_c false positives. Then it natrual to assume that

\[
F_5 \sim \text{Poisson}(q_5(\theta) N_X)
\]
\[
F_4 \sim \text{Poisson}(q_4(\theta) N_X)
\]
\[
F_3 \sim \text{Poisson}(q_3(\theta) N_X)
\]
\[
F_2 \sim \text{Poisson}(q_2(\theta) N_X)
\]
\[
F_1 \sim \text{Poisson}(q_1(\theta) N_X)
\]

where, $N_X = N_I$ or N_L false rates $q_1(\theta), q_2(\theta), q_3(\theta), q_4(\theta)$ and $q_5(\theta)$ are functions of a parameter of model.

The above model calculates the event of the data $H, F, c = 1, 2, \ldots, C$ arises, indicating the number of TP and the number of FP.

We use Gaussian distributions for such functions $p_c(\theta)$ and $q_c(\theta)$.

\[
p_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} \text{Gaussian}(z | \mu, \sigma) dz
\]
\[
q_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} N_I \frac{d}{dz} \Phi(z) dz
\]
where the model parameter vector which should be estimated is

$$\theta = (\theta_1, \theta_2, ..., \theta_C; \mu, \sigma).$$

Intuitively, the reason why we choose such function forms for \(p_c(\theta) \) is the assumption that each lesion is equipped with i.i.d. latent variable, \(X \) distributed by \(\text{Gaussian}(z|\mu, \sigma) \), and if the \(X \) associated to some lesion falls into the interval \(\theta_c < X < \theta_{c+1} \), then we consider that the reader marks this lesion with his \(c \)-th confidence level. In order to emphasize that each \(X \) is associated to some \(l \)-th lesion, \(l = 1, 2, ..., N_L \), we denote the latent variable \(X_l \) for \(l \)-th lesion instead the latent decision variable \(X \). Here, we uses \textit{latent} to means that the variable \(X \) cannot observed. Since the latent variable relates decision of reader, and thus, in this context the latent variable is called a \textit{decision} variable.

Similarly, suppose that each image (radiograph) is associated some latent variable \(Y \) distibuted by \(N_{\text{Id}}(z|\Phi(z)) \) and if the \(Y \) associated to some image falls into interval the interval \(\theta_c < Y < \theta_{c+1} \), then we consider that the reader will false decision with his \(c \)-th confidence level for the image.

To fit a model to any dataset, we use the code:

```python
fit_Bayesian_FROC()  # Fit a model to data
dataList.Chakra.2    # Example data in Chakraborty 1989 paper
dataList.Chakra.3    # Example data in Chakraborty 1989 paper
dataList.Chakra.4    # Example data in Chakraborty 1989 paper
```

Priors on the parameter.

Recall that our model has the following parameter.

$$\theta = (\theta_1, \theta_2, ..., \theta_C; \mu, \sigma).$$

In this section, we give priors on this parameter. Only one necessarily prior is to ensure the monotonicity on the thresholds parameters.

$$\theta_1 < \theta_2 < ... < \theta_C.$$

To give this monotonicity, we have to assume

Visualization of TP, FP by FPF, TPF

How to visualize our data constructed by hit and false alarms, that is, TP and FP? The traditionally, the so-called FPF:False Positive Fraction and TPT:True Positive Fraction are used. Recall that our data format:

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms (FP:False Positive)</th>
<th>No. of hits (TP:True Positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>5</td>
<td>(F_5)</td>
</tr>
<tr>
<td>probably present</td>
<td>4</td>
<td>(F_4)</td>
</tr>
<tr>
<td>equivocal</td>
<td>3</td>
<td>(F_3)</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>(F_2)</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>(F_1)</td>
</tr>
</tbody>
</table>
Recall that FPF is defined as follows;

\[
FPF(5) := \frac{F_5}{NI}, \\
FPF(4) := \frac{F_4 + F_5}{NI}, \\
FPF(3) := \frac{F_3 + F_4 + F_5}{NI}, \\
FPF(2) := \frac{F_2 + F_3 + F_4 + F_5}{NI}, \\
FPF(1) := \frac{F_1 + F_2 + F_3 + F_4 + F_5}{NI}.
\]

Similarly, TPF is defined as follows;

\[
TPF(5) := \frac{H_5}{NL}, \\
TPF(4) := \frac{H_4 + H_5}{NL}, \\
TPF(3) := \frac{H_3 + H_4 + H_5}{NL}, \\
TPF(2) := \frac{H_2 + H_3 + H_4 + H_5}{NL}, \\
TPF(1) := \frac{H_1 + H_2 + H_3 + H_4 + H_5}{NL}.
\]

Combining TPF and FPF, we obtain the pairs.

\[
(FPF(1), TPF(1)), \\
(FPF(2), TPF(2)), \\
(FPF(3), TPF(3)), \\
(FPF(4), TPF(4)), \\
(FPF(5), TPF(5)).
\]

Plotting these five points in a 2-dimensional plain, we can visualize our dataset.

In addition, connecting these points by lines, we obtain the so-called *empirical FROC curve.*

Interpretation of the empirical FROC curve

In fact, if a reader (physician) has a high signal detection ability, namely, he can find more lesions in Radiographs (image), then the number of TPs denoted by H_1, H_2, H_3, H_4, H_5 will be more and more greater. Thus, the $TPF(1), TPF(2), TPF(3), TPF(4), TPF(5)$ is also greater. Consequently, the points
Bayesian FROC

\((FPF(1), TPF(1)), (FPF(2), TPF(2)), (FPF(3), TPF(3)), (FPF(4), TPF(4)), (FPF(5), TPF(5))\)

are located in the more upper positions. This indicates that the high observer performance leads the empirical FROC curve more to be more upper positions.

Visualization of our model by curve

In this section, we provides the so-called FROC curve which is our desired visualization of estimated model. Roughly speaking, an FROC curve is expected pairs of FPF and TPF. Namely, the points of FPF and TPF will be on FROC curve if model is well fitting to data. So, comparing the FROC curve and the FPF and TPF, we can evaluate our goodness of fit.

In the above, ha,... I want to die.

Define

\[
x(c) := E[FPF(c)],
\]

\[
y(c) := E[TPF(c)].
\]

for \(c = 1, 2, 3, 4, 5\).

Then,

\[
x(c) := E[FPF(c)] = \int_{\theta_c}^{\infty} \frac{d}{dz} \Phi(z) = -\log \Phi(\theta_c),
\]

\[
y(c) := E[TPF(c)] = \int_{\theta_c}^{\infty} \text{Gaussian}(z|\mu, \sigma) dz = \Phi(\frac{\theta_c - \mu}{\sigma}).
\]

From the first equation, we obtain that \(\theta_c = \Phi^{-1}(\exp(-x(c)))\). Substituting this into the second equation, we obtain that

\[
y(c) = \Phi(\frac{\Phi^{-1}(\exp(-x(c))) - \mu}{\sigma}).
\]

This implies that all expectations for the pair of FPF and TPF is on the set:

\[
\{(x, y)|y = \Phi(\frac{\Phi^{-1}(\exp(-x) - \mu}{\sigma})\}
\]

We can regard this set as an image of smooth curves, Namely, here we define the so-called FROC curve as a map from 1-dimensional Euclidean space to 2-dimensional Euclidean space, mapping each \(t > 0\) to

\[
(x(t), y(t)) = (t, \Phi(\frac{\Phi^{-1}(\exp(-t) - \mu}{\sigma}))
\]

Sine \(x(t) = t, t > 0\) is not bounded, the area under the FROC curve is infinity.
To calculate an alternative notion of AUC in the ordinal ROC theory, we define the so-called AFROC curve:

\[(\xi(t), \eta(t)) = (1 - e^{-t}, \Phi(\frac{\Phi^{-1}(\exp(-t) - \mu)}{\sigma}))\]

which contained in the rectangular space \([0, 1]^2\). The area Under the (AFROC) curve (briefly, we call it AUC) represents the observer performance. For example, if radiologist detects more lesions with small False Positives (FPs), then AUC would be high.

Using the parameter of the signal distribution, we express AUC as follows,

\[AUC = \frac{\mu/\sigma}{\sqrt{1 + 1/\sigma^2}}.\]

Introducing new parameter \(a := \mu/\sigma\) and \(b := 1/\sigma\), we also write

\[AUC = \frac{a}{\sqrt{1 + b^2}}.\]

Generalized Model

Until now, we use the following two

\[p_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} \text{Gaussian}(z|\mu, \sigma)dz\]

\[q_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} \frac{d}{dz} \Phi(z)dz\]

for hit rates and false alarm rates.

However, the explicit representations of these integrands of \(p_c(\theta), q_c(\theta)\) are not determined in a prior manner. So, such explicit representations are redundant for a general theory. So, to simplify our argument in the following, we use two functions \(P(z|\theta_P), Q(z|\theta_Q)\) instead of the above two integrands \(\text{Gaussian}(z|\mu, \sigma), \frac{d}{dz} \Phi(z)\).

\[p_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} P(z|\theta_P)dz\]

\[q_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} Q(z|\theta_Q)dz\]

where \(P(z|\theta_P)\) is a probability function and \(Q(z|\theta_Q)\) is a positive function (not necessarily to be a probability function). namely,

\[\int P(z|\theta_P)dz = 1\]

\[Q(z|\theta_Q) > 0\]

A single reader and a single modality
BayesianFROC

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

We give a probability law for the random variables $F_c, H_c, c = 1, \ldots, 5$. Suppose that there are N_L targets, and radiological context, each target is a lesion in N_I Radiographs. Suppose that a radiologist try to find lesions. Suppose that now, he or she fined H_c lesions with his c-th confidence, then we assume that

$$H_5 \sim \text{Binomial}(p_5(\theta), N_L)$$

$$H_4 \sim \text{Binomial}(\frac{p_4(\theta)}{1 - p_5(\theta)}, N_L - H_5)$$

$$H_3 \sim \text{Binomial}(\frac{p_3(\theta)}{1 - p_5(\theta) - p_4(\theta)}, N_L - H_5 - H_4)$$

$$H_2 \sim \text{Binomial}(\frac{p_2(\theta)}{1 - p_5(\theta) - p_4(\theta) - p_3(\theta)}, N_L - H_5 - H_4 - H_3)$$

$$H_1 \sim \text{Binomial}(\frac{p_1(\theta)}{1 - p_5(\theta) - p_4(\theta) - p_3(\theta) - p_2(\theta)}, N_L - H_5 - H_4 - H_3 - H_2)$$

where, hit rates $p_1(\theta), p_2(\theta), p_3(\theta), p_4(\theta)$ and $p_5(\theta)$ are functions of a model parameter θ. In addition, suppose that the reader fails F_c times with his c-th confidence, that is, the reader marked F_c false positives. Then it natural to assume that

$$F_5 \sim \text{Poisson}(q_5(\theta)N_X)$$

$$F_4 \sim \text{Poisson}(q_4(\theta)N_X)$$

$$F_3 \sim \text{Poisson}(q_3(\theta)N_X)$$

$$F_2 \sim \text{Poisson}(q_2(\theta)N_X)$$

$$F_1 \sim \text{Poisson}(q_1(\theta)N_X)$$

where, $N_X = N_I$ or N_L false rates $q_1(\theta), q_2(\theta), q_3(\theta), q_4(\theta)$ and $q_5(\theta)$ are functions of a parameter of model.

The above model calculates the event of the data $H_c, F_c, c = 1, 2, \ldots, C$ arises, indicating the number of TP and the number of FP.

We use Gaussian distributions for the functions $p_c(\theta)$ and $q_c(\theta)$ as follows.
\[p_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} P(z|\theta_P)dz \]

\[q_c(\theta) = \int_{\theta_c}^{\theta_{c+1}} Q(z|\theta_Q)dz \]

where the model parameter vector is

\[\theta = (\theta_1, \theta_2, ..., \theta_C; \theta_P, \theta_Q). \]

Recall that \(FPF \) is defined as follows;

\[FPF(5) := \frac{F_5}{NI}, \]
\[FPF(4) := \frac{F_4 + F_5}{NI}, \]
\[FPF(3) := \frac{F_3 + F_4 + F_5}{NI}, \]
\[FPF(2) := \frac{F_2 + F_3 + F_4 + F_5}{NI}, \]
\[FPF(1) := \frac{F_1 + F_2 + F_3 + F_4 + F_5}{NI}. \]

Similarly, \(TPF \) is defined as follows;

\[TPF(5) := \frac{H_5}{NL}, \]
\[TPF(4) := \frac{H_4 + H_5}{NL}, \]
\[TPF(3) := \frac{H_3 + H_4 + H_5}{NL}, \]
\[TPF(2) := \frac{H_2 + H_3 + H_4 + H_5}{NL}, \]
\[TPF(1) := \frac{H_1 + H_2 + H_3 + H_4 + H_5}{NL}. \]

Combining \(TPF \) and \(FPF \), we obtain the pairs.

\[(FPF(1), TPF(1)), \]
\[(FPF(2), TPF(2)), \]
\[(FPF(3), TPF(3)), \]
\[(FPF(4), TPF(4)). \]
BayesianFROC

\[(FPF(5), TPF(5)).\]

Plotting these five points in a 2-dimensional plain, we can visualize our dataset.

Visualization of a generalized model by curve

In this section, we provide the so-called \textit{FROC curve} which is our desired visualization of estimated model. Roughly speaking, an FROC curve is expected pairs of FPF and TPF. Namely, the points of FPF and TPF will be on FROC curve if model is well fitting to data. So, comparing the FROC curve and the FPF and TPF, we can evaluate our goodness of fit.

Let \(c = 1, 2, 3, 4, 5.\)

Define

\[
x(c) := E[FPF(c)],
\]

\[
y(c) := E[TPF(c)].
\]

Then,

\[
y(c) := E[TPF(c)] = \int_{\theta_c}^{\infty} P(x|\theta_P)dx =: \Psi_P(x(c)),
\]

\[
x(c) := E[FPF(c)] = \int_{\theta_c}^{\infty} Q(x|\theta_Q)dx =: \Psi_Q(x(c)),
\]

where \(\Psi_P \) and \(\Psi_Q \) denote the cumulative distribution functions, respectively.

This implies that all expectations for the pair of FPF and TPF is on the set:

\[
\{(x(t), y(t))|x(t) = \Psi_Q(t), y(t) = \Psi_P(t).\}
\]

We can regrad this set as the image of the smooth curve which is called the generalized FROC curve.

From the first equation, we obtain that \(\theta_c = \Psi_Q^{-1}(x(c)) \).

Substituting this into the second equation, we obtain that

\[
y(c) = \Psi_P(\Psi_Q^{-1}(x(c))).
\]

This implies that all expectations for the pair of FPF and TPF is on the set:

\[
\{(x, y)|y = \Psi_P(\Psi_Q^{-1}(x)).\}
\]

We can regrad this set as an image of smooth curves.

\[
(x(t), y(t)) = (t, \Psi_P(\Psi_Q^{-1}(t)))
\]

Sine \(x(t) = t, t > 0 \) is not bounded, the area under the FROC curve is infinity.
To calculate an alternative notion of AUC in the ordinal ROC theory, we define the so-called AFROC curve:

\[(\xi(t), \eta(t)) = (1 - e^{-t}, \Psi_P(\Psi_Q^{-1}(x)))\]

Hierarchical Model for Multiple Readers and Multiple Modalities (MRMC)

<table>
<thead>
<tr>
<th>modality ID</th>
<th>reader ID</th>
<th>confidence</th>
<th>No. of FPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>definitely present</td>
<td>1</td>
<td>1</td>
<td>c[1] = 5</td>
</tr>
<tr>
<td>probably present</td>
<td>1</td>
<td>1</td>
<td>c[2] = 4</td>
</tr>
<tr>
<td>subtle</td>
<td>1</td>
<td>1</td>
<td>c[3] = 3</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>1</td>
<td>c[4] = 2</td>
</tr>
<tr>
<td>definitely present</td>
<td>1</td>
<td>2</td>
<td>c[5] = 1</td>
</tr>
<tr>
<td>probably present</td>
<td>1</td>
<td>2</td>
<td>c[6] = 5</td>
</tr>
<tr>
<td>subtle</td>
<td>1</td>
<td>2</td>
<td>c[7] = 4</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>2</td>
<td>c[8] = 3</td>
</tr>
<tr>
<td>definitely present</td>
<td>2</td>
<td>1</td>
<td>c[9] = 2</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>1</td>
<td>c[10] = 1</td>
</tr>
<tr>
<td>subtle</td>
<td>1</td>
<td>1</td>
<td>c[12] = 4</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>1</td>
<td>c[13] = 3</td>
</tr>
<tr>
<td>definitely present</td>
<td>2</td>
<td>1</td>
<td>c[14] = 2</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>1</td>
<td>c[15] = 1</td>
</tr>
<tr>
<td>equivocal</td>
<td>2</td>
<td>1</td>
<td>c[16] = 5</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>1</td>
<td>c[17] = 4</td>
</tr>
<tr>
<td>very subtle</td>
<td>2</td>
<td>1</td>
<td>c[18] = 3</td>
</tr>
<tr>
<td>definitely present</td>
<td>2</td>
<td>2</td>
<td>c[19] = 2</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>2</td>
<td>c[20] = 1</td>
</tr>
</tbody>
</table>

An example data in this package

R codes

R object named dd is an example data, and to show the above table format, execute the following codes

library(BayesianFROC);viewdata(dd)

In this section we use the abbreviation MRMC which means Multiple Readers and Multiple Modalities.

Observer performance ability has INDIVIDUALITIES caused by readers and modalities. Once we includes these individual differences in our Bayesian model, such model will give us an answer for the modality comparison issues.
The author implements several hierarchical models.

1) Non hierarchical MRMC model
2) hierarchical MRMC model
3) A Single reader and multiple modalities model

Without hyper parameter MRMC model

To include heterogeneity caused by readers and modalities, the author first made a hierarchical model. However, the model has divergent transitions in MCMC iterations. Thus the author also made a non-hierarchial model in which the author removed the hyper parameters to get more stable MCMC samplings and he confirmed that the new model is divergent free with my fake data.

Probability law of hits

In the sequel, subscripts m, r means the m-th modality and the r-th reader. Random variables of hits are distributed as follows.

$$H_{5,m,r} \sim \text{Binomial}(p_{5,m,r}, N_L),$$

where the subscripts $H_{5,m,r}$ denotes the number of hits (TPs) with confidence level 5 of the m-th modality for the r-th reader.

Now, the number of targets (signals, lesions) are found, and the number of remaining targets is $N_L - H_{5,m,r}$.

Thus, the number of hits with the 4-th confidence level $H_{4,m,r}$ should be drawn from the binomial distribution with remaining targets

$$H_{4,m,r} \sim \text{Binomial}(\frac{p_{4,m,r}}{1 - p_{5,m,r}}, N_L - H_{5,m,r}).$$

Similarly,

$$H_{3,m,r} \sim \text{Binomial}(\frac{p_{3,m,r}}{1 - p_{5,m,r} - p_{4,m,r}}, N_L - H_{5,m,r} - H_{4,m,r}).$$

$$H_{2,m,r} \sim \text{Binomial}(\frac{p_{2,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r}}, N_L - H_{5,m,r} - H_{4,m,r} - H_{3,m,r}).$$

$$H_{1,m,r} \sim \text{Binomial}(\frac{p_{1,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r} - p_{2,m,r}}, N_L - H_{5,m,r} - H_{4,m,r} - H_{3,m,r} - H_{2,m,r}).$$

Probability law of false alarms

Let N_X be the one of the followings.

1) $N_X = N_L$ (The number of lesions), if $\text{ModifiedPoisson} = \text{TRUE}$.
2) $N_X = N_I$ (The number of images), if $\text{ModifiedPoisson} = \text{FALSE}$.

Using N_X, we assume the following,

$$F_{5,m,r} \sim \text{Poisson}(q_{5,m,r} N_X),$$
BayesianFROC

where subscripts \(m, r \) means the \(m \)-th modality and the \(r \)-th reader.

\[
F_{4,m,r} \sim \text{Poisson}(q_{4,m,r}N_X),
\]

Similarly,

\[
F_{3,m,r} \sim \text{Poisson}(q_{3,m,r}N_X),
\]

\[
F_{2,m,r} \sim \text{Poisson}(q_{2,m,r}N_X),
\]

\[
F_{1,m,r} \sim \text{Poisson}(q_{1,m,r}N_X),
\]

The rate \(p_{c,m,r} \) and \(q_{c,m,r} \) are calculated from the model parameters.

We use Gaussian distributions for the functions \(p_c(\theta) \) and \(q_c(\theta) \) as follows.

\[
p_{c,m,r}(\theta) = \int_{\theta_c}^{\theta_c+1} \frac{dz}{\sqrt{2\pi v_{c,m,r}}} \exp\left(-\frac{(z-\mu_{c,m,r})^2}{2v_{c,m,r}}\right)
\]

\[
q_{c,m,r}(\theta) = \int_{\theta_c}^{\theta_c+1} \frac{dz}{\sqrt{2\pi}} \phi(z)
\]

where the model parameter vector is

\[
\theta = (\theta_1, \theta_2, ..., \theta_C; \theta_p, \theta_Q).
\]

By specifying these model parameters we can make a fake dataset consisting of hit data \(H_{c,m,r} \) false alarm data \(F_{c,m,r} \) for each \(c, m, r \).

Without hyper parameter MRMC model

A Non-Centered Implementation

\(AA[md,qd] \sim \text{Normal}(A[md], \text{hyper}_v[qd]) \)

Non centered version is the following:

\(AA_{\tilde{\text{tilde}}}[md,qd] \sim \text{Normal}(0,1) \)

\(AA[md,qd] = A[md] + \text{hyper}_v[qd] \times AA_{\tilde{\text{tilde}}} \)

But, the \(AA[md,qd] \) is already defined as follows.

\(AA[md,qd] = \Phi\left(\frac{m[md,qd]}{\sqrt{1/v[md,qd]^2+1}}\right) \)

Thus usual non centered model **cannot be implemented**.

The assumption

\(AA[md,qd] \sim \text{Normal}(A[md], \text{hyper}_v[qd]) \)

is an approximation. So, this model is not correct. I am not sure whether the approximation worsen my model.
The hyper parameters have been in use for more than 2 years in this package. However it caused divergent transitions. Thus the author made a new model without these hyper parameters.

Example dataset is dd and ddd and dddd and ddddd and etc. ————————————

Validation of model via SBC
SBC tests the Null hypothesis that the MCMC sampling is correct by using some rank statistic which generates a histogram. If this histogram is not uniformly distributed, then we reject the null hypothesis, and we conclude that our MCMC sampling contains bias.

Validation of model via Posterior Predictive p value
See ppp().

Let \(\theta_1, \theta_2, ..., \theta_n \) be a sample from a posterior \(\pi(\cdot | D) \) for a given dataset \(D \). Let \(L(y|\theta_i) \) be a likelihood function for a dataset \(y \) and model parameter \(\theta \). Let \(y_i^j \sim L(\theta_i) \).

For any \(\phi \),

\[
\int \int \phi(y, \theta)L(y|\theta)\pi(\theta|y)dyd\theta = \int \sum \phi(y, \theta_i)L(y|\theta_i)dy = \sum \sum \phi(y_i^j, \theta_i)L(y_i^j|\theta_i).
\]

Using this \(\phi = 1(T(y, \theta) > T(y, \theta_{observed})) \), we obtain the so-called posterior predictive p value. (The author hates this notion.)

In my opinion, this criteria is not clear whether it is reliable quantities for evaluations.

Validation of model via fitting models to replicated datasets drawn from know distribution
I think this is the most fundamental and intuitive validation.

——— Appendix: —— Terminology ———

hit which is Also called True Positive: TP, which is denoted with each confidence level, \(c = 1, 2, 3, ..., C \) as follows: \(H_1, H, 2, ..., H_C \) or \(h=c(h[1], h[2], \ldots, h[C]) \), where \(h[1]=H_C \) corresponds a number of hit with most high confidence level

False alarm which is Also called False Positive: FP , which is denoted with each confidence, \(c = 1, 2, 3, ..., C \) levels as follows: \(F_1, F, 2, ..., F_C \) or \(f=c(f[1], f[2], \ldots, f[C]) \), where \(f[1]=F_C \) corresponds a number of false alarms with most high confidence level

Modality Imaging methods, such as MRI, CT, PET,...etc. In another context, it means efficacy of treatment.

Modality comparison The question that which modality (MRI, CT, PET, ... etc) is best to detect lesions in radiographs? In order to answer this question, the FROC analysis exists.

hit rate Each lesion can generate a hit of confidence level \(c \) according to Bernoulli distribution with probability of \(p_c \), which call hit rate (of \(c \))
false alarm rate Each image generate a false alarm (False Positive: FP) of confidence level c according to Poisson distribution with probability of λc, which call false alarm rate (of c) or simply false rate.

Number of images which is denoted by N_I. image means radiographs, including lesions or noise. Namely, each radiograph does not necessarily includes lesions.

Number of lesions Suppose there are N_I radiographs. Then by summing the number of lesions over all radiographs, we obtain the number of lesion N_L.

FROC curve alternative notion of ROC curve in FROC context.

AFROC curve Alternative-FROC curve, whose area under the curve is used for evaluation of observer performance. Since area under the FROC curve is infinity, we use this area under the AFROC curve instead of the are under the FROC curve.

AUC A real number between 0 and 1, indicating A metric to evaluate how much radiologist can detect lesions from radiographs. Area under the AFROC curve. In ROC context, AUC might be greater than 0.5, but in FROC context, the interpretation of AUC is not same as ROC context. For example, AUC =0.5 does not means that it is same as the most bad observer performance.

Chi square Defined by the difference of expected values from estimates minus actual observered data. Smaller is better.

Posterior Predictive P value This is a posterior predictive probability of the event that the test statistic is greater than its observed value. The author implements this for the χ^2 goodness of fit and in this context, if the PPP is small then we reject the null hypothesis that the model is well fit to data. The author hates this traditional bitch.

FPF:False Positive Fraction Cumulative sum of false alarms (FPs) devided by the number of Images or the number of lesions. Using FPFs as x and TPFs as y, we can visualize FPs and TPs.

TPF:True Positive Fraction Cumulative sum of hits (TPs) devided by the number of Lesions (signals, targets). Using FPFs as x and TPFs as y, we can visualize FPs and TPs.

Now, I am in very serious condition both money and employment. I cannot get any job, this package development cannot save my life.

I am a chemical sensititity patient. I cannot overcome this serious disease.

When I made this package, I hoped this makes my life safe, but it cannot.

I really Despair my life.

I am not study Statistics, but geometry, differential geometry.
Usage

check_hit_is_less_than_NL(dataList)

Arguments

dataList A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable
in the function rstan::sampling() in which it is named data.
For the single reader and a single modality data, the dataList is the following
forms:

dataList.Example <- list(
 h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
 f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level
 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence,... the author thinks it can be calculated
 as the length of h or f ...? ha,why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC()
such as fit_Bayesian_FROC(dataList.Example).
To make this R object dataList representing FROC data, this package provides
three functions:

 convertFromJafroc() If data is a JAFROC xlsx formulation.
 dataset_creator_new_version() Enter TP and FP data by table .
 create_dataset() Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by
using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting
of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

 f Non-negative integer vector specifying number of False Alarms associated
 with each confidence level. The first component corresponding to the high-
 est confidence level.

 h Non-negative integer vector specifying number of Hits associated with each
 confidence level. The first component corresponding to the highest confi-
 dence level.

 NL A positive integer, representing Number of Lesions.

 NI A positive integer, representing Number of Images.

 C A positive integer, representing Number of Confidence level.
The detail of these dataset, see the datasets endowed with this package. Note that the maximal number of confidence level, denoted by \(C \), are included, however, Note that confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(\text{rep}(C:1)) \) in the program and do not refer from user input data, where \(C \) is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created \(c \) vector.

data Format:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>definitely present</td>
<td>(c[1] = 5)</td>
<td>(f[1] = F_5 = 1)</td>
<td>(h[1] = H_5 = 41)</td>
</tr>
<tr>
<td>very subtle</td>
<td>(c[5] = 1)</td>
<td>(f[5] = F_1 = 13)</td>
<td>(h[5] = H_1 = 1)</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(\text{rep}(C:1)) \) automatically in the program and do not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components \(m, q, c, h, f, NL, C, M, Q \)
C A positive integer, representing the highest number of confidence level, this is a scalar.
M A positive integer vector, representing the number of modalities.
Q A positive integer, representing the number of readers.
c A vector of positive integers, representing the confidence level. This vector must be made by rep(rep(C:1),M*Q)
m A vector of positive integers, representing the modality ID vector.
q A vector of positive integers, representing the reader ID vector.
h A vector of non-negative integers, representing the number of hits.
f A vector of non-negative integers, representing the number of false alarm.
NL A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP
Value
Logical, TRUE or FALSE. If TRUE, then the format of dataset is correct. If not, then the dataset is incorrect in the sense that the number of hits is greater than the number of lesions for some reader and some imaging modality.

Examples

```r
logical <- check_hit_is_less_than_NL(BayesianFROC::dd)
```

Description
This function evaluate R hat statistics for any fitted model object of class stanfit.

Usage
```
check_rhat(StanS4class)
```

Arguments
- `StanS4class`: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and etc

Details
It evaluate whether or not r hat statistics are all near 1.

Value
Logical, that is TRUE or FALSE. If model converges then TRUE, and if not FALSE.

Author(s)
`betanalpha`, so not my function. But I modified it. So, alphanbetan is one of the standeveloper, so his function will has consensus, thus I use it.

References
Description

In order to pass this result to posterior predictive p value calculator.

Usage

```r
chi_square_at_replicated_data_and_MCMC_samples_MRMC(StanS4class,
          summary = TRUE, seed = NA, serial.number = NA)
```

Arguments

- `StanS4class`: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.
- `summary`: Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
- `seed`: This is used only in programming phase. If seed is passed, then, in procedure indicator the seed is printed. This parameter is only for package development.
- `serial.number`: An positive integer or Character. This is for programming perspective. The author use this to print the serial number of validation. This will be used in the validation function.

Details

For a given dataset D_0, let $\pi(\cdot|D_0)$ be a posterior of the given data D_0, then we can draw posterior samples.

$$
\begin{align*}
\theta_1 \pi(\cdot|D_0), \\
\theta_2 \pi(\cdot|D_0), \\
\theta_3 \pi(\cdot|D_0), \\
\vdots \\
\theta_n \pi(\cdot|D_0).
\end{align*}
$$

We let $f(\theta)$ be a likelihood function. Then we can draw samples in **only one time** from the collection of likelihoods `likelihood(theta_1), likelihood(theta_2), ..., likelihood(theta_n)`.

```r
chi_square_at_replicated_data_and_MCMC_samples_MRMC
```
 Altogether, using these pair of samples \((y_i, \theta_i), i = 1, 2, ..., n\) we calculates the return value of this function. That is,

\[
\chi(y_1|\theta_1), \\
\chi(y_2|\theta_2), \\
\chi(y_3|\theta_3), \\
\vdots \\
\chi(y_n|\theta_n).
\]

This is contained in a return value, so the return value is a vector of length is the number of MCMC iterations except the burn-in period.

Application of this return value: calculate the so-called Posterior Predictive P value.

In other functions, the author use this function with many seeds, namely, chaning seed, we can obtain

\[
y_1^1, y_1^2, y_1^3, ..., y_1^l \text{ likelihood}(.|\theta_1), \\
y_2^1, y_2^2, y_2^3, ..., y_2^l \text{ likelihood}(.|\theta_2), \\
y_3^1, y_3^2, y_3^3, ..., y_3^l \text{ likelihood}(.|\theta_3), \\
\vdots \\
y_i^1, y_i^2, y_i^3, ..., y_i^l \text{ likelihood}(.|\theta_i), \\
\vdots \\
y_I^1, y_I^2, y_I^3, ..., y_I^l \text{ likelihood}(.|\theta_I),
\]

And thus, we will obtain

\[
\chi(1|\theta_1), \chi(1|\theta_2), \chi(1|\theta_3), ..., \chi(1|\theta_J), ..., \chi(1|\theta_J), \\
\chi(2|\theta_1), \chi(2|\theta_2), \chi(2|\theta_3), ..., \chi(2|\theta_J), ..., \chi(2|\theta_J), \\
\chi(3|\theta_1), \chi(3|\theta_2), \chi(3|\theta_3), ..., \chi(3|\theta_J), ..., \chi(3|\theta_J), \\
\vdots \\
\chi(i|\theta_1), \chi(i|\theta_2), \chi(i|\theta_3), ..., \chi(i|\theta_J), ..., \chi(i|\theta_J), \\
\vdots \\
\chi(I|\theta_1), \chi(I|\theta_2), \chi(I|\theta_3), ..., \chi(I|\theta_J), ..., \chi(I|\theta_J),
\]

which are used when we calculate the so-called Posterior Predictive P value.

Revised 2019 Sept. 8 Revised 2019 Dec. 2
Value

From any given posterior MCMC samples $\theta_1, \theta_2, ..., \theta_i, ..., \theta_n$ (provided by stanfitExtended object), it calculates a return value as a vector of the form $\chi(y_i|\theta_i), i = 1, 2, ..., $ where each dataset y_i is drawn from a likelihood $\text{likelihood}(.|\theta_i)$, namely,

$$y_i \text{likelihood}(.|\theta_i).$$

The return value also retains y_i.

Revised 2019 Dec. 2

Examples

```r
fit <- fit_Bayesian_FROC( ite = 1111, dataList = ddd )
a <- chi_square_at_replicated_data_and_MCMC_samples_MRMC(fit)
```

Description

Calculates a vector of the Goodness of Fit (Chi Square) for a given dataset D and each MCMC sample

$$\chi^2(D|\theta_i), i = 1, 2, 3,$$

Usage

```r
chi_square_goodness_of_fit(StanS4class, dig = 3, 
    h = StanS4class@dataList$h, f = StanS4class@dataList$f)
```

Arguments

- **StanS4class** An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
- **dig** To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named ... ?? A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
h A vector of positive integers, representing the number of hits. This variable
was made in order to substitute the hits data drawn from the posterior predictive
distributions. In famous Gelman’s book, he explain how to use the test statistics
in the Bayesian context. In this context I need to substitute the replication data
from the posterior predictive distributions.

f A vector of positive integers, representing the number of false alarms. This
variable was made in order to substitute the false alarms data drawn from the
posterior predictive distributions. In famous Gelman’s book, he explain how to
use the test statistics in the Bayesian context. In this context I need to substitute
the replication data from the posterior predictive distributions.

Details
To calculate the chi square $\chi^2(y|\theta)$ test statistics, the two variables are required; one is an observed
dataset y and the other is an estimated parameter θ. In the classical chi square values, MLE(maximal
likelihood estimator) is used for an estimated parameter θ in $\chi^2(y|\theta)$. However, in the Bayesian
context, the parameter is not deterministic and we consider it is a random variable such as samples
from the posterior distribution. And such samples are obtained in the Hamiltonian Monte Carlo
Simulation. Thus we can calculate chi square values for each MCMC sample.

Value
Chi squares for each MCMC sample.

$$\chi^2 = \chi^2(D|\theta_i), i = 1, 2, ..., N$$

So, the return values is a vector of length N which denotes the number of MCMC iterations except
the warming up period. Of course if MCMC is not only one chain, then all samples of chains are
used to calculate the chi square.

In the sequel, we use the notation
for a prior $\pi(\theta)$,
posterior $\pi(\theta|D)$,
likelihood $f(D|\theta)$,
parameter θ,
datasets D as follows;

$$\pi(\theta|D) \propto f(D|\theta)\pi(\theta).$$

Let us denote the posterior MCMC samples of size N by

$$\theta_1, \theta_2, \theta_3, ..., \theta_N$$

which is drawn from posterior $\pi(\theta|D)$ of given data D.
Recall that the chi square goodness of fit statistics χ depends on the model parameter θ and data D, namely,
\[\chi^2 = \chi^2(D|\theta) \]

Then return value is a vector of length \(N \) whose components is given by:

\[\chi^2(D|\theta_1), \chi^2(D|\theta_2), \chi^2(D|\theta_3), \ldots, \chi^2(D|\theta_N), \]

which is a vector and a return value of this function.

As an application of this return value, we can calculate the posterior mean of \(\chi = \chi(D|\theta) \), namely, we get

\[\chi^2(D) = \int \chi^2(D|\theta) \pi(\theta|D) d\theta. \]

In my model, almost all example, result of calculation shows that

\[\int \chi^2(D|\theta) \pi(\theta|D) d\theta > \chi^2(D) \int \theta \pi(\theta|D) d\theta \]

The above inequality is true for all \(D \)? I conjecture it.

Revised 2019 August 18 Revised 2019 Sept. 1 Revised 2019 Nov 28

Our data is \(2C \) categories, that is,
the number of hits : \(h[1], h[2], h[3], \ldots, h[C] \) and
the number of false alarms: \(f[1], f[2], f[3], \ldots, f[C] \).

Our model has \(C+2 \) parameters, that is,
the thresholds of the bi normal assumption \(z[1], z[2], z[3], \ldots, z[C] \) and
the mean and standard deviation of the signal distribution.

So, the degree of freedom of this statistics is calculated by
No. of categories - No. of parameters - 1 = \(2C-(C+2)-1 = C-3 \).

This differ from Chakraborty’s result \(C-2 \). Why ?

Examples

```r
# Get the MCMC samples from a dataset.
fit <- fit_Bayesian_FROC(BayesianFROC::dataList.Chakra.1,
ite = 1111,
summary = FALSE,
cha = 2)
```

The chi square discrepancies are calculated by the following code
Chi.Square.for.each.MCMC.samples <- chi_square_goodness_of_fit(fit)

With Warning
chi_square_goodness_of_fit(fit)

Without warning
chi_square_goodness_of_fit(fit,
 h=fit@dataList$h,
 f=fit@dataList$f)

Get posterior mean of the chi square discrepancy.

m<- mean(Chi.Square.for.each.MCMC.samples)

The author read at 2019 Sept. 1, it helps him. Thanks me!!

Calculate the p-value for the posterior mean of the chi square discrepancy.

stats::pchisq(m,df=1)

Difference between chi sq. at EAP and EAP of chi sq.

mean(fit@chisquare - chi_square_goodness_of_fit(fit))

dotest
Description

Chi square goodness of fit statistics for each MCMC sample with a fixed dataset.

Our data is 2C categories, that is,
the number of hits :\(h[1], h[2], h[3],...,h[C]\) and
the number of false alarms: \(f[1],f[2], f[3],...,f[C]\).

Our model has C+2 parameters, that is,
the thresholds of the bi normal assumption \(z[1],z[2],z[3],...,z[C]\) and
the mean and standard deviation of the signal distribution.

So, the degree of freedom of this statistics is calculated by
\(2C-(C+2)-1 =C -3\).

This differ from Chakraborty’s result C-2. Why ?

Usage

\[
\text{chi_square_goodness_of_fit_from_input_all_param}(h, f, p, \lambda, \text{NL, NI, ModifiedPoisson = FALSE, dig = 3})
\]

Arguments

- **h** A vector of non-negative integers, indicating the number of hits. The reason why the author includes this variable is to substitute the false alarms from the posterior predictive distribution. In famous Gelman’s book, he explain how to make test statistics in the Bayesian context, and it require the samples from posterior predictive distribution. So, in this variable author substitute the replication data from the posterior predictive distributions.

- **f** A vector of non-negative integers, indicating the number of false alarms. The reason why the author includes this variable is to substitute the false alarms from the posterior predictive distribution. In famous Gelman’s book, he explain how to make test statistics in the Bayesian context, and it require the samples from posterior predictive distribution. So, in this variable author substitute the replication data from the posterior predictive distributions.

- **p** A vector of non-negative integers, indicating hit rate. A vector whose length is number of confidence levels.

- **\lambda** A vector of non-negative integers, indicating False alarm rate. A vector whose length is number of confidence levels.

- **NL** An integer, representing Number of Lesions

- **NI** An integer, representing Number of Images

- **ModifiedPoisson** Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion. Similarly.
If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated *per image*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF *per lesion* and FPF *per image*.

To know details, see the author’s paper in which I explained *per image* and *per lesion*. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the *False Positive Fraction (FPF)* is defined as follows (\(F_c\) denotes the number of false alarms with confidence level \(c\))

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where \(N_L\) is a number of lesions (signal). To emphasize its denominator \(N_L\), we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if `ModifiedPoisson = FALSE` (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]
where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the **False Positive Fraction (FPF) per image**.

The model is fitted so that the estimated FROC curve can be rated as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson = FALSE} \)) or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson = TRUE} \)).

If \(\text{ModifiedPoisson = TRUE} \), then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \(\text{ModifiedPoisson = FALSE} \), then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson = TRUE} \) or \(\text{FALSE} \). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \(\text{ModifiedPoisson = TRUE} \) or \(\text{FALSE} \). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

dig

To be passed to the function \texttt{rstan::sampling()} in \texttt{rstan}. An argument of \texttt{rstan::sampling()} in which it is named ...?? A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

Details

To calculate the chi square test statistics, the two quantities are needed, that is, data and parameter. In the classical (frequentists) chi square values, as the estimates of parameter, for example, MLE (maximal likelihood estimator) is chosen. In Bayesian sense, the parameter can be taken for all MCMC iterations, that is, parameter is not deterministic and we consider it is a random variable or samples from the posterior distribution. And such samples are obtained in the Hamiltonian Monte Carlo Simulation with the author’s Bayesian Model. Thus we can calculate chi square values with MCMC samples.

Value

A number !! Not list nor dataframe nor vector !! Only A number represent the chi square for your input data.

Examples

```r
# Make a stanfit object (more precisely its inherited S4 class object)
fit <- fit_Bayesian_FROC(BayesianFROC::dataList.Chakra.1,
                         ite = 11111,
                         summary = FALSE,
                         dig
```
The chi square discrepancies (Goodness of Fit) are calculated by the following code with the posterior mean as a parameter.

```r
NI <- fit@dataList$NI
NL <- fit@dataList$NL
f.observed <- fit@dataList$f
h.observed <- fit@dataList$h
C <- fit@dataList$C

# p <- rstan::get_posterior_mean(fit, par=c("p"))
# lambda <- rstan::get_posterior_mean(fit, par=c("l"))
# Note that get_posterior_mean is not a number but a matrix when Chains is not 1.
# So, instead of it, we use
#
# e <- extract_EAP_CI(fit,"l",fit@dataList$C)
lambda <- e$l.EAP

# e <- extract_EAP_CI(fit,"p",fit@dataList$C)
# p <- e$p.EAP

Chi.Square <- chi_square_goodness_of_fit_from_input_all_param(
  h = h.observed,
  f = f.observed,
  p = p,
  lambda = lambda,
  NL = NL,
  NI = NI
)

# Get posterior mean of the chi square discrepancy.

Chi.Square

# Calculate the p-value for the posterior mean of the chi square discrepancy.

stats::pchisq(Chi.Square,df=1)
```

dottest
Chi square in the case of MRMC at a given dataset and a given parameter.

Description

Given parameter and data, the chi square is calculated.

Usage

```r
chi_square_goodness_of_fit_from_input_all_param_MRMC(ppp, dl, dataList, summary = TRUE)
```

Arguments

- `ppp`: An array of \([C, M, Q]\), representing hit rate, where \(C, M, Q\) denotes the number of confidences, modalities, readers, respectively.
- `dl`: An vector of length \(C \times M \times Q\) representing false alarm rate, where \(C, M, Q\) denotes the number of confidences, modalities, readers, respectively.
- `dataList`: A list, consisting of data of numbers of TPs, FPs, lesions, etc. To be passed to the function `rstan::sampling()` in `rstan`. This is a variable in the function `rstan::sampling()` in which it is named `data`. For the single reader and a single modality data, the `dataList` is the following forms:
  ```r
dataList.Example <- list(    h = c(41,22,14,8,1), # number of hits for each confidence level    f = c(1,2,5,11,13), # number of false alarms for each confidence level    NL = 124, # number of lesions (signals)    NI = 63, # number of images (trials)    C = 5) # number of confidence, the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha should be omitted.
```

And using this object `dataList.Example`, we can apply `fit_Bayesian_FROC()` such as `fit_Bayesian_FROC(dataList.Example)`.

To make this R object `dataList` representing FROC data, this package provides three functions:

- `convertFromJafroc()` If data is a JAFROC xlsx formulation.
- `dataset_creator_new_version()` Enter TP and FP data by table.
- `create_dataset()` Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function `viewdata()`.
A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL A positive integer, representing Number of Lesions.

NI A positive integer, representing Number of Images.

C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <-c(rep(C:1)) in the program and do not refer from user input data, where C is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

data Format:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.
Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(\text{rep}(C:1)) \) automatically in the program and do not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function \text{viewdata()}.

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function \text{fit_Bayesian_FROC()}, dataset represented by an R list object representing FROC data must contain components \(m, q, c, h, f, \text{NL, C, M, Q} \):

- \(C \) A positive integer, representing the highest number of confidence level, this is a scalar.
- \(M \) A positive integer vector, representing the number of modalities.
- \(Q \) A positive integer, representing the number of readers.
- \(c \) A vector of positive integers, representing the confidence level. This vector must be made by \(\text{rep}(\text{rep}(C:1),M*Q) \).
- \(m \) A vector of positive integers, representing the modality ID vector.
- \(q \) A vector of positive integers, representing the reader ID vector.
- \(h \) A vector of non-negative integers, representing the number of hits.
- \(f \) A vector of non-negative integers, representing the number of false alarm.
- \(\text{NL} \) A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by \(C \)) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from \(C \). To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function \text{viewdata()} shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 **Example data.**

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
</tbody>
</table>
chi_square_goodness_of_fit_from_input_all_param_MRM

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>24</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

__

*false alarms = False Positives = FP
*hits = True Positives = TP

summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

Value

A list, contains \(\chi^2(Data|\theta)\), where Data and \(\theta\) are specified by user.

Author(s)

Issei Tsunoda

Examples

```R
#----------------------------------------------------------------------------------------
# 0)  
#----------------------------------------------------------------------------------------
#
# Chi square depend on data and model parameter, thus what we have to do is:  
# prepare data and parameter
#
# In the following, we use data named ddd as a dataset,  
# and use parameter from posterior mean estimates
#
# So, we calculate chi square at using data ddd  
# and parameter EAP estimated using ddd.
#
fit <- fit_Bayesian_FROC( dataList = ddd )

#----------------------------------------------------------------------------------------
# 1) prepare hit rate and false alarm rate  
#----------------------------------------------------------------------------------------
```
Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean

Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean
Chi square statistic (goodness of fit) in the case of MRMC at the pair of given data and each MCMC sample

Description

In the following, we explain what this function calculates.

Let $\chi^2(y|\theta)$ be a chi square goodness of fit statistic which is defined by

$\frac{\text{Observed data} - \text{Expectation}}{\text{Expectation}}$.

In our hierarchical Bayesian Model case, it is defined as follows.

$\chi^2(D|\theta) := \sum_{r=1}^{R} \sum_{m=1}^{M} \sum_{c=1}^{C} \left(\frac{(H_{c,m,r} - N_L \times p_{c,m,r})^2}{N_L \times p_{c,m,r}} + \frac{(F_{c,m,r} - (\lambda_{c} - \lambda_{c+1}) \times N_L)^2}{(\lambda_{c} - \lambda_{c+1}) \times N_L} \right)$.

where a dataset D consists of the pairs of the number of False Positives and the number of True Positives ($F_{c,m,r}, H_{c,m,r}$) together with the number of lesions N_L and the number of images N_I and θ denotes the model parameter.

Note that

$\chi^2(D|\theta) := \sum_{r=1}^{R} \sum_{m=1}^{M} \sum_{c=1}^{C} \left(\frac{(H_{c,m,r} - E[H_{c,m,r}])^2}{E[H_{c,m,r}]} + \frac{(F_{c,m,r} - E[F_{c,m,r}])^2}{E[F_{c,m,r}]} \right)$.

So, the chi square has two terms.

1) The former is the difference of hit and its expectation.
2) The later is the differences of observed false alarms and its expectatioins that of false alarm.
In this function, we calculate each term separately. So, return values retain these two terms separately.

In this function, we calculate the following (I) and (II):

(I) A vector ————-
Let us denote a collection of posterior MCMC samples for a given dataset D by

$$\theta_1, \theta_2, \theta_3, \ldots, \theta_N.$$

Substituting these MCMC samples into the above definition of the chi square, we obtain the following vector as a return value of this function.

$$\chi^2(D|\theta_1),$$
$$\chi^2(D|\theta_2),$$
$$\chi^2(D|\theta_3),$$
$$\vdots$$
$$\vdots$$
$$\chi^2(D|\theta_N).$$

(II) A mean of the above vector, namely, the posterior mean of the chi square over all MCMC samples ————-
Using the above vector $(\chi^2(D|\theta_i); i = 1, \ldots, N)$, the function also calculates the posterior mean of the chi square statistic, namely,

$$\frac{1}{N} \sum_{i=1}^{N} \chi^2(D|\theta_i),$$

which is an approximation of the following integral;

$$\int \chi^2(D|\theta) \pi(\theta|D) d\theta,$$

where $\pi(\theta|D)$ denotes the posterior probability density under the given data D.

Do not confuse it with the following

$$\chi^2(D) \int \theta \pi(\theta|D) d\theta.$$

Usage

Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean(StanS4class, summary = TRUE, dl_is_an_array_of_C_only_and_not_C_M_Q = TRUE)
Chi_square_goodness_of_fit_in_case_of_MRMC Posterior_Mean

Arguments

StanS4class
An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ...

summary
Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

dl_is_an_array_of_C_only_and_not_C_M_Q
A Boolean, if TRUE, then false rate lambda simply denoted by l in R script (λ) is an vector l[C]. If false, then the false alarm rate is an array l[C,M,Q].

Details

This function is implemented by vectorizations and further technics. When the author review this, I find my past work is great,... I forget that I made this. But this function is great.

Revised 2019 Nov 1

Value

A list, calculated by each modality reader and cofidence level, and MCMC samples. A one the component of list contains \{ \chi^2(Data|\theta_i) : i=1,2,3,...n \}, where n is the number of MCMC iterations.

Each component of list is an array whose index indicats \[MCMC,Confidence,Modality,Reader\].

Each component of list is an array whose index indicats \[MCMC,C,M,Q\].

To be passed to the calculation of Posterior predictive p value, I need the sum of return value, that is, sum of C,M,Q and resulting quantities construct a vetor whose length is a same as the number of MCMC iterations. I love you. I need you. So, to calculate such quantities, the author will make a new function.

Also, retains the posterior mean of chi square:

\[\chi^2(Data) = \int \chi^2(Data|\theta)d\theta \]

Examples

#--
1) Create a fitted model object with data named only one word dd
#--

fit <- fit_Bayesian_FROC(dd)
clearWorkspace

#--
2) Calculate a chi square and meta data
#--

a <- Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean(fit)

#--
3) Extract a chi square
#--

chi.square <- a$chi.square

Revised 2019 August 19
2019 Nov 1
donttest

clearWorkspace Clear Work Space

Description

If functions are masked in global environment, I use this. this function has no variables.

Usage

clearWorkspace()

Author(s)

Issei Tsunoda
Close_all_graphic_devices

Close all Graphic Devices

Description

Close the graphic device to avoid errors in R CMD check.

Usage

Close_all_graphic_devices()

Examples

Open the graphic devices
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))
grDevices::dev.new();plot(stats::runif(100), stats::runif(100))

Close the graphic device
Close_all_graphic_devices()

dottest

compare

model comparison

Description

This is a model comparison.

Usage

compare(NI, ite = 1111)

Arguments

NI images
ite iteration
Comparison

Description

This is a model comparison.

Usage

```r
comparison(Number.of.variation.of.NL, Number.of.images, ite = 1111,
           DrawCurve = FALSE, dig = 3, e = 0)
```

Arguments

- **Number.of.variation.of.NL**: Lesion
- **Number.of.images**: Images
- **ite**: Iteration
- **DrawCurve**: Logical: TRUE or FALSE. Whether the curve is to be drawn. TRUE or FALSE. If you want to draw the FROC and AFROC curves, then you set `DrawCurve = TRUE`, if not then `DrawCurve = FALSE`. The reason why the author made this variable `DrawCurve` is that it takes long time in MRMC case to draw curves, and thus default value is `FALSE` in the case of MRMC data.
- **dig**: To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `...??`. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
- **e**: `exp` for false alarms

ConfirmConvergence

Description

Calculates the maximum and the minimal values of R hat over all parameters. In addition, it returns a loginal R object whether R hat is good (TRUE) or bad (FALSE).

Usage

```r
ConfirmConvergence(StanS4class, summary = TRUE, digits = 2)
```
ConfirmConvergence

Arguments

StanS4class An S4 object of the class stanfit. No need that it is the S4 class stanfitExtended.

summary Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

digits A positive integer, indicating digits for R hat statistics.

Details

Evaluates convergence criterion based on only the R hat statistics for a fitted model object. Revised Nov 23.

Value

Logical: TRUE or FALSE. If model converges (all R hat are closed to 1) then it is TRUE, and if not(some R hat is far from 1), then FALSE.

References

See Also

ccheck_rhat(), which is made by Betanalpha.

Examples

#================The first example======================================

#((Primitive way)).

#1) Build the data for a singler reader and a single modality case.

dat <- list(c=c(3,2,1), #Confidence level
 h=c(97,32,31), #Number of hits for each confidence level
 f=c(1,14,74), #Number of false alarms for each confidence level
 NL=259, #Number of lesions
 NI=57, #Number of images
 C=3) #Number of confidence level

where, c denotes Confidence level,
h denotes number of Hits for each confidence level,
f denotes number of False alarms for each confidence level,
NL denotes Number of Lesions,
NI denotes Number of Images,
#2) Fit the FROC model.
 # Since the above dataset "dat" are single reader and single modality,
 # the following function fit the non hierarchical model.

 fit <- BayesianFROC::fit_Bayesian_FROC(dat, ite=1111)

 # Where, the variable "ite" is the iteration of MCMC sampling.
 # More larger iteration is better.

#3.1) Confirm whether our estimates converge.

ConfirmConvergence(fit)

By the above R script,
the diagnosis of convergence will be printed in the R (R-studio) console.
Which diagnosis is based on only the R hat statistic.
So someone might consider it is not sufficient, and use the
Simulation based cariblation (SBC) or other things to diagnosis of the
convergence or bias.
Now, I try to implement SBC and it almost be made, but the randomized is not
sufficient caused seed, so, I have to say it is under construction.
I am tired,...

It also return the logical vector indicating whether or not the MCMC converge,
if MCMC converges, then the return value is TRUE and if not, then FALSE.

This logical return value is used in this package development
and the user should not be interested.

The following was useful for programming.
#3.2) The return value is TRUE or FALSE.

 x <- ConfirmConvergence(fit)

#3.3) If you do not want to print the results, then
Confirm hit rates are correctly made in case of MRMC

x <- ConfirmConvergence(fit,summary=FALSE)

2019.05.21 Revised.
2019.12.02 Revised.

donttest

Confirm_hit_rates_are_correctly_made_in_case_of_MRM

Check hit rate is defined correctly

Description

Each hit rate is defined by dividing the area under the probability density function into \(C+1 \) regions. Thus, the sum of hit rates over all confidence level must be less than 1. This inequality is checked.

This function checks the sum of all hit rate over all conf. levels is less than 1 in case of MRMC.

This code confirm the following inequality:

\[
\sum_{cd,md,qd} ppp[cd,md,qd] < 1
\]

for each \(cd,md \) (\(cd = 1,2,\ldots,C \), \(md = 1,2,\ldots,M \)) and return a logical \(\text{R} \) object indicating whether the above is TRUE or FALSE.

Usage

Confirm_hit_rates_are_correctly_made_in_case_of_MRM(StanS4class.or.An.array.of.ppp)

Arguments

StanS4class.or.An.array.of.ppp

A stanfitExtended object or an array of component of hit rate namely ppp

Value

A array with logical components. Its dimension costructed by number of readers and modalities.

Examples

#==
array: ppp
#==

p.truth.array <- hits_rate_creator()
convertFromJafroc

Convert an FROC dataset from .xlsx file of Jafroc into R object

Description

Convert an FROC dataset from .xlsx file of Jafroc into R object

Usage

```r
convertFromJafroc(No.of.Modalities, No.of.readers, No.of.confidence.levels)
```

Arguments

- **No.of.Modalities**
 - Number of modalities.
- **No.of.readers**
 - Number of readers.
- **No.of.confidence.levels**
 - The number of confidence levels.

Format

The .xlsx file of Jafroc consists of three sheets named **TP, FP, Truth, precisely!** (other names never be permitted !!)

<table>
<thead>
<tr>
<th>Sheet</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>ReaderID, ModalityID, CaseID, LesionID, TP_Rating</td>
</tr>
</tbody>
</table>

A sheet named **TP** consists of five columns **precisely** named from the right hand side:

- **CaseID** Note that the above word **CaseID** means the Image ID vectors indicating the ID of radiographs. That is "case = image = radiograph".
- **the first row** Note that the first row of .xlsx sheet devote for the names as follows:
An Example of the sheet named **TP** in a `.xlsx` file for the Jafroc software

Interpretation of table

For example, the first row means the first reader (ReaderID=1) correctly find the first lesion (LesionID = 1) in the first image (CaseID = 1) taken by the first modality (ModalityID = 1) with his rating 5 (TP_Rating = 5).

Similarly the second row means the first reader (ReaderID=1) correctly find the 4-th lesion (LesionID = 4) in the second image (CaseID = 2) taken by the 2-nd modality (ModalityID = 2) with his rating 4 (TP_Rating = 4).

<table>
<thead>
<tr>
<th>ReaderID</th>
<th>ModalityID</th>
<th>CaseID</th>
<th>LesionID</th>
<th>TP_Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

FP

A sheet named **FP** consists of four columns **precisely** named from the right hand side: ReaderID, ModalityID, CaseID, FP_Rating An Example of a sheet named FP in a `.xlsx` file for the Jafroc software

Interpretation of table

For example, the first row means the first reader (ReaderID=1) makes a false alarm location in the first image (CaseID = 1) taken by the first modality (ModalityID = 1) with his rating 2 (FP_Rating = 2).

Similarly the second row means the first reader (ReaderID=1) makes a false alarm location in the second image (CaseID = 2) taken by the 2-nd modality (ModalityID = 2) with his rating 1 (FP_Rating = 1).

Similarly the 6-th and 7-th rows mean that the first reader (ReaderID=1) makes two false alarm location in the second patient (CaseID = 2). The first false alarm is in the image taken by the 1-st
modality (ModalityID = 1) with his rating 1 (TP_Rating = 1). The second false alarm is in the image taken by the 3-rd modality (ModalityID = 3) with his rating 2 (TP_Rating = 2).

<table>
<thead>
<tr>
<th>ReaderID</th>
<th>ModalityID</th>
<th>CaseID</th>
<th>FP_Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Truth

A sheet named *Truth* consists of three columns *precisely* named from the right hand side: **CaseID, LesionID, Weight**.

An Example of a sheet named *Truth* in a *xlsx* file for the Jafroc software

Interpretation of table

For example, the first image (CaseID = 1) contains three lesions each of which is named 1,2,3. For example, the second image (CaseID = 2) contains two lesions each of which is named 1,2. For example, the third image (CaseID = 3) contains a single lesion named 1.

<table>
<thead>
<tr>
<th>CaseID</th>
<th>LesionID</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.3333...</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.3333...</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.3333...</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Note that the weight are used such that each image influences a same effect on the estimates. Without weight, the images including many targets (lesions) has very strong effect on the estimates. To avoid such bias, Jafroc uses weight. In another context, weight would be used to specify more important lesions in each image.

Revised 2019 Dec 13

However, in this package, we do not use the information of weight. Since the theory of the author of this package did not consider such weight. In the future I have to include the notion of weight. Jafroc use the notion fo figure of metric as non parametric manner. So, it seems difficult to include in the Bayesian model, since generally speaking, Bayesian methodology is parametric.

Details

Create a dataset to be passed into the function `fit_Bayesian_FROC`. Convert an Excel file whose extension is `.xlsx` of Jafroc format to an `R` object representing FROC data to which we will apply functions in this package such as `fit_Bayesian_FROC()`.

Revised 2019 Jun 19 Revised 2019 Dec 13

The return values include a list which can be passed to the function `fit_Bayesian_FROC`. For data of Jafroc, running this function, we immediately can fit the author’s Bayesian FROC model to this return value.

The Jafroc software’s format consists of suspicious locations marked by readers and true locations. Such data is redundant for our Bayesian statistical models. So, we reduce the information of data to the number of false positives and number of hits for each confidence levels by this function.

In the following, we show that our data can be calculated from the following Jafroc data, in which there are more information than TP and FP. In fact, in the Jafroc data, the FP and TP are counted for each images, each lesions etc. So, it has more information.

It cause limitation of our model. So, our model start to fit a model to the reduced data from Jafroc. So, the reduction will cause the non accuracy evaluation of the observer performance. The future research I should start the Jafroc formulation.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
|6 |1 |0.3333...
|6 |2 |0.3333...
|6 |3 |0.3333...
|7 |1 |0.3333...
|7 |2 |0.3333...
|7 |3 |0.3333...
|8 |1 |0.25 |
|8 |2 |0.25 |
|8 |3 |0.25 |
|8 |4 |0.25 |
| | | |
Value

A list, representing FROC data.

References

Bayesian Models for Free-response Receiver Operating Characteristic Analysis, pre-print

See Also

Rjafroc, which is unfortunately not on CRAN, now 2019 Jun 19. Or JAFROC software in the Chakarboty’s Web page. Unfortunately, this software is no longer supported.

Examples

#--
Example for convert the Jafroc data to the BayesianFROC
#--

Work Flow of this example

step 0) Prepare Jafroc .xlsx file contained in this package
step 1) Convert the .xlsx file obtained in step 0)
step 2) Fit a model to data object obtained in step 1)

#--
step 0) Make a Jafroc data
#--

If you can search the .xlsx file named JAFROC_data.xlsx in the director "inst/extdata" of this package,
Then this step 0) is redundant. The author prepare this example for the people who
cannot search the .xlsx file in the "inst/extdata" of this package.

By an .xlsx file named JAFROC_data.xlsx in the director "inst/extdata" of this package,
we can reconstruct it as follows:(If someone can obtain the Excel file
from the path BayesianFROC/inst/extdata/JAFROC_data.xlsx, then the following code
is not required to run. If searching bother you, then run the R script to obtain the
Excel file.)
I do not know how to users refer the JAFROC_data.xlsx in this package,
so I provide it by making the same xlsx file as the JAFROC_data.xlsx.

Note that JAFROC_data.xlsx cannot remove,
if it is removed, then devtools::run_examples() make an error.

Truth <- readxl::read_excel(system.file("extdata",
 "JAFROC_data.xlsx",
 package="BayesianFROC"),
 sheet = "Truth")
View(Truth)

TP <- readxl::read_excel(system.file("extdata",
 "JAFROC_data.xlsx",
 package="BayesianFROC"),
 sheet = "TP")
View(TP)

FP <- readxl::read_excel(system.file("extdata",
 "JAFROC_data.xlsx",
 package="BayesianFROC"),
 sheet = "FP")
View(FP)

sample <- list(TP=TP,FP=FP,Truth=Truth)
openxlsx::write.xlsx(sample,"JafrocDatasetExample.xlsx")

tcltk::tkmessageBox(
 message="A file named

 JafrocDatasetExample.xlsx

 is created in the working directory")

Now, we get excel file named "JafrocDatasetExample.xlsx", which is same as
the JAFROC_data.xlsx.
whose format is available in the Jafroc software developed by Chakraborty.
If you use your data, your data must has same format of "JafrocDatasetExample.xlsx".
Note that other excel data must comply with the above format.

Note that if you have proper format excel file for our package,
this process does not need.
From the above, we obtain "JafrocDatasetExample.xlsx" which is the multiple reader and multiple modality dataset for Jfroc analysis which is NOT implemented in our package, but Chakraborty's software called Jafroc or the R package Rjafroc.

(1) Using "JafrocDatasetExample.xlsx" as an example excel file, we run the function to convert the excel file from Jafroc format to our format:

dataList <- convertFromJafroc(
 No.of.Modalities=5,
 No.of.readers=4,
 No.of.confidence.levels=5
)

In the variable, there is no xlsx file, since it is selected by interactive manner. So, please select the xlsx file obtained in step 0) or if have your own Jafroc .xlsx file.

(2) Now, we obtain a data list as the return value. Using this list, we run the function "fit_Bayesian_FROC":

fit <- fit_Bayesian_FROC(dataList)
create_dataList_MRMC
Creates a Single Dataset in Case of MRMC

Description

From a given model parameter, creates a FROC dataset in case of multiple readers and multiple modality, breafly MRMC. The dataset consists of the number of hits and false alarms and ID vectors of readers, modalites, confidences, etc.

The created dataset is a list (which can be passed to `fit_Bayesian_FROC()`). Model parameters are thresholds, mean and standard deviation of signal Gaussian.

Usage

```r
create_dataList_MRMC(z.truth = BayesianFROC::z_truth,  
                      mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,  
                      NI = 57, NL = 142, ModifiedPoisson = FALSE, seed = 123,  
                      summary = FALSE)
```

Arguments

- **z.truth** Vector of dimension = C represents the thresholds.
- **mu.truth** array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.
- **v.truth** array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.
- **NI** The number of images,
- **NL** The number of lesions,
- **ModifiedPoisson** Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly,

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]
\[
\begin{align*}
\frac{F_2 + F_3 + F_4 + F_5}{N_L}, \\
\frac{F_3 + F_4 + F_5}{N_L}, \\
\frac{F_4 + F_5}{N_L}, \\
\frac{F_5}{N_L},
\end{align*}
\]

where \(N_L \) is a number of lesions (signal). To emphasize its denominator \(N_L \), we also call it the \textit{False Positive Fraction (FPF) per lesion}.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE} \) (Default), then \textit{False Positive Fraction (FPF)} is given by

\[
\begin{align*}
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I}, \\
\frac{F_2 + F_3 + F_4 + F_5}{N_I}, \\
\frac{F_3 + F_4 + F_5}{N_I}, \\
\frac{F_4 + F_5}{N_I}, \\
\frac{F_5}{N_I},
\end{align*}
\]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be graded as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{FALSE} \)) or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE} \)).

If \(\text{ModifiedPoisson} = \text{TRUE} \), then FROC curve means the expected pair of FPF \textit{per lesion} and TPF.
On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of \textbf{FPF per image} and TPF. So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

\textit{seed}

The seed for creating hits which are generated by the binomial distributions with the specified seed.

\textit{summary}

Logical: \texttt{TRUE} of \texttt{FALSE}. Whether to print the verbose summary, i.e., logical; If \texttt{TRUE} then verbose summary is printed in the \texttt{R} console. If \texttt{FALSE}, the output is minimal. I regret, this variable name should be verbose.

\textbf{Details}

Specifying model parameters, we can replicates fake datasets. Different seed gives different fake data. Model parameters are the following.

- z.truth
- mu.truth
- v.truth.

\textbf{Probablity law of hits} Random variables of hits are distributed as follows.

\[H_{5,m,r} \sim \text{Binomial}(p_{5,m,r}, N_L), \]

then \(H_{4,m,r} \) should be drawn from the binomial distribution with remaining targets

\[H_{4,m,r} \sim \text{Binomial}(\frac{p_{4,m,r}}{1 - p_{5,m,r}}, N_L - H_{5,m,r}). \]

Similarly,

\[H_{3,m,r} \sim \text{Binomial}(\frac{p_{3,m,r}}{1 - p_{5,m,r} - p_{4,m,r}}, N_L - H_{5,m,r} - H_{4,m,r}). \]

\[H_{2,m,r} \sim \text{Binomial}(\frac{p_{2,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r}}, N_L - H_{5,m,r} - H_{4,m,r} - H_{3,m,r}). \]

\[H_{1,m,r} \sim \text{Binomial}(\frac{p_{1,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r} - p_{2,m,r}}, N_L - H_{5,m,r} - H_{4,m,r} - H_{3,m,r} - H_{2,m,r}). \]

\textbf{Probablity law of false alarms}
\[F_{3,m,r} \sim \text{Poisson}(q_{3,m,r}N_X), \]
then \(F_{4,m,r} \) should be drawn from the binomial distribution with remaining targets

\[F_{4,m,r} \sim \text{Poisson}(q_{4,m,r}N_X), \]

Similarly,

\[F_{3,m,r} \sim \text{Poisson}(q_{3,m,r}N_X), \]
\[F_{2,m,r} \sim \text{Poisson}(q_{2,m,r}N_X), \]
\[F_{1,m,r} \sim \text{Poisson}(q_{1,m,r}N_X), \]

where \(N_X \) is the following two cases.
1) \(N_X = N_L \) (The number of lesions), if \(\text{ModifiedPoisson} = \text{TRUE} \).
2) \(N_X = N_I \) (The number of images), if \(\text{ModifiedPoisson} = \text{FALSE} \).
The rate \(p_{c,m,r} \) and \(q_{c,m,r} \) are calculated from the model parameters.
\[z.\text{truth} \]
\[\text{mu.\text{truth}} \]
\[v.\text{truth}. \]

By specifying these model parameters we can make a fake dataset consisting of hit data \(H_{c,m,r} \) false alarm data \(F_{c,m,r} \) for each \(c, m, r \).

See Also

- `chi_square_at_replicated_data_and_MCMC_samples_MRMC()`
- `replicate_MRMC_dataList()` (To make many MRMC datasets, see `replicate_MRMC_dataList()`)

Examples

```r
dataList <- create_dataList_MRMC()

fit_Bayesian_FROC(dataList, summary = FALSE)
```

In the above example, we use a default values for true parameters for
the distributions. The reason why the default values exists is difficulty
for the user who is not familiar with FROC data nor konws the resions
in which parameters of FROC model move.
So, in the Bayesian model is merely model for FROC data.
If user input the abnormal data, then the model does not fit nor converge
in the Hamiltonian Monte Carlo simulations.

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC())

#--
plot various MRMC datasets with fixed signal distribution but change thresholds
#--

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(0.1,
 0.2,
 0.3,
 0.4))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-0.1,
 0.2,
 0.3,
 0.4))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
 0.2,
 0.3,
 0.4))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
 -0.2,
 -0.3,
 0.4))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
 0.2,
 0.3)

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
 1.2,
 2.3)

))
create_dataList_MRMC

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4)
))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6)
))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6,
7)
))

plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC(z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6,
7,
8,
9,
10)
))
create_dataset

Create a dataset

Description

Create a dataset to apply the function `fit_Bayesian_FROC`.

Usage

```r
create_dataset()
```

Details

This is an interactive creator of an FROC dataset. Using this return value, we can fit a FROC model to data by applying the function `fit_Bayesian_FROC` in this package.

To tell the truth, the author never use this function to create dataset. So,... this function is not so good.

Value

A list of FROC data to which we fit a FROC model.

2019 Dec 12

Examples

```r
create_dataset()
```
Credible Interval for curve

Draw FROC curves which means credible interval.

Description
Plot FROC curves based on two parameters a and b.

Usage
Credible.Interval.for.curve(dataList, StanS4class.fit_MRMC_versionTWO, mesh=For.drawing.curve = 10000, upper_x = upper_x, lower_y = lower_y)

Arguments
dataList
A list, consisting of data of numbers of TPs, FPs, lesions, etc. To be passed to the function rstan::sampling() in rstan. This is a variable in the function rstan::sampling() in which it is named data.

For the single reader and a single modality data, the dataList is the following forms:

```r
dataList.Example <- list( h = c(41, 22, 14, 8, 1), # number of hits for each confidence level f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level NL = 124, # number of lesions (signals) NI = 63, # number of images (trials) C = 5 # number of confidence, the author thinks it can be calculated as the length of h or f, why I included this? ha, should be omitted.)
```

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).

To make this R object representing FROC data, this package provides three functions:

- convertFromJafroc(): If data is a JAFROC xlsx formulation.
- dataset_creator_new_version(): Enter TP and FP data by table.
- create.dataset(): Enter TP and FP data by interactive manner.

The function viewdata() can help verify the correctness of our data.

In a single reader and a single modality case (SRSC), dataList is a list consisting of h, NL, NI, C, where h are numeric vectors and NL, NI, C are positive integers.
Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

A positive integer, representing Number of Lesions.

A positive integer, representing Number of Images.

A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored, since it is created by $c \leftarrow c(rep(C;1))$ in the program and do not refer from user input data, where C is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

data Format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by $c \leftarrow c(rep(C;1))$ automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating
new confidence level vector by a table which can be displayed by the function
viewdata().

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to
apply the function fit_Bayesian_FROC(), dataset represented by an R list ob-
ject representing FROC data must contain components m, q, c, h, f, NL, C, M, Q:

C A positive integer, representing the highest number of confidence level, this
 is a scalar.

M A positive integer vector, representing the number of modalities.

Q A positive integer, representing the number of readers.

c A vector of positive integers, representing the confidence level. This vector
 must be made by rep(rep(C:1),M*Q)

m A vector of positive integers, representing the modality ID vector.

q A vector of positive integers, representing the reader ID vector.

h A vector of non-negative integers, representing the number of hits.

f A vector of non-negative integers, representing the number of false alarm.

NL A positive integer, representing the Total number of lesions for all images,
 this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in
the above R object. However, each confidence level vector is not included in the
data, because it is created automatically from C. To confirm false positives and
hits are correctly ordered with respect to the automatically generated confidence
vector.

the function viewdata() shows the table. Revised 2019 Nov 27 Revised 2019
Dec 5 Example data.

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>
Data: A Single Reader and A Single Modality

Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is exactly same as dataList.Chakra.1.

Details

This data is same as dataList.Chakra.1.with.explanation. The author name it d for the sake of simplicity, that is, it is easy to write, because only one character!!

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com >

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explanation which is exactly same in this data d.
dark_theme

Description
Executing this function before plotting, the plot region becomes the dark theme.

Usage
dark_theme(type = 1)

Arguments
type An integer

Details
A function specifies the color in graphic devices.

Value
Nothing

Examples

dark_theme(1)

graphics::plot(c(1,2,3),c(1,2,3))

dark_theme(2)

graphics::plot(c(1,2,3),c(1,2,3))

2019.05.21 Revised.

dark_theme(3)

graphics::plot(c(1,2,3),c(1,2,3))

dark_theme(4)

graphics::plot(c(1,2,3),c(1,2,3))
2019 Oct 19 Revised

dottest

data.bad.fit Data: Single reader and Single modality

Description
A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format
A list consists of two integer vectors \(f, h \) and three integers \(NL, NI, C \).

\(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

\(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

\(NL \) A positive integer, representing Number of Lesions.

\(NI \) A positive integer, representing Number of Images.

\(C \) A positive integer, representing Number of Confidence level.

Contents:
A single reader and single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>probably present</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his
confidenc level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <-c(rep(C:1)) \) automatically in the program and it does not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function \texttt{viewdata()}.

Note that The format for the above example data must be made by the following forms:

```r
dat <-list(
  h = c(11,97,32,31),
  f = c(11,1,14,74),
  NL = 259,
  NI = 57,
  C = 4)
```

This object \(\texttt{dat} \) can be passed to the function \texttt{fit_Bayesian_FROC()} as the following manner

```
fit_Bayesian_FROC(dat).
```

Details

This data is very bad fitting. MCMC sampling is very good. However, the FPF and TPF is not on the FROC curve.

Note that the maximal number of confidence level, denoted by \(C \), are included, however, confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <-c(rep(C:1)) \) in the program and it does not refer from user input data, where \(C \) is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector \(c \).

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

I love you.

See Also

\texttt{viewdata()}, which shows your data comfortably by \texttt{knitr::kable()}.
Description

This is used to build a hierarchical FROC model.

Details

This data is fictitious.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

The author’s preprint

data.MultiReaderMultiModality

Multiple reader and Multiple modality data

Description

This is used to build a hierarchical FROC model. This data is same as dataList.Chakra.Web.

Details

This data appeared in Chakraborty’s paper (1988)

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.
Non-Convergent Data: Single reader and Single modality

Description

A list, representing non-convergent FROC data (which does not converge in the sense of R hat) of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format

A list consists of two integer vectors f, h and three integers NL, NI, C.

- f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- NL A positive integer, representing Number of Lesions.
- NI A positive integer, representing Number of Images.
- C A positive integer, representing Number of Confidence level.

Contents:

A single reader and single modality case

<table>
<thead>
<tr>
<th>NI=57, NL=269</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>definitely present</td>
<td>3</td>
<td>99</td>
<td>88</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>questionable</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) automatically in the program and it does not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function viewdata().
Note that the format for the above example data must be made by the following forms:

```r
dat <- list(
  h = c(99, 0, 0),
  f = c(88, 0, 0),
  NL = 111,
  NI = 111,
  C = 3)
```

This object `dat` can be passed to the function `fit_Bayesian_FROC()` as the following manner `fit_Bayesian_FROC(dat)`.

Details

Note that the maximal number of confidence level, denoted by `C`, are included, however, confidence level vector `c` should not be specified. If specified, will be ignored, since it is created by `c <- c(rep(C:1))` in the program and it does not refer from user input data, where `C` is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector `c`.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

See Also

`dataList.Chakra.1.with.explantation`

Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is same as `dataList.Chakra.1`.

Details

This data appeared in Chakraborty’s paper (1988)

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.
See Also

dataList.Chakra.1.with.explanation

Data: A Single Reader and A Single Modality

Description

A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format

A list consists of two integer vectors \(f, h \) and three integers \(NL, NI, C \).

- \(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- \(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- \(NL \) A positive integer, representing Number of Lesions.
- \(NI \) A positive integer, representing Number of Images.
- \(C \) A positive integer, representing Number of Confidence level.

Contents:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3 (f)</td>
<td>97</td>
</tr>
<tr>
<td>probably present</td>
<td>2 (f)</td>
<td>32</td>
</tr>
<tr>
<td>questionable</td>
<td>1 (f)</td>
<td>31</td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent cofidence level does not relate this dataset.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will
be ignored, since it is created by \(c <-c(rep(C:1)) \) automatically in the program and it does not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function \texttt{viewdata()}.

Note that The format for the above example data must be made by the following forms:

```r
dat <- list(
  h = c(97, 32, 31),
  f = c(1, 14, 74),
  NL = 259,
  NI = 57,
  C = 3)
```

This object \texttt{dat} can be passed to the function \texttt{fit_Bayesian_FROC()} as the following manner \texttt{fit_Bayesian_FROC(dat)}.

Details

Note that the maximal number of confidence level, denoted by \(C \), are included, however, confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <-c(rep(C:1)) \) in the program and it does not refer from user input data, where \(C \) is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector \(c \).

This data appeared in Chakraborty’s paper (1988).

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

\texttt{dataList.Chakra.1.with.explanation}

Description

A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.
Format

A list consists of two integer vectors \(f, h \) and three integers \(NL, NI, C \).

- \(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- \(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- \(NL \) A positive integer, representing Number of Lesions.
- \(NI \) A positive integer, representing Number of Images.
- \(C \) A positive integer, representing Number of Confidence level.

Contents:
A single reader and a single modality case

\[
\begin{array}{cccc}
\text{NI}=57, \text{NL}=259 \\
\text{In R console ->}
\end{array}
\]

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>questionable</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <- c(rep(C:1)) \) automatically in the program and it does not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Note that The format for the above example data must be made by the following forms:

\[
\text{dat } <- \text{list()}
\]

\[
\begin{align*}
\text{h } &= \text{c}(97, 32, 31), \\
\text{f } &= \text{c}(1, 14, 74), \\
\text{NL } &= 259, \\
\text{NI } &= 57, \\
\text{C } &= 3)
\end{align*}
\]
This object dat can be passed to the function `fit_Bayesian_FROC()` as the following manner

```r
fit_Bayesian_FROC(dat).
```

Details

Note that the maximal number of confidence level, denoted by \(C \), are included, however, confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(rep(C:1)) \) in the program and it does not refer from user input data, where \(C \) is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector \(c \).

This data appeared in Chakraborty’s paper (1988). This dataset is same as `dataList.Chakra.1`. The difference between two dataset is only explanations for vectors. That is I attached the name for each vector by `names()`. I hope it help user for understanding what it is.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

Source

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

`dataList.Chakra.2`
Data: A Single Reader and A Single Modality

Description

A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format

A list consists of two integer vectors \(f, h \) and three integers \(NL, NI, C \).

- \(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- \(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- \(NL \) A positive integer, representing Number of Lesions.
- \(NI \) A positive integer, representing Number of Images.
A positive integer, representing Number of Confidence level.

Contents:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3</td>
<td>122</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>questionable</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NI=57, NL=269
In R console ->
c f h
--------- -------- -------
definitely present 3 4 122
probably present 2 13 31
questionable 1 44 20

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(rep(C:1)) \) automatically in the program and it does not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Note that The format for the above example data must be made by the following forms:

```r
dat <- list(h = c(122, 31, 20), f = c(4, 13, 44), NL = 269, NI = 57, C = 3)
```

This object `dat` can be passed to the function `fit_Bayesian_FROC()` as the following manner `fit_Bayesian_FROC(dat)`.

Details

Note that the maximal number of confidence level, denoted by \(C \), are included, however, confidence level vector `c` should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(rep(C:1)) \) in the program and it does not refer from user input data, where \(C \) is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector `c`.

This data appeared in Chakraborty’s paper (1988).
Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explanation

dataList.Chakra.3

Description

A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format

A list consists of two integer vectors \(f, h \) and three integers \(NL, NI, C \).

- \(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- \(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- \(NL \) A positive integer, representing Number of Lesions.
- \(NI \) A positive integer, representing Number of Images.
- \(C \) A positive integer, representing Number of Confidence level.

Contents:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3 2 96</td>
<td></td>
</tr>
<tr>
<td>probably present</td>
<td>2 16 39</td>
<td></td>
</tr>
<tr>
<td>questionable</td>
<td>1 48 13</td>
<td></td>
</tr>
</tbody>
</table>

<p>| NI=57, NL=269 |</p>
<table>
<thead>
<tr>
<th>In R console -></th>
<th>confidence level c</th>
<th>No. of false alarms f</th>
<th>No. of hits h</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>questionable</td>
<td>1</td>
<td>48</td>
<td>13</td>
</tr>
</tbody>
</table>
*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <-c(rep(C:1)) \) automatically in the program and it does not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Note that The format for the above example data must be made by the following forms:
```r
dat <-list(
  h = c(96,39,13 ),
  f = c(2,16,48),
  NL = 269,
  NI = 57,
  C = 3)
```
This object `dat` can be passed to the function `fit_Bayesian_FROC()` as the following manner `fit_Bayesian_FROC(dat)`.

Details

Note that the maximal number of confidence level, denoted by \(C \), are included, however, confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c <-c(rep(C:1)) \) in the program and it does not refer from user input data, where \(C \) is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector \(c \).

This data appeared in Chakraborty’s paper (1988).

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

`dataList.Chakra.1.with.explantation`
Description

A list, representing FROC data of hits and false alarms. This is used to build a non-hierarchical FROC model.

Format

A list consists of two integer vectors f, h and three integers NL, NI, C.

- f: Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- h: Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- NL: A positive integer, representing Number of Lesions.
- NI: A positive integer, representing Number of Images.
- C: A positive integer, representing Number of Confidence level.

Contents:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=50, NL=397</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>definitely present</td>
<td>4</td>
<td>8</td>
<td>160</td>
</tr>
<tr>
<td>probably present</td>
<td>3</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by $c <- c(rep(C:1))$ automatically in the program and it does not refer from user input data even if it is specified explicitly, where C is the highest number of
confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Note that The format for the above example data must be made by the following forms:

```r
dat <- list(
  h = c(160, 25, 15, 7),
  f = c(8, 16, 18, 13),
  NL = 397,
  NI = 50,
  C = 4)
```

This object `dat` can be passed to the function `fit_Bayesian_FROC()` as the following manner

```r
fit_Bayesian_FROC(dat).
```

Details

Note that the maximal number of confidence level, denoted by `C`, are included, however, confidence level vector `c` should not be specified. If specified, will be ignored, since it is created by `c <- c(rep(C:1))` in the program and it does not refer from user input data, where `C` is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector `c`.

This data appeared in Chakraborty’s paper (1988).

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explantation
Details
This data is based on in Chakraborty’s JAFROC software in which example data exists. The author have calculated hits and false alarms from this Jafroc example data.

Contents:
Multiple readers and Multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>41</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>
Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Example data of Jafroc software

See Also

dataList.Chakra.Web.orderd

Examples

```r
viewdata(BayesianFROC::dataList.Chakra.Web)
```

Description

This is used to build a hierarchical FROC model.
Details

This data appeared in Chakraborty’s JAFROC. I have ordered the dataset `dataList.Chakra.Web` (or `dd`) so that the modality ID means the order of AUC. For example modality ID = 1 means its AUC is the highest. modalityID = 2 means its AUC is the second high AUC.

So, let A_1, A_2, A_3, A_4, A_5 is the AUCs for modality ID 1,2,3,4,5 then it follows that

$$A_1 > A_2 > A_3 > A_4 > A_5.$$

So, modality ID in this dataset can write using the modality ID of `dataList.Chakra.Web` (or `dd`) as (4 2 1 5 3).

That is modality ID of this dataset is $(1',2',3',4',5')$ and modality ID of `dataList.Chakra.Web` (or `dd`) is (1,2,3,4,5), then

$(1',2',3',4',5') = (4, 2, 1, 5, 3)$

Contents:

Multiple readers and Multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>29</td>
<td>13</td>
</tr>
</tbody>
</table>
List of Divergent Transitions

Data: Single reader and Single modality

<table>
<thead>
<tr>
<th>Data</th>
<th>3</th>
<th>1</th>
<th>24</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Data</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Data</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Data</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Data</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>1</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>31</td>
</tr>
</tbody>
</table>

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.Web d

Divergent Transitions Data: Single reader and Single modality
Description

A list, representing **divergent transitions** FROC data

Note that the maximal number of confidence level, denoted by C, are included, however, confidence level vector c should not be specified. If specified, will be ignored, since it is created by $c \leftarrow c(rep(C:1))$ in the program and it does not refer from user input data, where C is the highest number of confidence levels. Should write down your hits and false alarms vector so that it is compatible with this automatically created vector c.

Format

A list consists of the following integer vectors f, h and integers NL, NI, C.

- f: Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- h: Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- NL: A positive integer, representing Number of Lesions.
- NI: A positive integer, representing Number of Images.
- C: A positive integer, representing Number of Confidence level.

Contents:

A single reader and single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>probably present</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>questionable</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

Note that in FROC data, the confidence level means present (deseased, positive) case only. Since each reader marks their suspicious location only and it generate the hits and false alarms for his confidence level representing that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by $c \leftarrow c(rep(C:1))$ automatically in the program and it does not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program's generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Note that the format for the above example data must be made by the following forms:
dat <- list(
 c = c(3, 2, 1), # Confidence level
 h = c(21, 4, 3), # Number of hits for each confidence level
 f = c(0, 7, 36), # Number of false alarms for each confidence level
 NL = 60, # Number of lesions
 NI = 30, # Number of images
 C = 3) # Number of confidence level

This object dat can be passed to the function `fit_Bayesian_FROC()` as the following manner: `fit_Bayesian_FROC(dat)`.

dataList.High
Data: Single reader and Single modality

Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is same as `dataList.Chakra.1`.

Details

This data is fictitious.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explantation
Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is same as dataList.Chakra.1.

Details

This data is fictitious.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explanation

dataList.Low Data: Single reader and Single modality

Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is same as dataList.Chakra.1.

Details

This data is fictitious.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.
dataList.low.ability

See Also

dataList.Chakra.1.with.explantation

dataList.low.ability Data: A Single Reader and A Single Modality

Description

A list, representing FROC data. This is used to build a hierarchical FROC model. This data is same as dataList.Chakra.1.

Details

This data is fictitious.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.

See Also

dataList.Chakra.1.with.explantation

dataList.one.modality Multiple reader and one modality data for fit_MRMCo_versionTWO

Description

This is used to build a hierarchical FROC model.

Details

This data contains only one modality. If see = 12, then the model has converged.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Nothing in 2018

dataset_creator_by_specifying_only_M_Q

Creates dataset

Description

creates dataset

Usage

dataset_creator_by_specifying_only_M_Q(M = 2, Q = 15)

Arguments

- **M** A positive integer, indicating number of modalities.
- **Q** A positive integer, indicating number of readers.

Value

An MRMC dataset.

Examples

```r
# make a data of a single modality and 36 readers

M <- 1
Q <- 36

d <- dataset_creator_by_specifying_only_M_Q(M = M, Q = Q)

check_hit_is_less_than_NL(d)

plot_FPF_and_TPF_from_a_dataset(d)
```
dataset_creator_for_many_Readers

create data for MRMC

Description

create data for MRMC

Usage

```
dataset_creator_for_many_Readers(M, Q)
```

Arguments

- **M**
 - a positive integer, modality
- **Q**
 - a positive integer, reader

Value

data, to which fit a model

Examples

```
d <- dataset_creator_for_many_Readers(1,11)
```

dataset_creator_new_version

Create a Dataset (version 2) Interactively

Description

Create the Passing data to the function `fit_Bayesian_FROC`.

This is an interactive creator of dataset for FROC data.

Usage

```
dataset_creator_new_version()
```
Details

This provide the interactive making of FROC dataset by using table to summarize hits and false alarm data.

Using this return value, you can build the FROC model for your data by applying the function `fit_Bayesian_FROC()` in this package.

Should carefully for the order of confidence levels.

Value

A list representing FROC data, to build FROC fitted model object by `fit_Bayesian_FROC()`.

data_2modalities_2readers_3confidence

data: 2 readers, 2 modalities and 3 confidences

Description

small data example in the FROC context

Details

the number of modalities, denoted by M 2 modalities
the number of Confidences, denoted by C 3 Confidence levels
the number of readers, denoted by Q 2 readers

Contents

$NL = 142$ (Number of Lesions)
$NI = 57$ (Number of Images)

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>
data_of_36_readers_and_a_single_modality

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

References
Example data of Jafroc software

See Also

Examples

```r
#----------------------------------------------------------------------------------------
# Show data by table
#----------------------------------------------------------------------------------------

viewdata(data_of_36_readers_and_a_single_modality)

plot_FPF_and_TPF_from_a_dataset(data_of_36_readers_and_a_single_modality)

#----------------------------------------------------------------------------------------
# make this data from functions in this package
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
d <- create_dataList_MRMC(mu.truth = m, v.truth = v)

# The last object named d is the desired dataset.

fit_Bayesian_FROC(data_2modaities_2readers_3confidence, ite = 1111)
```

data_of_36_readers_and_a_single_modality

36 readers and a single modality data
Description
Big data example in the FROC context

Details
Frequentist methods fails when a sample size is large. Namely, p value monotonically decreases when the sample size tends to large.

On the other hands, in Bayesian methods, the large samples such as large readers in FROC context fails the MCMC algorithm. Thus Bayesian methods is also not free from such large sample problem in this sense.

This dataset is made for validation that whether Bayes factor well work which is a subset of data dataList.Chakra.Web.ordered

the number of modalities, denoted by M 1 modality
the number of Confidences, denoted by C 5 Confidence levels
the number of readers, denoted by Q 36 readers

Contents of data_of_36_readers_and_a_single_modality

NL = 142 (Number of Lesions)
NI = 57 (Number of Images)

Contents:
Multiple readers and multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>5</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>4</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>2</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>1</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>4</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>3</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>2</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>1</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>3</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>1</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>2</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>5</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>4</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>3</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>1</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>5</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>4</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>3</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>2</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>1</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>2</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>5</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>4</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>3</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>2</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>3</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>2</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>4</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>3</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>2</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>1</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>2</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>1</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>2</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>5</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>4</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>3</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>2</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>1</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>5</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>4</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>2</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>4</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>3</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>2</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>1</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>5</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>4</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>3</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>1</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>3</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>2</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>1</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>4</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>3</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>2</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>1</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>4</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>2</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>1</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>5</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>4</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>3</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>2</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>1</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>
data_of_36_readers_and_a_single_modality

1 34 5 0 34
1 34 4 3 43
1 34 3 8 22
1 34 2 12 14
1 34 1 9 3
1 35 5 0 9
1 35 4 1 17
1 35 3 4 15
1 35 2 8 18
1 35 1 5 25
1 36 5 1 17
1 36 4 6 31
1 36 3 11 20
1 36 2 16 17
1 36 1 12 9

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

References
Example data of Jafroc software

See Also

Examples

```r
# Show data by table
viewdata(data_of_36_readers_and_a_single_modality)

plot_FPF_and_TPF_from_a_dataset(data_of_36_readers_and_a_single_modality)

v <- v_truth_creator_for_many_readers_MRCM_data(M=1,Q=36)
```
dd <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)

The last object named d is the desired dataset.

fit_Bayesian_FROC(data_of_36_readers_and_a_single_modality,ite = 1111)

dd

Multiple Reader and Multiple Modality Data

Description

A list, representing FROC data of MRMC. This is same as `dataList.Chakra.Web`.

Details

This data is based on in Chakraborty’s JAFROC software in which example data exists. The author have calculated hits and false alarms from this Jafroc example data.

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>15</td>
</tr>
</tbody>
</table>

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Example data of Jafroc software

See Also

Examples

viewdata(BayesianFROC::dd)

#--
dd is same as dataList.Chakra.Web, since the following code is all TRUE
#--

dd$f==dataList.Chakra.Web$f

#--
Code to make the dataset dd
#--

h<-c(
 50,30,11,5,1,15,29,0,0,39,32,1,10,3,10,8,25,45,14, # modality 1
 52,25,13,4,1,27,8,29,1,0,52,29,13,2,4,9,16,22,43,14, # modality 2
 43,29,11,6,0,18,29,21,0,0,43,29,6,7,1,10,14,19,32,23, # modality 3
 61,19,12,9,3,16,29,34,1,0,52,29,10,4,3,10,16,23,43,15, # modality 4
 35,29,18,9,0,17,27,24,0,0,34,33,7,13,2,12,16,21,35,15 # modality 5
)

f <-c(
 0 ,4,20,29,21,0,0,6,15,22,1 ,15,18,31,19,1,2,4,16,17,# modality 1
 1,1,21,24,23,1,1,5,30,40,2 ,19,31,56,42,2,0,2,30,32,# modality 2
 1,7,13,28,19,0,1,7,7,31,7,15,28,41,9 ,0,2,5,24,31,# modality 3
 1,4,18,21,23,1,1,0,11,35,6,14,37,36,18,0,2,4,18,25,# modality 4
 0,2,19,23,18,0,2,6,10,30,2,25,40,29,24,1,1,4,24,32)# modality 5
)

a <- m_q_c_vector_from_M_Q_C(5,4,5)

m <- a$m

c <- a$c

q <- a$q

NI<-199

NL <-142

C<-5

M<-5
Multiple Reader and Multiple Modality Data

Description

A list, representing FROC data of MRMC. This is same as dataList.Chakra.Web.

Details

This data is based on in Chakraborty’s JAFROC software in which example data exists. The author have calculated hits and false alarms from this Jafroc example data. Moreover the author ordered it such that the modality ID also means its observer performance, namely Modality ID = 1 means it has the most high AUC.

contents

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of hits</th>
<th>No. of false alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>h</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>61</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>23</td>
<td>31</td>
</tr>
</tbody>
</table>
Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

References
Example data of Jafroc software

Examples

```r
viewdata(BayesianFROC::dd.orderd)
```

```
#----------------------------------------------------------------------------------------
# Code to make the dataset dd
#----------------------------------------------------------------------------------------

h<-c(
  61,19,12,9,3,16,29,34,1,0,52,29,10,4 ,3,10,16,23,43,15, # modality 4 of dataset dd
  52,25,13,4,1,27,28,29,1,0,53,29,13,2 ,4,9 ,16,22,43,14, # modality 2 of dataset dd
  50,30,11,5,1,15,29,29,1,0,39,31,8 ,10,3,10,8 ,25,45,14, # modality 1 of dataset dd
  35,29,18,9,0,17,27,24,0,0,34,33,7,13,2,12,16,21,35,15, # modality 5 of dataset dd
  43,29,11,6,0,18,29,21,0,0,43,29,6 ,7 ,1,10,14,19,32,23 # modality 3 of dataset dd
)

f <-c(
  1, 4,18,21,23,1,1,0,11,35, 6,14,37,36,18,0,2,4,18,25,# modality 4 of dataset dd
  1 ,1,21,24,23,1,1,5,30,40,2 ,19,31,56,42,2,0,2,30,32,# modality 2 of dataset dd
  0 ,4,20,29,21,0,0,6,15,22,1 ,15,18,31,19,1,2,4,16,17,# modality 1 of dataset dd
  0, 2,19,23,18,0,2,6,10,30, 2,25,40,29,24,1,1,4,24,32,# modality 5 of dataset dd
  1, 7,13,28,19,0,1,7, 7,31, 7,15,28,41,9 ,0,2,5,24,31# modality 3 of dataset dd
)

a <- m_q_c_vector_from_M_Q_C(5,4,5)

m <- a$m
c <- a$c
q <- a$q

NI<-199
NL <-142
C<-5
```
```r
M<-5
Q<-4

dd.orderd <- list(
  h=h,
  f=f,
  m=m,
  c=c,
  q=q,
  NI=NI,
  NL=NL,
  M=M,
  Q=Q,
  C=C
)
```

Description

This is a subset of dd

This dataset has different dimesion for each moality and reader and confidence levels. To confirm my program is correct, the author made this.

In the following I emphasis that this data set has different dimensions: Different numbers Different numbers

```r
dd$C  5 Confidence levels
dd$M  3 modalities
dd$Q  4 readers
```

Different numbers Different numbers

So, all number, i.e. M,C,Q is different each other and this is the reason why the author made this dataset.

Details

The WAIC is finite which surprizes me, because a dataset dd has no finite WAIC. Why??

I forgot when I wrote this and what model was fitted to this data, so I am not sure the current model has finite WAIC.

Revised 2019 Nov. 21

Contents of dd
NL = 142 (Number of Lesions)
NI = 199 (Number of Images)

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>43</td>
</tr>
</tbody>
</table>
Examples

```
# make an object ddd from an object dd

ddd <- data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)

dddd <- ddd[ddd$m <4,]  # Reduce the dataset ddd, i.e., dd

ddd <- list(
  m=ddd$m,
  q=ddd$q,
  c=ddd$c,
  h=ddd$h,
  f=ddd$f,
  NL=142,
```

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Nothing in 2018
C = max(dddd$c),
M = max(dddd$m),
Q = max(dddd$q)
)

#--
the following gives convergence seed 2019 Oct 12
#--
f <- fit_Bayesian_FROC(ite = 1111, cha = 1, summary = T, dataList = ddd, see = 123456)

One reader and Multiple modality data

Description

This is a subset of *dd*. For this dataset, the function `fit_Bayesian_FROC()` well works. So, even if the number of reader is one, my program is available. Even if not available, I think it does not cause my model but my programming.

- **dddd$M**: 5 modalities
- **dddd$C**: 5 Confidence levels
- **dddd$Q**: 1 readers

Details

Contents of dddd

- **NL**: 142 (Number of Lesions)
- **NI**: 199 (Number of Images)

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
</tbody>
</table>
The reason why the author made this data dddd is it has only one reader. My program well work for more than two reader and more than two modality case. However, the only one modality or only two modality is very special case for programming perspective, and thus the author had to confirm whether my program well work in such cases. For this dataset, the function fit_Bayesian_FROC() well works. So, even if the number of reader is one, my programm is available. Even if not available, I think it does not cause my model but my programming.

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com >

References
Example data of Jafroc software

See Also

Examples

Show data by table

```r
# Show data by table
```
viewdata(BayesianFROC::ddd)

make an object dddd from an object dd

```r
ddd <- data.frame(m=dd$m, q=dd$q, c=dd$c, h=dd$h, f=dd$f)
dddd <- ddd[ddd$q < 2,]  # Reduce the dataset ddd, i.e., dd
ddd <- list(  
m=ddd$m,  
q=ddd$q,  
c=ddd$c,  
h=ddd$h,  
f=ddd$f,  
NL=142,  
C=max(ddd$c),  
M=max(ddd$m),  
Q=max(ddd$q)
)
ddd <- ddd
```

Fit model to the object dddd

```r
# Unfortunately, R CMD check require running time to be less than 5 which is difficult  
# for rstan::sampling(), thus, we cannot run the following from roxygen2 example.  
#  
# For Fitting, execute the following R code;  
#  
# fit <- fit_Bayesian_FROC(  
#    ite = 1111,  
#    cha = 1,  
#    summary = F,  
#    Null.Hypothesis = F,  
#    dataList = dddd
# )
```

Revised 2019 July 10
Description

This is a subset of dd. In the past, this model did not converge in the Model_MRMC.stan, thus I made the new stan file to get convergence estimates and named the stan file Model_Hiera_OneModalityMultipleReader_TargetFormulation.stan. Thus, even if the number of modality is 1, we can pool the AUCs over all readers by using this new model. The author believes this pooling is the most natural, primitive, simple way.

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>
Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

References

Example data of Jafroc software

See Also

Examples

#--
Show data by table
#--

viewdata(BayesianFROC::ddddd)

#--
make an object dddd from an object dd
#--

ddd <- data.frame(m=dd$m, q=dd$q, c=dd$c, h=dd$h, f=dd$f)

dddd <- ddd[ddd$m < 2,] # Reduce the dataset ddd, i.e., dd

ddd <- list(
m=dddd$m,
q=dddd$q,
c=dddd$c,
)
h=dddd$h,
f=dddd$f,
NL=142,
C=max(dddd$c),
M=max(dddd$m),
Q=max(dddd$q)
)

dddd <-ddd

#--
Pool AUCs over all readers
#--

fit <- fit_Bayesian_FROC(ddddd)
DrawCurves(fit, readerID = c(1,2,3,4))

With pain 2019 Sept 29

ddddd

Multiple reader and one modality data

Description

This is a subset of *dd*

This dataset is made, as a toy data, which is a subset of data *dd*

- *ddddd$M* 2 modalities
- *ddddd$C* 3 Confidence levels
- *ddddd$Q* 2 readers

Details

The model did not converge both null model and alternative model in 2019 Jun 21.

Contents of *ddddd*
NL = 142 (Number of Lesions)
NI = 199 (Number of Images)

Contents:
Multiple readers and multiple modalities case, i.e., MRMC case

<table>
<thead>
<tr>
<th>ModalityID</th>
<th>ReaderID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>m</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

References
Example data of Jafroc software

See Also

Examples

Show data by table
viewdata(ddddddd)
Variables and Functions

1 #### #### 2 #### #### 3 #### #### 4 #### #### 5 #### #### 6 #### #### 7 #### #### 8 #### #### 9

#--
make an object dddd from an object dd
#--

ddd <- data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)
dddd <- ddd[ddd$q < 3,]

The following code extract the first and the second modality from dd
dddd <- dddd[ddd$dddm < 3,] # Reduce the dataset ddd, i.e., dd
dddd <- dddd[ddd$dddc <4,]
ddd <- list(
 m=dddddm,
 q=dddddq,
 c=dddddc,
 h=dddddh,
 f=dddddf,
 NL=142,
 C=max(dddddc),
 M=max(dddddm),
 Q=max(dddddq)
)
ddddd <-ddd

This dataset is made in 2019 July 6, for the aim of easy exhibition
This dataset is very minimum, and it is easy to view

#--
Fit a model to data ddddd
#--

fit <- fit_Bayesian_FROC(ite = 1111,
 cha = 1,
 summary = F,
 Null.Hypothesis = F,
 dataList = ddddd)

#--
Draw a curves and data points to confirm goodness of fit
#--

DrawCurves(fit,
 modalityID = c(1,2),
readerID = c(1,2)
)

Good Bye, pretty crowd! 2019 July 6
I always think who read this? My heart empty and empty.

Description

This is a subset of

```{r}
dataList.Chakra.Web.orderd
```

Details

The author made this dataset to validate the scheme of Bayes factor well works in our Bayesian FROC models

This dataset is made for validation that wheter Bayes factor well work which is a subset of

```{r}
data dataList.Chakra.Web.orderd
```

- `M`: 2 modalities of almost **same** AUC
- `C`: 3 Confidence levels
- `Q`: 2 readers

If Bayes factor admit the null hypothesis that all modality are same, that is, 1-st and 2-nd modality of

```{r}
dataList.Chakra.Web.orderd
```
are same, then, the Bayes factor well works.

Contents of dddddd

- `NL = 142` (Number of Lesions)
- `NI = 199` (Number of Images)

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>
Examples

```r
# Show data by table
viewdata(ddddddd)

# make an object dddd from an object dataList.Chakra.Web.orderd

ddd <- data.frame(m=dataList.Chakra.Web.orderd$m,
                  q=dataList.Chakra.Web.orderd$q,
                  c=dataList.Chakra.Web.orderd$c,
                  h=dataList.Chakra.Web.orderd$h,
                  f=dataList.Chakra.Web.orderd$f)

ddd <- ddd[ddd$q < 3,]

# The following code extract the first and the second modality from dd
dddd <- ddd[ddd$m < 3,]  # Reduce the dataset ddd, i.e., dd
dddd <- ddd[dddd$c <4,]

dd <- list(
  m=dddd$m,
  q=dddd$q,
  c=dddd$c,
  h=dddd$h,
  f=dddd$f,
  NL=142,
  C=max(dddd$c),
  M=max(dddd$m),
  Q=max(dddd$q)
)
```
This dataset is made in 2019 July 6, for the aim of easy exhibition
This dataset is very minimum, and it is easy to view

Test of Hypothesis based on Bayes factor
#---
dataList <- ddddddd
ite <- 2222
cha <- 1
summary <- F

fitH0 <- fit_Bayesian_FROC(ite = ite,
 summary = summary,
 cha = cha,
 dataList = dataList ,
 Null.Hypothesis = TRUE
)

fitH1 <- fit_Bayesian_FROC(ite = ite,
 summary = summary,
 cha = cha,
 dataList = dataList ,
 Null.Hypothesis = FALSE)

H0 <- bridgesampling::bridge_sampler(fitH0,
 method = "normal",
 silent = TRUE)

H1 <- bridgesampling::bridge_sampler(fitH1,
 method = "normal",
 silent = TRUE)

BF10 <- bridgesampling::bf(H0,H1)

print(BF10)

message("\n* If the number is greater, then we reject H0 with more confidence."")
When I saw the plots, the author became happy, because it was well fitted
2019 July 12

demo_Bayesian_FROC demonstration

Description
demonstration

Usage
demo_Bayesian_FROC()

Details
The author often forget the R script for execute the demos or bother to write the code to execute demo, thus I made this.

Value
none

Examples
demo_Bayesian_FROC()

2019.05.21 Revised.
dottest
Description
demonstration without pause

Usage
demo_Bayesian_FROC_without_pause()

Value
none

Examples
demo_Bayesian_FROC_without_pause()
dottest

draw.CFP.CTP.from.dataList

Plot the pairs of CFPs and CTPs

Description
It plots the empirical FROC curves (not depicted the line).

Usage
draw.CFP.CTP.from.dataList(dataList, ModifiedPoisson = FALSE, new.imaging.device = TRUE)
Arguments

dataList

A list, consisting of data of numbers of TPs, FPs, lesions, etc.

. To be passed to the function rstan::sampling() in rstan. This is a variable in the function rstan::sampling() in which it is named data.

For the single reader and a single modality data, the dataList is the following forms:

dataList.Example <- list(
 h = c(41,22,14,8,1), # number of hits for each confidence level
 f = c(1,2,5,11,13), # number of false alarms for each confidence level
 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence, .. the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).

To make this R object dataList representing FROC data, this package provides three functions:

cvtColorFromJafroc() If data is a JAFROC xlsx formulation.
dataset_creator_new_version() Enter TP and FP data by table.
create_dataset() Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL A positive integer, representing Number of Lesions.

NI A positive integer, representing Number of Images.

C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored , since it is created by c <-c(rep(C:1)) in the program and do not refer from user input data, where C is the highest number of confidence.
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

data Format:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function viewdata().

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function fit_Bayesian_FROC(), dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, C, M, Q:

C A positive integer, representing the highest number of confidence level, this is a scalar.
M A positive integer vector, representing the number of modalities.
Q A positive integer, representing the number of readers.
c A vector of positive integers, representing the confidence level. This vector must be made by rep(rep(C:1),M*Q)
A vector of positive integers, representing the modality ID vector.

q A vector of positive integers, representing the reader ID vector.

h A vector of non-negative integers, representing the number of hits.

f A vector of non-negative integers, representing the number of false alarm.

NL A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function viewdata() shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

ModifiedPoisson Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion. Similarly.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained *per image* and *per lesion*. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the *False Positive Fraction (FPF)* is defined as follows (\(F_c\) denotes the number of false alarms with confidence level \(c\))

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where \(N_L\) is a number of lesions (signal). To emphasize its denominator \(N_L\), we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if `ModifiedPoisson = FALSE` (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where \(N_I\) is the number of images (trial). To emphasize its denominator \(N_I\), we also call it the *False Positive Fraction (FPF) per image*.
The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion \((\text{ModifiedPoisson} = \text{FALSE})\)

or as the expected pairs of FPF per image and TPF per lesion \((\text{ModifiedPoisson} = \text{TRUE})\).

If \(\text{ModifiedPoisson} = \text{TRUE}\), then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\), then FROC curve means the expected pair of FPF \textbf{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\textbf{Value}

CFPs and CTPs

\textbf{See Also}

\texttt{plot_FPF_and_TPF_from_a_dataset}

\textbf{Examples}

\begin{verbatim}
draw.CFP.CTP.from.dataList(dataList.Chakra.1)
\end{verbatim}

\textbf{Description}

The function makes a plot of the FROC curve, the AFROC curve and \textit{FPF} and \textit{TPF}.
Usage

DrawCurves(StanS4class, modalityID, readerID, title = TRUE, indexCFPCTP = FALSE, upper_x, upper_y, new.imaging.device = TRUE, Colour = TRUE, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE, DrawAUC = TRUE, DrawCFPCTP = TRUE, Draw.Flexible.upper_y = TRUE, Draw.Flexible.lower_y = TRUE, summary = TRUE, type = 4, color_is_changed_by_each_reader = FALSE, Draw.inner.circle.for.CFPCTPs = TRUE)

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

modalityID A positive integer vector indicating modalityID. If it is not given, then the first modality is chosen.

readerID A positive integer vector indicating readerID. If it is not given, then the first reader is chosen.

title Logical: TRUE of FALSE. If TRUE (default), then title of curves are drawn.

indexCFPCTP TRUE of FALSE. If TRUE, then the cumulative false and hits are specified with its confidence level.

upper_x This is a upper bound for the axis of the horisontal coordinate of FROC curve.

upper_y This is a upper bound for the axis of the vertical coordinate of FROC curve.

new.imaging.device Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.

Colour Logical: TRUE of FALSE. whether Colour of curves is dark theme or not.

DrawFROCcurve Logical: TRUE of FALSE. Whether or not FROC curves are shown.

DrawAFROCcurve Logical: TRUE of FALSE. Whether or not AFROC curves are shown.

DrawAUC TRUE of FALSE. If TRUE then area under the AFROC curves are painted.

DrawCFPCTP Logical: TRUE of FALSE. Whether or not the pairs of FPF and TPF are shown.

Draw.Flexible.upper_y Logical: TRUE of FALSE. Whether or not the upper bounds of vertical axis are determined automatically.

Draw.Flexible.lower_y Logical: TRUE of FALSE. Whether or not the lower bounds of vertical axis are determined automatically.

summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

type An integer, for the color of background and etc.
color_is_changed_by_each_reader
 A logical, if TRUE, then the FROC curves, AFROC curves, and FPF, TPF are colored accordingly by each reader. The aim of FROC analysis is to compare the modality and not reader, so the default value is false, and curves and FPF and TPF are colored by each modalities.

Draw.inner.circle.for.CFPCTPs
 TRUE or FALSE. If true, then to plot the cumulative false positives and true positives the plot points is depicted by two way, one is a large circle and one is a small circle. By see the small circle, user can see the more precise position of these points.

Details
 The function makes a plot of the FROC curves and AFROC curves for user’s specified modality and user’s specified reader. Using this function repeatedly, we can draw the different reader and modality in a same plane simultaneously. So, we can visualize the difference of modality (reader).

Examples
 #================The first example======================================

 #1) Build the S4 class object by the following:

 fit <- fit_Bayesian_FROC(
 BayesianFROC::dataList.Chakra.Web, # data to which fit the model
 ite=1111 # iteration of MCMC, very few, should be more.
)

 # The object "fit" is an S4 class object
 # whose S4 class is an inherited class from stanfit in the rstan package.

 #<<Minor comments>>
 #Note that return value "fit" is not an stanfit S4 object generated by rstan::stan(),
 #but some inherited S4 class object which is an S4 object of
 # some inherited S4 class from the stanfit class.

 #2) Now, we obtain the S4 class object named "fit".
 # Using this S4 class object, we draw the curves by:

 DrawCurves(fit,modality = 1,reader = 4)

 #From this code, FROC curve for the first modality and fourth reader is drawn.
#3) By changing, e.g., the modality, we can draw the curves for different modalities. This shows the comparison of modalities. In the following R script, the first draw curve for the 2nd modality and the fourth reader, and the second R script draw for the 3rd modality and the 4th reader, respectively.

```r
DrawCurves(fit, modality = 2, reader = 4)
DrawCurves(fit, modality = 3, reader = 4)
```

Curves are overwritten for the sake of comparison. When comparing modalities fitted by the hierarchical Bayesian Model to the same data, the upper FROC curve or AFROC curve, the better the AUC.

#4) By applying the function with respect to different modalities in this manner, we can draw AFROC (FROC) curves in the same plain.

#5) If you want to draw the FROC curves for reader ID = 1,2,3,4 and modality ID = 1,2, then the code is as follows;

```r
DrawCurves(
  fit,
  modalityID = c(1,2,3,4),
  readerID = c(1,2)
)
```

Each color of curves corresponds to the modality ID. So, even if curves are different readers and same modality, then color is same.
#6) If you want to see only data points, then by DrawFROCcurve = F, it will be done.

DrawCurves(fit,
 DrawCFPCTP = TRUE, # This implies data points are ploted.
 DrawFROCcurve = FALSE, # From this, the curves are not drawn.
 modalityID = c(1,2,3,4),
 readerID = c(1)
)

#7) If you use the plot in submission and it is not allowed to use color, then
by Colour = F, you can get black and white plots, e.g.,

DrawCurves(fit,
 DrawCFPCTP = TRUE,
 DrawFROCcurve = TRUE,
 modalityID = c(1,2,3,4),
 readerID = c(1),
 Colour = FALSE # From this, you can get plots without colors.
)

#8) For AFROC, use DrawAFROCcurve = T

DrawCurves(fit,
 DrawFROCcurve = FALSE,
 DrawAFROCcurve = TRUE,
 modalityID = c(1,2,3,4),
 readerID = c(1))

#9)

In order to compare modality, we draw curves by each modality
The 1-st modality with all readers 1,2,3,4:
DrawCurves(fit, modalityID = 1, readerID = 1:4, new.imaging.device = T)

#The 2-nd modality with all readers 1,2,3,4:
DrawCurves(fit, modalityID = 2, readerID = 1:4, new.imaging.device = F)

#The 3-rd modality with all readers 1,2,3,4:
DrawCurves(fit, modalityID = 3, readerID = 1:4, new.imaging.device = F)

#The 4-th modality with all readers 1,2,3,4:
DrawCurves(fit, modalityID = 4, readerID = 1:4, new.imaging.device = F)

#The 5-th modality with all readers 1,2,3,4:
DrawCurves(fit, modalityID = 5, readerID = 1:4, new.imaging.device = F)

Draw for all pairs of modalities and readers:

DrawCurves(
 modalityID = 1:fit@dataList$M,
 readerID = 1:fit@dataList$Q,
 StanS4class = fit
)

Change the color by

DrawCurves(fit, type = 2)
DrawCurves(fit, type = 3)
DrawCurves(fit, type = 4)
DrawCurves(fit, type = 5)
DrawCurves(fit, type = 6)
DrawCurves(fit, type = 7)

#-------------------The Second Example---

#This function is available in the case of a single reader and a single modality.
#The reason why the maintainer separate the fitting and drawing curves is, in MRMC case, It tooks a time to drawing, but in the a single reader and a single modality case, drawing # the curve is very fast, so in fitting process the curves are also depicted, however # by this function user can draw the FROC curves.

#First, we prepare the data endowed with this package.

dat <- get(data("dataList.Chakra.1"))

#Second, we run the stan function #with data named "dat" and the author's Bayesian model.

fit <- fit_srsc(dat)

Drawing the curves by

DrawCurves(fit)

Changea the color by

DrawCurves(fit, type = 2)
DrawCurves(fit, type = 3)
DrawCurves(fit, type = 4)
DrawCurves(fit, type = 5)
DrawCurves(fit, type = 6)
DrawCurves(fit, type = 7)
Close the graphic device to avoid errors in R CMD check.
Close_all_graphic_devices()
dotest

DrawCurves_MRMC
Draw the FROC curves for all modalities and readers

Description

Draw the FROC curves and AFROC curves for all modalities and readers, if many modalities and readers exists, then so very confused plots will be drawn.

Usage

```r
DrawCurves_MRMC(StanS4class, type = 1)
```

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
- **type**: An integer, for the color of background and etc.

Examples

```r
fit <- fit_Bayesian_FROC(
  dataList.Chakra.Web.orderd,
  ite = 1111,
  summary = FALSE
)

DrawCurves_MRMC(fit)
```

2019.05.21 Revised.
dotest
DrawCurves_MRMC_pairwise

Draw the FROC curves with Colour

Description

Draw *FROC curves* and *AFROC curves* for user’s specified modalities and user’s specified readers. Using this function **repeatedly**, we can draw the different reader and modality in a **same** plane simultaneously.

Usage

```r
DrawCurves_MRMC_pairwise(StanS4class, modalityID, readerID, 
Colour = TRUE, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE, 
DrawCFPCTP = TRUE, Draw.Flexible.upper_y = TRUE, 
Draw.Flexible.lower_y = TRUE, new.imaging.device = TRUE, 
summary = TRUE, color_is_changed_by_each_reader = FALSE, type = 1)
```

Arguments

- **StanS4class**
 - An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.

- **modalityID**
 - This is a vector indicating modalityID whose component is natural number.

- **readerID**
 - This is a vector indicating readerID whose component is natural number.

- **Colour**
 - Logical, that is `TRUE` or `FALSE`. Whether plot of curves are with dark theme. Default is `TRUE` indicating dark theme.

- **DrawFROCcurve**
 - Logical: `TRUE` of `FALSE`. Whether the FROC curve is to be drawn.

- **DrawAFROCcurve**
 - Logical: `TRUE` of `FALSE`. Whether the AFROC curve is to be drawn.

- **DrawCFPCTP**
 - Logical: `TRUE` of `FALSE`. Whether the CFP and CTP points are to be drawn. CFP: Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP: Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).

- **Draw.Flexible.upper_y**
 - Logical, that is `TRUE` or `FALSE`. Whether or not the upper bounds of vertical axis are determined automatically.

- **Draw.Flexible.lower_y**
 - Logical, that is `TRUE` or `FALSE`. Whether or not the lower bounds of vertical axis are determined automatically.

- **new.imaging.device**
 - Logical: `TRUE` of `FALSE`. If `TRUE` (default), then open a new device to draw curve. Using this we can draw curves in same plain by `new.imaging.device=FALSE`.

- **summary**
 - Logical: `TRUE` of `FALSE`. Whether to print the verbose summary, i.e., logical; If `TRUE` then verbose summary is printed in the R console. If `FALSE`, the output is minimal. I regret, this variable name should be verbose.
color_is_changed_by_each_reader
 A logical, if TRUE, then the FROC curves, AFROC curves, and FPF, TPF are colored accordingly by each reader. The aim of FROC analysis is to compare the modality and not reader, so the default value is false, and curves and FPF and TPF are colored by each modalities.

Details
By drawing different modality FROC curves in the same plane, we can compare the modality. E.g., if some modality FROC curve is upper then other modality curves, then we may say that the upper modality is better observer performance, i.e., higher AUC.

Author(s)
Issei Tsunoda

Examples

#1) Build the S4 class object by the following:

```r
fit <- fit_Bayesian_FROC(dataList.Chakra.Web)
```

The object "fit" is an S4 class object
whose S4 class name is stanfit in the rstan package.

#<<Minor comments>>
#Note that return value "fit" is not an stanfit S4 object generated by rstan::stan(),
#but some inherited S4 class object which is an S4 object of
some inherited S4 class from stanfit class. So, we can consider it as an object of
#an S4 class of rstan::stan().

#2) Now, we obtain the S4 class object named "fit".
Using this S4 class object, we draw the curves by:

```r
DrawCurves_MRMC_pairwise(fit,
    modality = 1,
    reader = 4
)
```

#3) By changing the modality (or reader),
#we can draw the curves with respect to different modalities.
#This shows the comparison of modalities.
#4) By repeating in this manner for different modalities or readers,
we can draw AFROC (FROC) curves in a single imaging device.
Revised 2019 Nov 27

#5) If you want to draw the FROC curves
for reader ID =1,2,3,4 and modality ID =1,2, then the code is as follows;

```
DrawCurves_MRMC_pairwise(  
    fit,  
    modalityID = c(1,2,3,4),  
    readerID = c(1,2)  
)
```

Each color of curves corresponds to the modality ID.
So, even if curves are different readers and same modality, then color is same.

Close the graphic device
Close_all_graphic_devices()
dottest

DrawCurves_MRMC_pairwise_BlackWhite

Draw the FROC curves without colour
Description

Plot curves without any color (dark theme), that is, black and white (white background with black curves). Draw FROC curves and AFROC curves for user’s specified modality and user’s specified reader. Using this function repeatedly, we can draw or compare the different reader and modality in a same plane simultaneously. So, we can visualize the difference of modality (reader).

Usage

```r
DrawCurves_MRMC_pairwise_BlackWhite(StanS4class, modalityID, readerID, 
  new.imaging.device = TRUE, DrawFROCcurve = TRUE,
  DrawAFROCcurve = FALSE, DrawCFPCTP = TRUE,
  Draw.Flexible.upper_y = TRUE, Draw.Flexible.lower_y = TRUE,
  summary = TRUE, type = 1)
```

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and `...` etc.
- **modalityID**: This is a vector indicating modalityID whose component is natural number.
- **readerID**: This is a vector indicating readerID whose component is natural number.
- **new.imaging.device**: Logical: TRUE or FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.
- **DrawFROCcurve**: Logical: TRUE of FALSE. Whether the FROC curve is to be drawn.
- **DrawAFROCcurve**: Logical: TRUE of FALSE. Whether the AFROC curve is to be drawn.
- **DrawCFPCTP**: Logical: TRUE of FALSE. Whether the CFP and CTP points are to be drawn. CFP: Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).
- **Draw.Flexible.upper_y**: Logical, that is TRUE or FALSE. Whether or not the upper bounds of vertical axis are determined automatically.
- **Draw.Flexible.lower_y**: Logical, that is TRUE or FALSE. Whether or not the lower bounds of vertical axis are determined automatically.
- **summary**: Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
- **type**: An integer, for the color of background and etc.
DrawCurves_MRMC_pairwise_col

Draw the FROC curves with Colour

Description

Draw an FROC curves and an AFROC curves for user’s specified modality and user’s specified reader. Using this function repeatedly, we can draw the different reader and modality in a same plane simultaneously. So, we can visualize the difference of modality (reader).

Usage

DrawCurves_MRMC_pairwise_col(StanS4class, modalityID, readerID, type = 1, color_is_changed_by_each_reader = FALSE, new.imaging.device = TRUE, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE, DrawCFPCTP = TRUE, Draw.Flexible.upper_y = TRUE, Draw.Flexible.lower_y = TRUE, summary = TRUE)

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc
modalityID This is a vector indicating modalityID whose component is natural number.
readerID This is a vector indicating readerID whose component is natural number.
type An integer, for the color of background and etc.
color_is_changed_by_each_reader A logical, if TRUE, then the FROC curves, AFROC curves, and FPF, TPF are colored accordingly by each reader. The aim of FROC analysis is to compare the modality and not reader, so the default value is false, and curves and FPF and TPF are colored by each modalities.
new.imaging.device Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.
DrawFROCcurve Logical: TRUE of FALSE. Whether the FROC curve is to be drawn.
DrawAFROCcurve Logical: TRUE of FALSE. Whether the AFROC curve is to be drawn.
DrawCFPCTP Logical: TRUE of FALSE. Whether the CFP and CTP points are to be drawn. CFP: Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).
Draw.Flexible.upper_y Logical, that is TRUE or FALSE. Whether or not the upper bounds of vertical axis are determined automatically.
DrawCurves (srsc)

Description

Draw an FROC curves and an AFROC curves.

Usage

DrawCurves (srsc)(StanS4class, type = type, title = TRUE,
indexCFPCTP = FALSE, upper_x, upper_y, new.imaging.device = TRUE,
Drawcol = TRUE, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE,
DrawCFPCTP = TRUE, Draw.inner.circle.for.CFPCTPs = TRUE,
DrawAUC = TRUE)

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc.
type An integer, for the color of background and etc.
title Logical: TRUE of FALSE. If TRUE (default), then title of curves are drawn.
indexCFPCTP TRUE of FALSE. If TRUE, then the cumulative false and hits are specified with its confidence level.
upper_x This is a upper bound for the axis of the horizontal coordinate of FROC curve.
upper_y This is a upper bound for the axis of the vertical coordinate of FROC curve.
new.imaging.device Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.
Drawcol Logical: TRUE of FALSE. Whether the (A)FROC curve is to be drawn by using color of dark theme. The default value is a TRUE.
DrawFROCcurve Logical: TRUE of FALSE. Whether or not FROC curves are shown.
DrawAFROCcurve Logical: TRUE of FALSE. Whether or not AFROC curves are shown.
DrawCFPCTP Logical: TRUE of FALSE. Whether or not the pairs of FPF and TPF are shown.
Draw a Region of the area under the AFROC curve

Description
Draw a Region of the area under the AFROC curve

Usage
Draw_an_area_of_AUC_for_srsc(StanS4class)

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

Value
None

Examples

```r
fit <- fit_Bayesian_FROC(dataList.Chakra.1)
Draw_an_area_of_AUC_for_srsc(fit)
```

dotest
Draw_AUC

draw AUC of AFROC

Description

draw AUC of AFROC

Usage

```
Draw_AUC(a = 0.13, b = 0.19, mesh.for.drawing.curve = 2222)
```

Arguments

- `a`: a generated parameter of model which characterize AFROC curve
- `b`: a generated parameter of model which characterize AFROC curve
- `mesh.for.drawing.curve`: A positive large integer, indicating number of dots drawing the curves, default =10000.

Value

none.

Examples

```
Draw_AUC()
```

Draw_a_prior_sample

Draw One Sample from Prior

Description

Draw One Sample from Prior

Usage

```
Draw_a_prior_sample(sd = 5, C = 5,
                     seed.for.drawing.a_prior_sample = 1111)
```
Draw_a_simulated_data_set

Arguments

- **sd**: Standard deviation of priors. Very large number.
- **C**: No. of Confidence level
- **seed_for.drawing.a.prior.sample**: seed

Value

- w, v, m, dz, z

Examples

```r
Draw.a.prior.sample <- Draw_a_prior_sample()

# dotest
```

Description

Draw a simulated dataset from model distributions with specified parameters from priors

Usage

```r
Draw_a_simulated_data_set(sd = 5, C = 5, seed_for.drawing.a.prior.sample = 1111, fun = stats::var, NI = 259, NL = 259, initial.seed_for.drawing.a.data = 1234, ModifiedPoisson = FALSE, ite = 1111)
```

Arguments

- **sd**: Standard Deviation of priors
- **C**: No. of Confidence levels
- **seed_for.drawing.a.prior.sample**: seed
- **fun**: An one dimensional real valued function defined on the parameter space. This is used in the definition of the rank statistics. Generally speaking, the element of the parameter space is a vector, so the function should be defined on vectors. In my model parameter is mean, standard deviation, C thresholds of the latent Gaussian, so this function should be defined on the C+2 dimensional Euclidean space.
NI No. of images
NL No. of Lesions
initial.seed.for.drawing.a.data
seed
ModifiedPoisson
Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
Similarly.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion.
On the other hand, if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the *False Positive Fraction (FPF) per image.*

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE}) or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE}).

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of FPF \textbf{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is a redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\texttt{ite}

To be passed to the function \texttt{rstan::sampling()} in \texttt{rstan}. An argument of \texttt{rstan::sampling()} in which it is named \texttt{iter}. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

\textbf{Value}

One simulated dataset

\textbf{Examples}

```r
one.dataList <- Draw_a_simulated_data_set()

# dottest
```
Description

Draw a dataset and MCMC samples

Usage

Draw_a_simulated_data_set_and_Draw_posterior_samples(sd = 5, C = 5, seed.for.drawing.a.prior.sample = 1111, fun = stats::var, NI = 259, NL = 259, initial.seed.for.drawing.a.data = 1234, ModifiedPoisson = FALSE, PreciseLogLikelihood = TRUE, ite = 1111, DrawCurve = FALSE)

Arguments

- **sd**: Standard Deviation of priors
- **C**: No. of Confidence levels
- **seed.for.drawing.a.prior.sample**: Seed
- **seed**: Seed
- **fun**: An one dimensional real valued function defined on the parameter space. This is used in the definition of the rank statistics. Generally speaking, the element of the parameter space is a vector, so the function should be defined on vectors. In my model parameter is mean, standard deviation, C thresholds of the latent Gaussian, so this function should be defined on the C+2 dimensional Euclidean space.
- **NI**: No. of images
- **NL**: No. of Lesions
- **initial.seed.for.drawing.a.data**: Seed
- **ModifiedPoisson**: Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly,

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author's paper in which I explained per image and per lesion. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion.

On the other hand, if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where N_I is the number of images (trial). To emphasize its denominator N_I, we also call it the False Positive Fraction (FPF) per image.

The model is fitted so that the estimated FROC curve can be ragraded as the expected pairs of FPF per image and TPF per lesion (ModifiedPoisson = FALSE)
or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE}\))

If \(\text{ModifiedPoisson} = \text{TRUE}\), then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\), then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

PreciseLogLikelihood

Logical, that is \(\text{TRUE}\) or \(\text{FALSE}\). If \(\text{PreciseLogLikelihood} = \text{TRUE}\)(default), then Stan calculates the precise log likelihood with target formulation. If \(\text{PreciseLogLikelihood} = \text{FALSE}\), then Stan calculates the log likelihood by dropping the constant terms in the likelihood function. In past, I distinct the stan file, one is target formulation and the another is not. But non-target formulation cause some Jacobian warning, thus I made all stanfile with target formulation when I uploaded to CRAN. Thus this variable is now meaningless.

iter

To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default \(= 10000\). If your model could not converge, then raise this number. Must be greater for more reliable estimates.

DrawCurve

Logical: \(\text{TRUE}\) of \(\text{FALSE}\). Whether the curve is to be drawn. \(\text{TRUE}\) or \(\text{FALSE}\).

If you want to draw the FROC and AFROC curves, then you set \text{DrawCurve} = \text{TRUE}, if not then \text{DrawCurve} = \text{FALSE}. The reason why the author make this variable \text{DrawCurve} is that it takes long time in MRMC case to draw curves, and thus default value is \(\text{FALSE}\) in the case of MRMC data.

Value

Draw.a.prior.sample The Return value of \text{Draw_a_prior_sample}

A dataList and an object of the stanfit S4 class with respect to the dataList

See Also

hits_false_alarms_creator_from_thresholds

Examples
Draw a curve for various seeds and various number of confidence levels.
Changing the seed, we can draw a parameter from priors and using this sample,
we can draw the datasets from our model whose parameters are
the priors samples.

1. draw a prior sample,
2. draw a data from the model at the prior sample drawn in step 1,
3. draw a posterior sample for the data drawn in step 2.

Draw_a_simulated_data_set_and_Draw_posterior_samples(
 seed.for.drawing.a.prior.sample = 1234,
 C=8)

Draw_a_simulated_data_set_and_Draw_posterior_samples(
 seed.for.drawing.a.prior.sample = 12345,
 C=7)

Draw_a_simulated_data_set_and_Draw_posterior_samples(
 seed.for.drawing.a.prior.sample = 123456,
 C=6)

Draw_a_simulated_data_set_and_Draw_posterior_samples(
 seed.for.drawing.a.prior.sample = 1234567,
 C=5)

dottest

draw_latent_noise_distribution

Visualization of the Latent Gaussian for Hit rates

Description

Our FROC model use a latent Gaussian random variable to determine hit rates. That is each hit rate is defined as follows;

\[
p_5(z_1, ... z_C; \mu, \sigma) = \int_{z_5}^{\infty} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_4(z_1, ... z_C; \mu, \sigma) = \int_{z_4}^{z_5} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_3(z_1, ... z_C; \mu, \sigma) = \int_{z_3}^{z_4} \text{Gaussian}(z|\mu, \sigma)dz
\]
\[p_2(z_1, ..., z_C; \mu, \sigma) = \int_{z_1}^{z_3} \text{Gaussian}(z|\mu, \sigma) \, dz \]
\[p_1(z_1, ..., z_C; \mu, \sigma) = \int_{z_1}^{z_2} \text{Gaussian}(z|\mu, \sigma) \, dz \]

For example, in the following data, the number of hit data with confidence level \(5 \) 41 which is considered as a sample from the Binomial distribution of hit rate \(p_5(z_1, ..., z_C; \mu, \sigma) = \int_{z_5}^{\infty} \text{Gaussian}(z|\mu, \sigma) \, dz \) with Bernoulli trial number is NL=142.

So, this Gaussian distribution determines hit rate, and this function `draw_latent_noise_distribution()` plot this Gaussian distribution \(\text{Gaussian}(z|\mu, \sigma) \). But reference distribution is not the standard Gaussian but \(d \log \Phi \) which determines the False alarm rate in the above manner. The author thinks the standard Gaussian is more comfortable to compare or confirm the shape of \(\text{Gaussian}(z|\mu, \sigma) \) and thus, the author implement it in the `draw_latent_signal_distribution()`.

Example data:
A single reader and single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>probably present</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>equivocal</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Usage

draw_latent_noise_distribution(StanS4class, dark_theme = TRUE, dig = 3,
mesh = 1000, new.imaging.device = TRUE, hit.rate = FALSE,
false.alarm.rate = TRUE, both.hit.and.false.rate = FALSE,
density = 22, color = TRUE, mathematical.symbols = TRUE, type = 3)

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.
- **dark_theme**: TRUE or FALSE
draw_latent_noise_distribution

dig To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `...?`. A positive integer representing the Significant digits, used in stan Cancellation. default = 5.

mesh Mesh for painting the area

new.imaging.device Logical: TRUE or FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.

hit.rate whether draws it. Default is TRUE.
false.alarm.rate whether draws it. Default is TRUE.
both.hit.and.false.rate whether draws it. Default is TRUE.

density A natural number, indicating the density of shading lines, in lines per inch.

color A color region is selected from black and white only. For more colors, put FALSE. For publication, the mono color is allowed in many case, so the author made this for such publication.

mathmatical.symbols A logical, whether legend is in plot. @seealso `draw_latent_noise_distribution()`

Note that the difference of `draw_latent_noise_distribution()` and `draw_latent_signal_distribution()` is that the lator use the standard Gaussian for the reference distribution and for-
mer uses the $d \log \Phi()$ for the reference distribution.

So, the old version `draw_latent_signal_distribution()` is also important and I like this old version also. Anyway who read this, I think my package size is very large,.....ha,,,,I have to reduce it,.....but how?

type An integer, for the color of background and etc.

Value

Information of Latent Gaussians, such as mean and S.D. of the signal distributions and thresholds.

Author(s)

Issei Tsunoda

See Also

`draw_latent_signal_distribution()`

Examples

```
#----------------------------------------------------------------------------------------
# Shap of signal distribution strongly influences teh value of AUC, so in the following
# the author shows how it affects the estimates of AUCs.
# We consider two data examples, one is a low AUC and the other is a high AUC.
# In the high AUC case, the Signal Gaussian will be low variance and
# in the low AUC case, the variance will desperse. 2019 August 4, 2019 Dec 17
#----------------------------------------------------------------------------------------
```
draw_latent_signal_distribution

----- High AUC case --------
viewdata(dataList.High)
fit.High <- fit_Bayesian_FROC(dataList.High, ite=111)
draw_latent_signal_distribution(fit.High)

----- Low AUC case --------
viewdata(dataList.Low)
fit.Low <- fit_Bayesian_FROC(dataList.Low)
draw_latent_signal_distribution(fit.Low)

dotest

draw_latent_signal_distribution

Visualization of Latent Gaussians (Signal Distribution)

Description
Visualization of Latent Gaussians (Signal Distribution)

Usage
draw_latent_signal_distribution(StanS4class, dark_theme = TRUE,
dig = 3, mesh = 1000, new.imaging.device = TRUE, hit.rate = TRUE,
false.alarm.rate = FALSE, both.hit.and.false.rate = FALSE,
density = 22, color = TRUE, mathematical.symbols = TRUE, type = 3)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StanS4class</td>
<td>An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc</td>
</tr>
<tr>
<td>dark_theme</td>
<td>TRUE or FALSE</td>
</tr>
<tr>
<td>dig</td>
<td>An positive integer, indicating the digit for numbers in the R console.</td>
</tr>
<tr>
<td>mesh</td>
<td>Mesh for painting the area</td>
</tr>
<tr>
<td>new.imaging.device</td>
<td>Logical: TRUE or FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.</td>
</tr>
</tbody>
</table>
draw_latent_signal_distribution

hit.rate

whether draws it. Default is TRUE.

false.alarm.rate

whether draws it. Default is TRUE.

both.hit.and.false.rate

whether draws it. Default is TRUE.

density

A natural number, indicating the density of shading lines, in lines per inch.

color

A color region is selected from black and white only. For more colors, put FALSE. For publication, the mono color is allowed in many case, so the author made this for such publication.

mathmatical.symbols

A logical, whether legend is in plot. @seealso draw_latent_noise_distribution()

Note that the difference of draw_latent_noise_distribution() and draw_latent_signal_distribution() is that the lator use the standard Gaussian for the reference distribution and for- mer uses the \(d \log \Phi() \) for the reference distribution.

So, the old version draw_latent_signal_distribution() is also important and I like this old version also. Anyway who read this, I think my package size is very large.....ha,..I have to reduce it.....but how?

type

An integer, for the color of background and etc.

Details

Our FROC model use a latent Gaussian random variable to determine hit rates. That is each hit rate is defined as follows;

\[
p_5(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_5}^{\infty} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_4(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_4}^{z_5} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_3(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_3}^{z_4} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_2(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_2}^{z_3} \text{Gaussian}(z|\mu, \sigma)dz
\]

\[
p_1(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_1}^{z_2} \text{Gaussian}(z|\mu, \sigma)dz
\]

For example, in the following data, the number of hit data with confidence level 5 41 which is con- sidered as an sample from the Binomial distribution of hit rate \(p_5(z_1, \ldots, z_C; \mu, \sigma) = \int_{z_5}^{\infty} \text{Gaussian}(z|\mu, \sigma)dz \) with Bernoulli trial number is NL=142.

So, this Gaussian distribution determines hit rate, and this function draw_latent_signal_distribution() plot this Gaussian distribution \(\text{Gaussian}(z|\mu, \sigma) \). And reference distribution is the standard Gaussian and do not confuse that it is not the noise distribution, but only reference.

The noise distribution is \(d \log \Phi \) which determines the False alarm rate in the above manner. The author thinks the standard Gaussian is more comfortable to compare or confirm the shape of \(\text{Gaussian}(z|\mu, \sigma) \) and thus, the author implement it in the draw_latent_signal_distribution().
One would want to see the signal distribution and noise distribution simultaneously, then use the function `draw_latent_noise_distribution()`.

Example data:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -></td>
<td></td>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>definitely present</td>
<td>5</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>probably present</td>
<td>4</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>unequivocal</td>
<td>3</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Value

Information of Latent Gaussians, such as mean and S.D. of the signal distributions and thresholds.

Examples

```r
# Shap of signal distribution strongly influences the value of AUC, so in the following
# the author shows how it affects the estimates of AUCs.
# We consider two data examples, one is a low AUC and the other is a high AUC.
# In the high AUC case, the Signal Gaussian will be low variance and
# in the low AUC case, the variance will disperse. 2019 August 4, 2019 Dec 17

# ----- High AUC case -------
viewdata(dataList.High)
fit.High <- fit_Bayesian_FROC(dataList.High, ite=111)
draw_latent_signal_distribution(fit.High)

# ----- Low AUC case -------
```
viewdata(dataList.Low)
fit.Low <- fit_Bayesian_FROC(dataList.Low)
draw_latent_signal_distribution(fit.Low)

#--
2) For submission (without color)
#--

fit <- fit_Bayesian_FROC(
dataList = dataList.Chakra.1.with.explantation
)

draw_latent_signal_distribution(fit,
dark_theme = F,
color = T,
density = 11
)

2019 Sept. 5

dotest

dz

Threshold: parameter of an MRMC model

Description

A posterior mean of the model parameter for data ddd as an example of truth parameter.
Empirical_FROC_via_ggplot

Empirical FROC curve via ggplot2

Description

Empirical FROC curve via ggplot2

Usage

Empirical_FROC_via_ggplot(dataList)

Arguments

dataList A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable
in the function rstan::sampling() in which it is named data.
For the single reader and a single modality data, the dataList is the following
forms:

dataList.Example <- list(
 h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
 f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level
 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence, ... the author thinks it can be calculated
 as the length of h or f ...? ha, why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).

To make this R object dataList representing FROC data, this package provides
three functions:

convertFromJafroc() If data is a JAFROC xlsx formulation.
dataset_creator_new_version() Enter TP and FP data by table.
create_dataset() Enter TP and FP data by interactive manner.
Before fitting a model, we can confirm our dataset is correctly formulated by using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL A positive integer, representing Number of Lesions.

NI A positive integer, representing Number of Images.

C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. ‘Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored, since it is created by \(c <- c(rep(C:1)) \) in the program and do not refer from user input data, where C is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

data Format:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that
lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector \(c\) should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(\text{rep}(C:1))\) automatically in the program and do not refer from user input data even if it is specified explicitly, where \(C\) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function \(\text{viewdata}()\).

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function \(\text{fit_Bayesian_FROC}()\), dataset represented by an \(\text{R}\) list object representing FROC data must contain components \(m, q, c, f, h, N\), \(C, M, Q\):

- \(C\) A positive integer, representing the highest number of confidence level, this is a scalar.
- \(M\) A positive integer vector, representing the number of modalities.
- \(Q\) A positive integer, representing the number of readers.
- \(c\) A vector of positive integers, representing the confidence level. This vector must be made by \(\text{rep}(\text{rep}(C:1),M*Q)\).
- \(m\) A vector of positive integers, representing the modality ID vector.
- \(q\) A vector of positive integers, representing the reader ID vector.
- \(h\) A vector of non-negative integers, representing the number of hits.
- \(f\) A vector of non-negative integers, representing the number of false alarm.
- \(NL\) A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by \(C\)) are included in the above \(\text{R}\) object. However, each confidence level vector is not included in the data, because it is created automatically from \(C\). To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function \(\text{viewdata}()\) shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
</tbody>
</table>
error_message

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2</th>
<th>15</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

Description

This function is excellent! I fear my own great genius. How great I am ... Is there someone? Who read this? I always feel vanity when write this manual, who read? ha,... This function is only return plot to let user know the data format is error.

Usage

```
error_message(h, NL)
```

Arguments

- **h**: A non-negative integer vector
- **NL**: A positive number, indicating Number of lesions
error_message_on_imaging_device_rhat_values

Details

Why the author use the generic function plot instead of such as message() or cat() is for Shiny. So, this error message is shown in the plot plane in the Graphical User Interface in which message() or cat() cannot use. Ha,.. who read? I feel empty. In mathematics empty set is very vain. My heart is now, empty set. ha,, I love you.

Value

Plot of error message by the generic function plot(). So, return value is not required.

See Also

fit_GUI()

Examples

#---
If number of hits > number of lesion, then error message appears.
#---

Make an example such that sum(h) > NL, that is, the sum of the number of hits is
greater than the number of lesion, then, it launched error message.

h <- c(50,30,20)
NL <- 3

t <- error_message(h,NL)

Then, in imaging device, the error message are shown.
In shiny, even if plot cannot be done causing some error, Graphical User Interface
can not change, so I have to use the graphical user interface.
Thus, in such case, I chose this function rather than the message() or cat().

Who read this? My heart will be more empty when I wrote this manual.
Now, today, my health is good, so I want to go to eat Sushi,...ha, yari_ika_geso.

This function is made in 2019 July, 6.

error_message_on_imaging_device_rhat_values

Error message on a plot plane(imaging device)
Description
Since, shiny board fix user interface, and it let me make this; in graphical device, the error message should be shown on its device. So, usual functions such as `message()` or `cat()` cannot use in Shiny board. Since, the UI is already made and it is graphical device!

If a fitted model converges, then the error message is none and thus only in R console, the message is printed such as "A model converged." and does not print error message on a plot plane.

Usage

```r
error_message_on_imaging_device_rhat_values(StanS4class, digits = 3)
```

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.
- **digits**: digits to round r hat

Details
This is for non-convergent fitted model object, where convergence criterion is R hat statistics for each model parameters.

Examples

```r
#========================================================================================
# Non convergent fitting and error of it on graphic device
#========================================================================================

# Creat a fitted model object which does not converge with R hat criterion:
fit <- fit_Bayesian_FROC(ite = 111,
                           cha = 1,
                           summary = T,
                           Null.Hypothesis = F,
                           dataList = dd) # Here, non convergent data

# Nothing is plotted:
plot(0,0,
     type ="n",
     axes =FALSE,
     ann=FALSE)

# Error message on the above graphic device:
```
error_message_on_imaging_device_rhat_values(fit)

The author use in this package as following manner:
#==

DrawCurves(fit)

It does not work, and it is,, Ok since when non converges I will want to see
plot, so this function is no need.

2019 August 18
#donttest

Comparison of Estimates and Truth in case of MRMC

Description

In order to describe what this function calculates explicitly, let us denote user specifying true model parameter θ_0, from which replicated datasets are drawn:

$$D_1, D_2, ..., D_k, ... D_K.$$

We obtain estimates

$$\theta(D_1), ..., \theta(D_K)$$

for each replicated dataset. Using these estimates, we calculates the mean of errors (= estimates - truth), namely,

$$\frac{1}{K} \sum_{k=1}^{K} (\theta(D_k) - \theta_0),$$

or the variance of estimates:

$$\frac{1}{K} \sum_{k=1}^{K} (\theta(D_k) - \frac{1}{K} \sum_{k=1}^{K} \theta(D_k))^2.$$

Revised 2019 Nov 1
Usage

```r
error_MRM((replication.number = 2, initial.seed = 123,
mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,
z.truth = BayesianFROC::z_truth, NI = 200, NL = 1142,
ModifiedPoisson = FALSE, summary = FALSE, ite = 1111))
```

Arguments

- `replication.number`: For fixed number of lesions, images, the dataset of hits and false alarms are replicated, and the number of replicated datasets are specified by this variable.
- `initial.seed`: The variable `initial.seed` is used to replicate datasets. That is, if you take `initial.seed = 1234`, then the seed 1234, 1235, 1236, 1237, 1238, etc are for the first replication, the second replication, the third replication, etc. If the n-th model does not converge for some n, then such model has no mean and thus the non-convergent models are omitted to calculate the errors.
- `mu.truth`: array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.
- `v.truth`: array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.
- `z.truth`: This is a parameter of the latent Gaussian assumption for the noise distribution.
- `NI`: Number of Images.
- `NL`: Number of Lesions.
- `ModifiedPoisson`: Logical, that is TRUE or FALSE.
 - If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
 - Similarly,
 - If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
 - To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
 - If `ModifiedPoisson = TRUE`, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

 $$
 \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
 $$

 $$
 \frac{F_2 + F_3 + F_4 + F_5}{N_L},
 $$

 $$
 \frac{F_3 + F_4 + F_5}{N_L},
 $$
\[\frac{F_4 + F_5}{N_L}, \]

\[\frac{F_5}{N_L}, \]

where \(N_L \) is a number of lesions (signal). To emphasize its denominator \(N_L \), we also call it the \textit{False Positive Fraction (FPF) per lesion}.

On the other hand, if \texttt{ModifiedPoisson = FALSE} (Default), then \textit{False Positive Fraction (FPF)} is given by

\[\frac{F_1 + F_2 + F_4 + F_5}{N_I}, \]

\[\frac{F_2 + F_3 + F_4 + F_5}{N_I}, \]

\[\frac{F_3 + F_4 + F_5}{N_I}, \]

\[\frac{F_4 + F_5}{N_I}, \]

\[\frac{F_5}{N_I}, \]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be arranged as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE})

or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE})

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is a redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28
Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

Details

2019 Sept 6 I found this program, I made this in several month ago? I forgot when this function is made. It well works, so it helps me now.

Value

list of errors, or variance of estimates over all replicated datasets.

Description

Print for a given true parameter, a errors of estimates from replicated dataset.

Also print a standard error which is the variance of estimates.

Suppose that θ_0 is a given true model parameter with a given number of images N_I and a given number of lesions N_L, specified by user.

(I)

(I.1) Draw a dataset D_k ($k = 1, 2, ..., K$) from a likelihood (model) at parameter θ_0, namely $D_k \sim$ likelihood(θ_0).

(I.2) Replicates K fitted models, namely, draw a MCMC samples $\{\theta_i(D_k); i = 1, ..., I\}$ from a posterior for each dataset $\theta_i \sim \pi(\cdot | D_k)$.

(I.3) Calculate a posterior mean, namely $\bar{\theta}(D_k) := \frac{1}{I} \sum_i \theta_i(D_k)$.

(I.4) Calculates error for each dataset $D_k \quad \epsilon_k :=$ True - estimates $= \theta_0 - \bar{\theta}(D_k)$.

(II) Calculates mean of errors over all drawn datasets mean of errors $\bar{\epsilon}(\theta_0, N_I, N_L) = \frac{1}{K} \sum \epsilon_k$.

NOTE: We note that if a fitted model does not converge, (namely R hat is far from one), then it is omitted from this calculation.

(III) Calculates mean of errors for various number of lesions and images mean of errors $\bar{\epsilon}(\theta_0, N_I, N_L)$
For example, if $(N_1^1, N_1^2), (N_2^1, N_2^2), (N_3^1, N_3^2), \ldots, (N_m^1, N_m^2)$, then $\bar{\epsilon}(\theta_0, N_1^1, N_1^2), \bar{\epsilon}(\theta_0, N_2^2, N_2^2), \bar{\epsilon}(\theta_0, N_3^3, N_3^3), \ldots, \bar{\epsilon}(\theta_0, N_m^m, N_m^m)$ are calculated.

To obtain precise error, the number of replicated fitted models (denoted by K) should be large enough. If K is small, then it causes a bias. $K = \text{replicate.datset}$: a variable of the function error_srsc.

Running this function, we can see that the error $\bar{\epsilon}(\theta_0, N_I, N_L)$ decreases monotonically as a given number of images N_I or a given number of lesions N_L increases.

Also, the scale of error also will be found. Thus this function can show how our estimates are correct. Scale of error differs for each component of model parameters.

Revised 2019 August 28

Usage

```r
error_srsc(NLvector = c(100L, 10000L, 1000000L, 100000000L, 999999999L), 
            ratio = 2, replicate.datset = 3, ModifiedPoisson = FALSE, 
            mean.truth = 0.6, sd.truth = 5.3, z.truth = c(-0.8, 0.7, 2.38), 
            ite = 2222, cha = 1)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLvector</td>
<td>A vector of positive integers, indicating a collection of numbers of Lesions.</td>
</tr>
<tr>
<td>ratio</td>
<td>A positive rational number, with which Number of Images is determined by the formula: (number of images) = ratio times (number of lesions). Note that in calculation, it rounds ratio * NLvector to an integer.</td>
</tr>
<tr>
<td>replicate.datset</td>
<td>A Number indicate that how many you replicate dataset from user's specified dataset.</td>
</tr>
<tr>
<td>ModifiedPoisson</td>
<td>Logical, that is TRUE or FALSE. If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion. Similarly, If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image. To know details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.) If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c) $\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L}$, $\frac{F_2 + F_3 + F_4 + F_5}{N_L}$,</td>
</tr>
</tbody>
</table>
\[
\frac{F_3 + F_4 + F_5}{N_L},
\]
\[
\frac{F_4 + F_5}{N_L},
\]
\[
\frac{F_5}{N_L},
\]

where \(N_L\) is a number of lesions (signal). To emphasize its denominator \(N_L\), we also call it the *False Positive Fraction (FPF) per lesion*. On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\) (Default), then *False Positive Fraction (FPF)* is given by
\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_4 + F_5}{N_I},
\]
\[
\frac{F_5}{N_I},
\]

where \(N_I\) is the number of images (trial). To emphasize its denominator \(N_I\), we also call it the *False Positive Fraction (FPF) per image*. The model is fitted so that the estimated FROC curve can be ragraded as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{FALSE}\)) or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE}\)). If \(\text{ModifiedPoisson} = \text{TRUE}\), then FROC curve means the expected pair of FPF *per lesion* and TPF. On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\), then FROC curve means the expected pair of FPF *per image* and TPF. So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). In traditional FROC analysis, it uses only
per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

mean.truth This is a parameter of the latent Gaussian assumption for the noise distribution.

sd.truth This is a parameter of the latent Gaussian assumption for the noise distribution.

z.truth This is a parameter of the latent Gaussian assumption for the noise distribution.

ite To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

cha To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

Details

In Bayesian inference, if sample size is large, then posterior tends to the Dirac measure. So, the error and variance of estimates should be tends to zero as sample size tends to infinity.

This function check this phenomenen.

If model has problem, then it contains some non-decreasing vias with respect to sample size.

Revised 2019 Nov 1

Provides a reliability of our posterior mean estimates. Using this function, we can find what digit makes sence.

In the real world, the data for modality comparison or observer performan evaluation is 100 images or 200 images. In such scale data, any estimate of AUC will contain error at most 0.0113... So, the value of AUC should round in 0.XXX and not 0.XXXXX or 0.XXXXXX or more. Since error is 0.00113... and hence 4 digit or more digit is meaningless. In such manner, we can analyze the errors.

We note that if we increase the number of images or lesions, the errors decrease.

For example, if we use 20000 images in FROC trial, then the error of AUC will be 0.0005... and thus, so on. Thus large number of images gives us more reliable AUC. However the radiologist cannot read such large (20000) images.

Thus, the error will be 0.00113...

If the number of images are given before hand and moreover if we obtains the estimates, then we can run this function using these two, we can find the estimated errors by simulation. Of course, the estimates is not the truth, but roughly speaking, if we assume that the estimates is not so far
from truth, and the error analysis is rigid with respect to changing the truth, then we can say using estimates as truth, the result of this error analysis can be regarded as an actual error. I want to go home. Unfortunately, my house is ...

Value

Replicated datasets, estimates, errors,...etc I made this program 1 years ago? and now I forget ... the precise return values. When I see today, 2019 August. It retains too many return values to explain all of them.

Examples

```r
#----------------------------------------------------------------------------------------
# 0) 0-th example
#----------------------------------------------------------------------------------------

datasets <- error_ssrc(  
  NLvector = c(100, 10000000, 1000000000),  
  ite = 2222
)

# By the following, we can extract only datasets whose model has converged.
# datasets$convergent.dataList.as.dataframe

#----------------------------------------------------------------------------------------
# 1) 1-st example
#----------------------------------------------------------------------------------------
# Long column width is required in R console.

datasets <- error_ssrc(NLvector = c(  
  33L,  
  50L,  
  11L,  
  111L,  
  1111L,  
  11111L,  
  111111L,  
  1111111L,  
  999999999L),  
  # NIvector,  
  ratio=2,  
  replicate.dataset =3,  
  ModifiedPoisson = FALSE,  
  mean.truth=0.6,  
  sd.truth=5.3,
```
datasets <- error_srsc(NLvector = c(33L, 50L, 111L, 1111111L, 999999999L),
NIvector,
ratio=2,
replicate.dataset =3,
ModifiedPoisson = FALSE,
mean.truth=0.6,
sd.truth=5.3,
z.truth =c(-0.8,0.7,2.38),
ite =2222
)

#--
2) Plot the error of AUC with respect to NI
#--
Long column width is required in R console.

a <- error_srsc()
aa <- a$Bias.for.various.NL

error.of.AUC <- aa[8,]
y <- subset(aa[8,], select = 2:length(aa[8,]))
y <- as.numeric(y)
y <- abs(y)
upper_y <- max(y)
lower_y <- min(y)
x <- 1:length(y)
plot(x, y, ylim = c(lower_y, upper_y))

From this plot, we cannot see whether the error has decreased or not.
Thus, we replot with the log y-axis, the we will see that the error
has decreased with respect to number of images and lesions.

ggplot(data.frame(x=x, y=y), aes(x = x, y = y)) +
 geom_line() +
 geom_point() +
 scale_y_log10()

Revised 2019 Sept 25

General print of log scale
df <- data.frame(x = c(10, 100, 1000, 10, 100, 1000),
 y = c(1100, 220000, 33000000, 1300, 240000, 36000000),
 group = c("1", "1", "1", "2", "2", "2"))

ggplot2::ggplot(df, aes(x = x, y = y, shape = group)) +
 ggplot2::geom_line(position = position_dodge(0.2)) + # Dodge lines by 0.2
 ggplot2::geom_point(position = position_dodge(0.2), size = 4)+ # Dodge points by 0.2
 ggplot2::scale_y_log10()+
 ggplot2::scale_x_log10()

2) Add other param into plot plain of the error of AUC with respect to NI

#--

a <- error_srsc()
aa <- a$Bias.for.various.NL

error.of.AUC <- aa[8,]
y1 <- subset(aa[8,], select = 2:length(aa[8,]))
y1 <- as.numeric(y1)
y1 <- abs(y1)
LLL <- length(y1)
y2 <- subset(aa[7,], select = 2:length(aa[7,]))
y2 <- as.numeric(y2)
y2 <- abs(y2)
y <- c(y1,y2)

upper_y <- max(y)
lower_y <- min(y)

group <- rep(seq(1,2,1),1 , each=LLL)
x <- rep(seq(1,LLL,1),2 , each=1)
group <- as.character(group)
df <- data.frame(x=x,y=y,group=group)

ggplot2::ggplot(df, aes(x = x, y = y, shape = group)) +
ggplot2::geom_line(position = position_dodge(0.2)) + # Dodge lines by 0.2
 ggplot2::geom_point(position = position_dodge(0.2), size = 4)+ # Dodge points by 0.2
 ggpplot2::scale_y_log10()#ggplot2::scale_x_log10()

#--
Confidence level = 4
#--
datasets <-error_srsc(NLvector = c(33L, 50L, 111L, 11111L, 1111111L, 111111111L, 999999999L),
 # NIvector,
 ratio=2,
 replicate.dataset =3,
 ModifiedPoisson = FALSE,
 mean.truth=-0.22,
 sd.truth=5.72,
 z.truth =c(-0.46,-0.20,0.30,1.16),

error_srsc_error_visualization

Description

Visualization Of Error Analysis

Usage

error_srsc_error_visualization(return.value.of_error_srsc,
log_scale_x.axis = TRUE)

Arguments

return.value.of_error_srsc
 A return value of the function error_srsc().
log_scale_x.axis
 A logical, whether x axis is log scale or not.

Value

A long format dataframe of error and its parameter name

See Also

error_srsc_variance_visualization
Examples

General plot

def <- data.frame(x=runif(100), y=runif(100), g= as.factor(rep(1:5,10)))

ggplot(df, aes(x = x, y = y, shape = g)) +
 geom_point(size = 3) +
 scale_shape_manual(values = c(1,2,3,4,5,6,7,8,9))

Use slightly larger points and use custom values for the shape scale

def <- data.frame(x=runif(100), y=runif(100), g= as.factor(rep(1:25,4)))

Use slightly larger points and use custom values for the shape scale

a <- error_srsc()

error_srsc_error_visualization(a)

In case of C = 4, arbitrary C is available.
#--

a <- error_srsc(NLvector = c(100, 10000, 1000000, 10000000),
 ratio=2,
 replicate.datset =2,
 ModifiedPoisson = FALSE,
 mean.truth=0.6,
 sd.truth=5.3,
 z.truth=c(-0.8,0.7,2.38,3), # Here we use the C=4
 ite =500)

error_srsc_error_visualization(a)
In case of C = 7, arbitrary C is available.

```r
a <- error_srsc(NLvector = c(100, 10000, 1000000, 10000000),
    ratio=2,
    replicate.dataset =2,
    ModifiedPoisson = FALSE,
    mean.truth=0.6,
    sd.truth=5.3,
    z.truth =c(-0.8,0.7,2.38,3,3.4,3.6,3.8), # Here we use the C=7
    ite =500
)

error_srsc_error_visualization(a)
error_srsc_variance_visualization(a)
```
error_srsc_variance_visualization

Visualization Of variance Analysis

Description

Visualization Of variance Analysis

Usage

```r
error_srsc_variance_visualization(return.value.of_error_srsc,
   log_scale_x.axis = TRUE)
```

Arguments

- `return.value.of_error_srsc`
 A return value of the function `error_srsc()`.
- `log_scale_x.axis`
 A logical, whether x axis is log scale.

Value

A long format dataframe of error and its parameter name

Examples

```r
a <- error_srsc()
error_srsc_variance_visualization(a)

a <- error_srsc(replicate.dataset = 100)
error_srsc_variance_visualization(a)
```
explanation_about_package_BayesianFROC

Explanation of this package

Description

In R console, explanation are shown.

Usage

`explanation_about_package_BayesianFROC()`

Examples

`explanation_about_package_BayesianFROC()`

explanation_for_what_curves_are_drawn

Print out about what curves are drawn

Description

For package developer.

Usage

`explanation_for_what_curves_are_drawn(modalityID, readerID)`

Arguments

- `modalityID`
 A vector.
- `readerID`
 A vector.

Value

Nothing
Examples

#================The first example======================================

modalityID <- c(1,2)
readerID <- c(1,2,3)
explanation_for_what_curves_are_drawn(modalityID, readerID)

#================The second example======================================

modalityID <- 1
readerID <- c(1,2,3)
explanation_for_what_curves_are_drawn(modalityID, readerID)

dottest

extractAUC

Obtain AUC

Description

Extract AUC for both srsr and MRMC data.

Usage

extractAUC(StanS4class, dig = 3, summary = TRUE,
 new.imaging.device = TRUE, print_CI_of_AUC = TRUE)

Arguments

StanS4class An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
dig digits of estimates.
summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
new.imaging.device Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.
print_CI_of_AUC

Logical, if `TRUE` then Credible intervals of AUCs for each modality are plotted.

Value

The estimates of AUC with respect to modalities. It also retains the name vector, `nnname = c(A[1], A[2], ..., A[M])`.

extract_data_frame_from_dataList_MRMC

Extract sub data frame from list of FROC data

Description

Extract sub data frame from list of FROC data

Usage

```r
eextract_data_frame_from_dataList_MRMC(dataList)
```

Arguments

- `dataList`: MRMC data list.

Value

A data frame consisting of modality ID vector, reader ID vector, confidence vector, hit vector and false alarms vector.

Examples

```r
#----------------------------------------------------------------------------------------
# 2) use existing dataset, named dddddd
#----------------------------------------------------------------------------------------

fit_GUI_Shiny_MRMC(DF = extract_data_frame_from_dataList_MRMC(ddd))
```
extract_EAP_by_array
Extract Estimates Preserving Array Format.

Description

Extract posterior mean estimates (EAP) by array format.

Usage

```r
extract_EAP_by_array(StanS4class, name.of.parameter)
```

Arguments

- `StanS4class`: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and etc.

- `name.of.parameter`: An parameter name (given as a character string, should not surround by ""). The name of parameter which user want to extract. Parameters are contained in the parameter block of each Stan file in the path: inst/extdata.

Details

If an estimate is an array, then this function extract estimated parameters preserving an array format. The `rstan` also has such function, i.e., `rstan::get_posterior_mean()`. However this function does not extract parameter as an array but coerce to the class matrix.

Value

A list of datalists from the posterior predictive distribution

Examples

```r
#=================================The first example: MRMC case ========================
#----------------------------------------------------------------------------------------
# MRMC case: Extract a estimates from fitted model objects
#----------------------------------------------------------------------------------------

# Make a fitted model object of class stanfitExtended
# which is inherited from the S4class stanfit.
# The following example, fitted model is the hierarchical Bayesian FROC model
# which is used to compare modality.

fit <- fit_Bayesian_FROC( ite = 1111,
                          summary = FALSE,
                          dataList = dataList.Chakra.Web.orderd,
                          cha=1)
```
extract_EAP_by_array

Extract one dimensional array "z = z[]",

z <- extract_EAP_by_array(
 fit, # The above fitted model object
 z # One of the parameter in "fit"
)

Extract two dimensional array "AA = AA[,]",

AA <- extract_EAP_by_array(
 fit,
 AA
)

Extract three dimensional array "ppp = ppp[,]",

ppp <- extract_EAP_by_array(fit, ppp)

#================================ The second example: singler reader and single modality ==============
#--
Of course, for the case of srsc, it is also available.
We shall show the case of srsc in which case the parameters are not array,
but in such a case we can extract estimates preserving its format such as vector.

fit <- fit_Bayesian_FROC(ite = 1111,
 summary = FALSE,
 dataList = dataList.Chakra.1,
 cha=2)

To extract the posterior mean for parameter "A" representing AUC, we run the following;

A <- extract_EAP_by_array(
 fit,
 A
)

To extract the posterior mean for parameter "z" indicating decision thresholds;
z <- extract_EAP_by_array(
 fit,
 z
)

2019.05.21 Revised.

#--
name.of.parameter surrounded by double quote is also available
#--

Let fit be the above fitted model object.
Then the following two codes are same.

extract_EAP_by_array(fit, "A")
extract_EAP_by_array(fit, A)

Unfortunately, the later case sometimes cause the R CMD check error which said
that no visible binding, since object A is not defined.
For example, if we use the later in the functiton: metadata_to_DrawCurve_MRMC
Then R command said some NOTE that

> checking R code for possible problems ... NOTE
metadata_to_DrawCurve_MRMC: no visible binding for global variable 'A'
Undefined global functions or variables: A

Revised 2019 Oct 19

I am not sure, does this package development make me happy?
Back pain being due to an abnormality in my immune system, which is caused
my exposure to surfactants or latex (not LaTeX).

Revised 2019 Jun 19

extract_EAP_CI

MRMC: Extract Estimates of a vector from stanfitExtended object
Description

We extract the EAPs and CIs from the stanfitExtended S4 class which is an inherited class of the stanfit S4 class.

Usage

extract_EAP_CI(StanS4class, parameter.name, dimension.of.parameter, dig = 5, summary = TRUE)

Arguments

StanS4class An S4 object of the class stanfit. No need that it is the S4 class stanfitExtended.

parameter.name character vector. E.g., use as "aaa". for names of parameter described in the parameter block of stan file.

dimension.of.parameter If parameter aaa is vector, i.e., aaa[1], aaa[2],...aaa[6] then dimension.of.parameter = 6

dig To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named ...??.. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

summary Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

Details

To validate our model has no bias, that is comparison of true parameters of distributions and EAPs, we have to extract the estimates from the stanfitExtended object. And this function do it.

Value

EAPs, CI.

See Also

extract_estimates_MRMC

Examples

First we create the following fitted model object of class stanfitExtend.

fit <- fit_Bayesian_FROC(
 BayesianFROC::dataList.Chakra.Web.orderd, # data
 ite = 1111, # MCMC iteration
 summary = FALSE # verbose
)
Second, to extract the EAPs of the parameter z,
we also have to specify the dimension of vector z as follows.

```
extract_EAP_CI(
    fit,  # The above fitted model object
    "z",  # The parameter name described in parameter block of stan file
    5    # The dimension of vector z
)
```

One more example: to extract the EAPs of the parameter dz,
we also have to specify its dimension of vector dz as follows.

```
list.of.dz <- extract_EAP_CI(fit, "dz", 4)
```

One more example: to extract the EAPs of the parameter w,
we also have to specify its dimension of vector w as follows.

```
list.w <- extract_EAP_CI(fit, "w", 1)
```

Note that this function can extract only parameter of "vector" and not "array" !!
To extract such array please use "extract_estimates_MRMC()"
which extract all parameters from a hierarchical Bayesian model
estimated from user data. So, this function is no longer meaningless,
and I will delete this.

I forgot where I use this function
2019.05.21 Revised.

#--
the following gives convergence seed 2019 Oct 12
#--
```

```r
f <- fit_Bayesian_FROC(ite = 1111, cha = 1, summary = T, dataList = ddd, see = 123456)
z <- extract_EAP_CI(f, "z", f@dataListCz.EAP
#usethis::use_data(z)
#usethis package cannot be to use since it is not declared in NAMESPACE.
```

```
dz <- extract_EAP_CI(f, "dz", f@dataList$C-1$dz.EAP
#usethis::use_data(dz)
#usethis package cannot be to use since it is not declared in NAMESPACE.
```
extract_estimates_MRMC

MRMC: Extract All Posterior Mean Estimates from stanfitExtended object

Description

Extract Posterior Mean estimates, preserving its format, such as array, vector. From MRMC models, it extract the EAPs and CIs.

Usage

extract_estimates_MRMC(StanS4class, dig = 3)

Arguments

StanS4class  An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

dig  To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

Details

To validate our model has no bias, that is comparison of true parameters of distributions and EAPs, we have to extract the estimates from the stanfitExtended object. And this function do it.

Value

EAPs, CIs which preserving its format, such as array, vector.

See Also

extract_EAP_CI() is used in the function extract_estimates_MRMC().
Examples

```r
fit <- fit_Bayesian_FROC(
 dataList.Chakra.Web.orderd,
 summary = FALSE,
 ite=111)

EAPs <- extract_estimates_MRMC(fit)
#
```

---

**extract_parameters_from_replicated_models**

*Extract Estimates From Replicated MRMC Model*

**Description**

Extract Estimates From Replicated MRMC Model

**Usage**

```r
extract_parameters_from_replicated_models(initial.seed = 123,
mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,
z.truth = BayesianFROC::z_truth, NI = 200, NL = 142,
ModifiedPoisson = FALSE, replication.number = 2, summary = FALSE,
ite = 1111)
```

**Arguments**

- `initial.seed`: The variable `initial.seed` is used to replicate datasets. That is, if you take `initial.seed = 1234`, then the seed 1234, 1235, 1236, 1237, 1238, etc are for the first replication, the second replication, the third replication, etc. If the n-th model does not converge for some n, then such model has no mean and thus the non-convergent models are omitted to calculate the errors.
- `mu.truth`: array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.
- `v.truth`: array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.
- `z.truth`: This is a parameter of the latent Gaussian assumption for the noise distribution.
- `NI`: Number of Images.
- `NL`: Number of Lesions.
ModifiedPoisson

Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
Similarly,
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained per image and per lesion. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows ($F_c$ denotes the number of false alarms with confidence level $c$):

$$
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_4 + F_5}{N_L},
$$

$$
\frac{F_5}{N_L},
$$

where $N_L$ is a number of lesions (signal). To emphasize its denominator $N_L$, we also call it the False Positive Fraction (FPF) per lesion.
On the other hand,
if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by

$$
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
$$

$$
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
$$

$$
\frac{F_3 + F_4 + F_5}{N_I},
$$
\[ \frac{F_4 + F_5}{N_I}, \]

\[ \frac{F_5}{N_I}, \]

where \( N_I \) is the number of images (trial). To emphasize its denominator \( N_I \), we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be ragraded as the expected pairs of FPF per image and TPF per lesion (\textit{ModifiedPoisson} = \texttt{FALSE}) or as the expected pairs of FPF per image and TPF per lesion (\textit{ModifiedPoisson} = \texttt{TRUE}).

If \textit{ModifiedPoisson} = \texttt{TRUE}, then FROC curve means the expected pair of FPF \texttt{per lesion} and TPF.

On the other hand, if \textit{ModifiedPoisson} = \texttt{FALSE}, then FROC curve means the expected pair of FPF \texttt{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \textit{ModifiedPoisson} = \texttt{TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \textit{ModifiedPoisson} = \texttt{TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\textbf{repetition.number}

For fixed number of lesions, images, the dataset of hits and false alarms are replicated, and the number of replicated datasets are specified by this variable.

\textbf{summary}

Logical: \texttt{TRUE} of \texttt{FALSE}. Whether to print the verbose summary, i.e., logical; If \texttt{TRUE} then verbose summary is printed in the \texttt{R} console. If \texttt{FALSE}, the output is minimal. I regret, this variable name should be verbose.

\textbf{ite}

To be passed to the function \texttt{rstan::sampling()} in \texttt{rstan}. An argument of \texttt{rstan::sampling()} in which it is named \texttt{iter}. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

\textbf{Value}

A list of estimates, posterior means and posterior credible interbals for each model parameter. EAPs and CI interbals.
false_and_its_rate_creator

False Alarm Creator for both cases of MRMC and srsc

Description

From threshold, mean and S.D., data of False Alarm are created.

Usage

false_and_its_rate_creator(z.truth = BayesianFROC::z_truth, NI = 333,
NL = 111, ModifiedPoisson = FALSE, seed = 12345)

Arguments

z.truth Vector of dimension = C represents the thresholds of bi-normal assumption.
NI The number of images.
NL The number of lesions.
ModifiedPoisson Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly,

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows ($F_c$ denotes the number of false alarms with confidence level $c$)
\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]
\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]
\[
\frac{F_3 + F_4 + F_5}{N_L},
\]
\[
\frac{F_4 + F_5}{N_L},
\]
\[
\frac{F_5}{N_L},
\]

where \( N_L \) is a number of lesions (signal). To emphasize its denominator \( N_L \), we also call it the **False Positive Fraction (FPF) per lesion**.

On the other hand, if \( \text{ModifiedPoisson} = \text{FALSE} \) (Default), then **False Positive Fraction (FPF)** is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_4 + F_5}{N_I},
\]
\[
\frac{F_5}{N_I},
\]

where \( N_I \) is the number of images (trial). To emphasize its denominator \( N_I \), we also call it the **False Positive Fraction (FPF) per image**.

The model is fitted so that the estimated FROC curve can be ragraded as the expected pairs of FPF per image and TPF per lesion (\( \text{ModifiedPoisson} = \text{FALSE} \) )
or as the expected pairs of FPF per image and TPF per lesion (ModifiedPoisson = TRUE).

If ModifiedPoisson = TRUE, then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if ModifiedPoisson = FALSE, then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether ModifiedPoisson = TRUE or FALSE. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

**seed**

The seed for creating false alarm which are generated by the Poisson distributions using the specified seed.

**Details**

From threshold, mean and S.D. of the latent Gaussian noise distribution in the bi-normal assumption, data of False Alarm are created. For the process of this drawing false alarm samples, its rate are also created. So, in the return values of the function, the rates for each confidence level is also attached.

**Value**

A list of vectors, indicating a true parameter and a sample.

A vector indicating a true parameter: False rate from thresholds.

A vector indicating a sample, more precisely, The truth parameter of false alarm rate calculated by true thresholds $z$ and also, one-time drawn samples of false alarms from the calculated false rates.

**Examples**

```r
false.rate <- false_and_its_rate_creator()
```

```r
In SBC, Poisson rate = 0, so... i have to investigate.
set.seed(1234)

dz <- runif(3, 0.01, 1) # sample size
```

---

**false_and_its_rate_creator**

```
true_and_its_rate_creator
```

---

```
set.seed(1234)

In SBC, Poisson rate = 0, so... i have to investigate.

set.seed(1234)

dz <- runif(3, 0.01, 1) # sample size
```

---

**Details**

From threshold, mean and S.D. of the latent Gaussian noise distribution in the bi-normal assumption, data of False Alarm are created. For the process of this drawing false alarm samples, its rate are also created. So, in the return values of the function, the rates for each confidence level is also attached.

**Value**

A list of vectors, indicating a true parameter and a sample.

A vector indicating a true parameter: False rate from thresholds.

A vector indicating a sample, more precisely, The truth parameter of false alarm rate calculated by true thresholds $z$ and also, one-time drawn samples of false alarms from the calculated false rates.

**Examples**

```r
false.rate <- false_and_its_rate_creator()
```
false_and_its_rate_creator

w <- rnorm(1, 
    0, 
    1 
)

z <- z_from_dz(w,dz )

false_and_its_rate_creator(z )

#----------------------------------------------------------------------------------------
# Poisson rate is OK
#----------------------------------------------------------------------------------------
set.seed( 1234 )
dz <-runif(3, # sample size
    0.01, # lower bound
    1    # upper bound
)

w <- rnorm(1, 
    0, 
    10  # It cause the poisson rate become small
)

z <- z_from_dz(w,dz )

false_and_its_rate_creator(z )

#----------------------------------------------------------------------------------------
# In SBC, Poisson rate is small
#----------------------------------------------------------------------------------------
set.seed( 1234 )
dz <-runif(3, # sample size
    0.01, # lower bound
    1    # upper bound
)

w <- rnorm(1, 
    0, 
    10  # It cause the poisson rate become small
)
false_and_its_rate_creator_MRMC

MRMC: False Alarm Creator For each Modality and each Reader.

Description

From threshold, mean and S.D., data of False Alarm are created.

Usage

false_and_its_rate_creator_MRMC(z.truth = BayesianFROC::z_truth, 
NI = 333, NL = 111, ModifiedPoisson = FALSE, seed = 12345, 
M = 5, Q = 4, summary = TRUE)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z.truth</td>
<td>Vector of dimension = C represents the thresholds of bi-normal assumption.</td>
</tr>
<tr>
<td>NI</td>
<td>The number of images.</td>
</tr>
<tr>
<td>NL</td>
<td>The number of lesions.</td>
</tr>
<tr>
<td>ModifiedPoisson</td>
<td>Logical, that is TRUE or FALSE.</td>
</tr>
<tr>
<td></td>
<td>If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.</td>
</tr>
<tr>
<td></td>
<td>Similarly, if ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.</td>
</tr>
<tr>
<td></td>
<td>To know details, see the author’s paper in which I explained per image and per lesion. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)</td>
</tr>
<tr>
<td></td>
<td>If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)</td>
</tr>
</tbody>
</table>
|           | \[
|           | \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L}, \]
|           | \frac{F_2 + F_3 + F_4 + F_5}{N_L}, \]
|           | \frac{F_3 + F_4 + F_5}{N_L}, \]
|           | \frac{F_4 + F_5}{N_L}, \]
|           | \frac{F_5}{N_L}, \]
|           | where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion. |
|           | On the other hand, if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by |
|           | \[
|           | \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I}, \]
|           | \frac{F_2 + F_3 + F_4 + F_5}{N_I}, \]
\[ \frac{F_3 + F_4 + F_5}{N_I}, \]

\[ \frac{F_4 + F_5}{N_I}, \]

\[ \frac{F_5}{N_I}, \]

where \( N_I \) is the number of images (trial). To emphasize its denominator \( N_I \), we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE}) or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE}).

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of \textbf{FPF per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\begin{itemize}
  \item \texttt{seed} \quad The seed for creating false alarm which are generated by the Poisson distributions using the specified seed.
  \item \texttt{M} \quad Number of modalities
  \item \texttt{Q} \quad Number of readers
  \item \texttt{summary} \quad Logical: \texttt{TRUE} of \texttt{FALSE}. Whether to print the verbose summary, i.e., logical; If \texttt{TRUE} then verbose summary is printed in the \texttt{R} console. If \texttt{FALSE}, the output is minimal. I regret, this variable name should be verbose.
\end{itemize}

\textbf{Value}

Vector for false alarms as an element of list of MRMC data.
Examples

false_and_its_rate_creator_MRMC()

Description

This is for the author of this package. project option build and reload ^^^^

Usage

fit_Bayesian_FROC()

fit_Bayesian_FROC(dataList, ModifiedPoisson = FALSE, prior = -1, zz = 1, verbose = TRUE, print_CI_of_AUC = TRUE, model_reparametrized = FALSE, Model_MRMC_non_hierarchical = TRUE, prototype = FALSE, PreciseLogLikelihood = TRUE, DrawCurve = length(dataList$m) == 0, Drawcol = TRUE, summary = TRUE, make.csv.file.to.draw.curve = FALSE, mesh.for.drawing.curve = 10000, significantLevel = 0.7, new.imaging.device = TRUE, cha = 1, ite = 10000, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE, DrawCFPCTP = TRUE, dig = 5, war = floor(ite/5), see = 1234567, Null.Hypothesis = FALSE)
Arguments

dataList  A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable
in the function rstan::sampling() in which it is named data.
For the single reader and a single modality data, the dataList is the following
forms:
dataList.Example <- list(
  h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
  f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level

  NL = 124, # number of lesions (signals)
  NI = 63, # number of images (trials)
  C = 5) # number of confidence, .. the author thinks it can be calculated
  # as the length of h or f ...? ha,why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC()
such as fit_Bayesian_FROC(dataList.Example).
To make this R object dataList representing FROC data, this package provides
three functions:
  convertFromJafroc()  If data is a JAFROC xlsx formulation.
  dataset_creator_new_version()  Enter TP and FP data by table.
  create_dataset()  Enter TP and FP data by interactive manner.
Before fitting a model, we can confirm our dataset is correctly formulated by
using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting
of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.
f  Non-negative integer vector specifying number of False Alarms associated
with each confidence level. The first component corresponding to the high-
est confidence level.
h  Non-negative integer vector specifying number of Hits associated with each
confidence level. The first component corresponding to the highest confidence
level.
NL  A positive integer, representing Number of Lesions.
NI  A positive integer, representing Number of Images.
C  A positive integer, representing Number of Confidence level.
The detail of these dataset, see the datasets endowed with this package. 'Note
that the maximal number of confidence level, denoted by C, are included, how-
ever, Note that confidence level vector c should not be specified. If specified,
will be ignored , since it is created by c <-c(rep(C:1)) in the program and
do not refer from user input data, where C is the highest number of confidence
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

**data Format:**

* A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c < c(rep(C:1)) automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

**Multiple readers and multiple modalities case, i.e., MRMC case**

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components `m, q, c, h, f, NL, C, M, Q`:

- C A positive integer, representing the **highest** number of confidence level, this is a scalar.
- M A positive integer vector, representing the number of modalities.
- Q A positive integer, representing the number of readers.
- c A vector of positive integers, representing the confidence level. This vector must be made by `rep(rep(C:1), M*Q)`.

---

NI=63, NL=124
In R console ->

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>
A vector of positive integers, representing the **modality** ID vector.

q  A vector of positive integers, representing the **reader** ID vector.

h  A vector of non-negative integers, representing the number of **hits**.

f  A vector of non-negative integers, representing the number of **false alarm**.

NL A positive integer, representing the Total number of **lesions** for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 **Example data.**

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

*false alarms* = False Positives = FP

*hits* = True Positives = TP

**ModifiedPoisson**

Logical, that is TRUE or FALSE.

If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated *per lesion*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF *per lesion*.

Similarly,

If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated *per image*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF *per image*. 
To know details, see the author’s paper in which I explained *per image* and *per lesion*. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the *False Positive Fraction (FPF)* is defined as follows ($F_c$ denotes the number of false alarms with confidence level $c$)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where $N_L$ is a number of lesions (signal). To emphasize its denominator $N_L$, we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if `ModifiedPoisson = FALSE` (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where $N_I$ is the number of images (trial). To emphasize its denominator $N_I$, we also call it the *False Positive Fraction (FPF) per image*. 
The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE})

or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE})

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of FPF \textbf{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is a redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\begin{itemize}
  \item \texttt{prior} positive integer, to select the prior
  \item \texttt{zz} A real number: parameter of prior
  \item \texttt{verbose} A logical, if \texttt{TRUE}, then the redundant summary is printed in R console.
  \item \texttt{print_CI_of_AUC} Logical, if \texttt{TRUE} then Credible intervals of AUCs for each modality are plotted.
  \item \texttt{model_reparametrized} A logical, if \texttt{TRUE}, then a model under construction is used.
  \item \texttt{Model_MRMCM_non_hierarchical} A logical. If \texttt{TRUE}, then the model of multiple readers and multiple modalities consists of no hyper parameters. The reason why the author made this parameter is that the hyper parameter make the MCMC posterior samples be unstable. And also, my hierarachical model is not so good in theoretical perspective. Thus, I made this. The default is \texttt{TRUE}.
  \item \texttt{prototype} A logical, if \texttt{TRUE} then the model is no longer a generative model. Namely, in generally speaking, a dataset drawn from the model cannot satisfy the condition that the sum of the numbers of hits over all confidence levels is bounded from the above by the number of lesions, namely,

$$\sum_{c} H_c \leq N_L$$

However, this model (\texttt{TRUE}) is good in the sense that it admits various initial values of MCMC sampling.

if \texttt{FALSE}, then the model is precisely statistical model in the sense that any dataset drawn from the model satisfies that the sum of the number of hits is not greater than the number of lesions, namely,

$$\sum_{c} H_c \leq N_L.$$
This model is theoretically perfect. However, in the practically, the calculation will generates some undesired results which caused by the so-called flood point???. I forget English 😂. The flood point??? I forgeteedeedeedeed!! Ha. So, prior generates very small hit rates such as 0.0000000000000001234 and it cause the non accurate calculation such as 0.00000000000000000012345= 0.0012 which becomes hit rate and thus OH No!. Then it generates Bernoulli success rate which is not less than 1 !! To avoid this, the author should develop the theory of prior to avoid this very small numbers, however the author has idea but now it does not success.

If prototype = TRUE, then the model for hits is the following:

\[ H_5 \text{ Binomial}(p_5, N_L) \]
\[ H_4 \text{ Binomial}(\frac{p_4}{1 - p_5}, N_L - H_5) \]
\[ H_3 \text{ Binomial}(\frac{p_3}{1 - p_5 - p_4}, N_L - H_5 - H_4) \]
\[ H_2 \text{ Binomial}(\frac{p_2}{1 - p_5 - p_4 - p_3}, N_L - H_5 - H_4 - H_3) \]
\[ H_1 \text{ Binomial}(\frac{p_1}{1 - p_5 - p_4 - p_3 - p_2}, N_L - H_5 - H_4 - H_3 - H_2) \]

On the other hand, if prototype = FALSE, then the model for hits is the following:

Each number of lesions is adjusted so that the sum of hits \( \Sigma c H_c \) is less than the number of lesions (signals, targets) \( N_L \). And hence the model in case of prototype = FALSE is a generative model in the sense that it can replicate datasets of FROC arises. Note that the adjustment of the number of lesions in the above manner leads us the adjustment of hit rates. The reason why we use the hit rates such as \( \frac{p_2}{1 - p_5 - p_4 - p_3} \) instead of \( p_c \) is that it ensures the equality \( E[H_c/N_L] = p_c \). This equality is very important. To establish Bayesian FROC theory so that it is compatible to the classical FROC theory, we need two equations of expectation,

\[ E[H_c/N_L] = p_c, \]
\[ E[F_c/N_X] = q_c, \]

where \( E \) denotes the expectation and \( N_X \) is the number of lesion or the number of images and \( q_c \) is a false alarm rate, namely, \( F_c \text{ Poisson}(N_X q_c) \).
Using the above two equations, we can establish the alternative Bayesian FROC theory preserving classical notions and formulas. For the details, please see the author’s pre print:

Bayesian Models for „„ for?? I forget my paper title .... `:-D. What the hell!? I forget.... My health is so bad to forget , .... I forget.

The author did not notice that the prototype is not a generative model. And hence the author revised the model so that the model is exactly generative model.

But the reason why the author remains the prototype model(prototype = TRUE) is that the convergence of MCMC sampling in case of MRMC is not good in the current model (prototype = FALSE). Because it uses fractions \(\frac{p1}{1-p5-p4-p3-p2}\) and which is very dangerous to numerical perspective. For example, if \(p1\) is very small, then the numerator and denominator of \(\frac{p1}{1-p5-p4-p3-p2}\) is very small. Both of them is like \(0.0000000000000123\ldots\) and such small number causes the non accurate results. So, sometimes, it occurs that \(\frac{p1}{1-p5-p4-p3-p2} > 1\) which never occur in the theoretical perspective but unfortunately, in numerically occurs.

So, now, the author try to avoid such phenomenon by using priors but it now does not success.

Here of course we interpret the terms such as \(N_L - H_5 - H_4 - H_3\) as the remained targets after reader get hits. The author thinks it is another manner to do so like \(N_L - H_1 - H_2 - H_3\), but it does not be employed. Since the author thinks that the reader will assign his suspicious lesion location from high confidence level and in this view point the author thinks it should be considered that targets are found from the highest confidence suspicious location.

\[
\text{PreciseLogLikelihood} \\
\text{Logical, that is TRUE or FALSE. If PreciseLogLikelihood = TRUE (default), then Stan calculates the precise log likelihood with target formulation. If PreciseLogLikelihood = FALSE, then Stan calculates the log likelihood by dropping the constant terms in the likelihood function. In past, I distinct the stan file, one is target formulation and the another is not. But non-target formulation cause some Jacobian warning, thus I made all stanfile with target formulation when I uploaded to CRAN. Thus this variable is now meaningless.}
\]

\[
\text{DrawCurve} \\
\text{Logical: TRUE or FALSE. Whether the curve is to be drawn. TRUE or FALSE. If you want to draw the FROC and AFROC curves, then you set DrawCurve = TRUE, if not then DrawCurve = FALSE. The reason why the author make this variable DrawCurve is that it takes long time in MRMC case to draw curves, and thus default value is FALSE in the case of MRMC data.}
\]

\[
\text{Drawcol} \\
\text{Logical: TRUE of FALSE. Whether the (A)FROC curve is to be drawn by using color of dark theme. The default value is a TRUE.}
\]

\[
\text{summary} \\
\text{Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.}
\]

\[
\text{make.csv.file.to.draw.curve} \\
\text{Logical: TRUE of FALSE. Whether to create a csv file. If TRUE then csv file is created in your desktop to draw an FROC curve and cumulative hits and false alarms by scatter plot. Default is FALSE since it took times to create csv files.}
\]
mesh.for.drawing.curve
A positive large integer, indicating number of dots drawing the curves, default =10000.

significantLevel
This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.

new.imaging.device
Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.

cha
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

ite
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

DrawFROCcurve Logical: TRUE of FALSE. Whether the FROC curve is to be drawn.

DrawAFROCcurve Logical: TRUE of FALSE. Whether the AFROC curve is to be drawn.

DrawCFPCTP Logical: TRUE of FALSE. Whether the CFP and CTP points are to be drawn. CFP Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).

dig
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named digits. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

war
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named warmup. A positive integer representing the Burn in period, which must be less than ite. Defaults to war = floor(ite/5)=10000/5=2000,

see
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named seed. A positive integer representing seed used in stan, default = 1234567.

Null.Hypothesis
Logical, that is TRUE or FALSE. If Null.or.Alternative.Hypothesis = FALSE(default), then fit the alternative model to dataList (for details of models, see vignettes). If Null.or.Alternative.Hypothesis = TRUE, then fit the null model to dataList.(for details of models, see vignettes). Note that the null model is constructed under the null hypothesis that all modality are same observer performance ability. The alternative model is made under the assumption that all modality are not same. The reason why author creates this parameter is to test the null hypothesis by the Bayes factor. But the result of test is not desired one for me. Thus the test is under construction.
Details

Draw MCMC samples using R package: rstan

It also plots FROC curves if a single reader and a single modality case. For details, see vignettes.

Build the S4 object by Stan to fit the author’s Bayesian models introduced in the author’s paper (for details of models, see vignettes). The output of the rstan::sampling() is an object of the S4 class called stanfit. But, in this package, we extended the stanfit class to an S4 class named stanfitExtended. The new S4 class stanfitExtended included new slots for sequential analysis. So, the return value of the function is not the S4 class stanfit but the new S4 class stanfitExtended. Thus, to apply the functions in the rstan package for fitted model objects, we have to change the class of the S4 fitted model objects using the function methods::as() such as by the code methods::as(object = fitted.model.object,"stanfit").

The following items are main substances of this function.

This function fit_Bayesian_FROC is available both a single reader and a single modality case and multiple readers and multiple modality case. Confidence level vector is not required but it is implicitly referred as the decreasing order. For example, if C=3, then it would be a form c=c(3,2,1,3,2,1,...). Even if you write your data according to the order c=c(1,2,3,1,2,3,...), the program does not consider as your order, but c=c(3,2,1,3,2,1,...) instead.

Value

An object of class stanfitExtended which is an inherited S4 class from the S4 class stanfit. By rstan::sampling, the function fit the author’s FROC Bayesian models to user data.

Use this fitted model object for sequential analysis, such as drawing the FROC curve and alternative FROC (AFROC) curves.

Notations and symbols for the Outputs of a single reader and a single modality case

In the following, the notations for estimated parameters are shown.

w A real number representing the lowest threshold of the Gaussian assumption (bi-normal assumption). so \( w = z[1] \).


... 

m A real number representing the mean of the Latent Gaussian distribution for diseased images. In TeX, it denoted by \( \mu \).

\( v \) A positive real number representing the standard deviation of the Latent Gaussian distribution for diseased images. In TeX, it will be denoted by \( \sigma \), not the square of \( \sigma \).

p[1] A real number representing the Hit rate with confidence level 1.
A real number representing the Hit rate with confidence level 2.

A real number representing the Hit rate with confidence level 3.

... 

A positive real number representing the (Cumulative) False positive rate with confidence level 1. In TeX, it will be denoted by $\lambda_1$.

A positive real number representing the (Cumulative) False positive rate with confidence level 2. In TeX, it will be denoted by $\lambda_2$.

A positive real number representing the (Cumulative) False positive rate with confidence level 3. In TeX, it will be denoted by $\lambda_3$.

A positive real number representing the (Cumulative) False positive rate with confidence level 4. In TeX, it will be denoted by $\lambda_4$.

... 


... 

A real number representing the lowest threshold of the (Gaussian) bi-normal assumption.

A real number representing the 2nd threshold of the (Gaussian) bi-normal assumption.

A real number representing the 3rd threshold of the (Gaussian) bi-normal assumption.

A real number representing the fourth threshold of the (Gaussian) bi-normal assumption.

A real number defined by $m/v$, please contact the author's paper for detail.

A real number defined by $1/v$, please contact the author's paper for detail.

A positive real number between 0 and 1, representing AUC, i.e., the area under the alternative ROC curve.

The logarithmic likelihood of our model for your data.

--- Notations and symbols: Outputs of Multiple Reader and Multiple Modality case ---

The lowest threshold of the Gaussian assumption (bi-normal assumption). so $w = z[1]$.

The difference of the first and second threshold of the Gaussian assumption.

The difference of the second and third threshold of the Gaussian assumption.

The difference of the third and fourth threshold of the Gaussian assumption.

The mean of the Latent Gaussian distribution for diseased images.

The variance of the Latent Gaussian distribution for diseased images.

Hit rate with confidence level 1, modality 1, reader 1.

Hit rate with confidence level 2, modality 1, reader 1.

Hit rate with confidence level 3, modality 1, reader 1.
...  
1[1] (Cumulative) False positive rate with confidence level 1.  
1[2] (Cumulative) False positive rate with confidence level 2.  
1[3] (Cumulative) False positive rate with confidence level 3.  
...  
dl[1] This is defined by the difference 1[1] - 1[2].  
dl[2] This is defined by the difference 1[2] - 1[3].  
dl[3] This is defined by the difference 1[3] - 1[4].  
...  
z[1] The lowest threshold of the (Gaussian) bi-normal assumption.  
z[2] The 2nd threshold of the (Gaussian) bi-normal assumption.  
z[3] The 3rd threshold of the (Gaussian) bi-normal assumption.  
z[4] The fourth threshold of the (Gaussian) bi-normal assumption.  
aa This is defined by m/v, please see the author’s paper for more detail.  
bb This is defined by 1/v, please see the author’s paper for more detail.  
AA The area under alternative FROC curve associated to reader and modality.  
A The area under alternative FROC curve associated to modality.  
hyper_v Standard deviation of AA around A.  
lp The logarithmic likelihood of our model for your data.

References

Bayesian Models for Free-response Receiver Operating Characteristic Analysis; Pre-print See vignettes

See Also

—— Before fitting: create a dataset  
convertFromJafroc Convert from JAFROC format xlsx file to the author’s format  
dataset_creator_new_version Create an R object which represent user data.  
create_dataset Create an R object which represent user data.

—— Further sequential analysis: Plot curves Using the result of fitting a Bayesian FROC model, we can go sequential analysis.  
DrawCurves for drawing free response ROC curves.

—— Further sequential analysis: Validation of the Model  
ppp Calculation of a p-value in the Bayesian paradigm.

—— R objects of example datasets from real world or fictitious:  
dataList.Chakra.1 A list for an example dataset of a single reader and a single modality data.  
The word Chakra in the dataset name means that it appears in the paper of Chakrabory.
**dataList.Chakra.2**  A list for an example dataset of a single reader and a single modality data. The word Chakra in the dataset name means that it appears in the paper of Chakraborty.

**dataList.Chakra.3**  A list for an example dataset of a single reader and a single modality data. The word Chakra in the dataset name means that it appears in the paper of Chakraborty.

**dataList.Chakra.4**  A list for an example dataset of a single reader and a single modality data. The word Chakra in the dataset name means that it appears in the paper of Chakraborty.

**dataList.high.ability**  A list for an example dataset of a single reader and a single modality data.

**dataList.low.ability**  A list for an example dataset of a single reader and a single modality data.

**dataList.Chakra.Web**  A list for an example dataset of multiple readers and multiple modalities data. The word Chakra in the dataset name means that it appears in the paper of Chakraborty.

**data.hier.ficitious**  A list for an example dataset of multiple readers and multiple modalities data.

**dataList.High**  A list for an example dataset of a single reader and a single modality data whose AUC is high.

**dataList.Low**  A list for an example dataset of a single reader and a single modality data whose AUC is low.

**data.bad.fit**  A list for an example dataset of a single reader and a single modality data whose fitting is bad, that is chi square is very large. However the MCMC convergence criterion is satisfied with very high quality. Thus the good MCMC convergence does not mean the model is correct. So, to fit a model to this data, we should change the latent Gaussian and differential logarithmic Gaussian to more appropriate distributions for hit and false alarm rate. In theoretically perspective, there is no a prior distribution for hit and false alarm rate. So, if we encounter not good fitting data, then we should change the model, and such change will occur in the latent distributions. The reason why the author saved this data is to show that our model is not unique nor good and gives a future research directions. To tell the truth the author is not interested the FROC theory. My background is mathematics, geometry, pure mathematics. So, I want to go back to my home ground. This program are made to show my skill for programming or my ability. But, now, I do not think to get job. I want to go back mathematics. Soon, my paper is published which is related Gromov Hausdorff topology. Of course, I will publish this package’s theory soon. Please wait.

**d,dd,ddd,dddd,dddd,dddddd,ddddd**  The other datasets, the author like these datasets because name is very simple.

---

**Examples**
# Notations
# h = hits = TP = True Positives
# f = false alarms = FP = False Positives
#
#----------------------------------------------------------------------------------------
# 1) Build a data-set
#----------------------------------------------------------------------------------------

# For a single reader and a single modality case.

dat <- list(c=c(3,2,1), # Confidence level. Note that c is ignored.
h=c(97,32,31), # Number of hits for each confidence level
f=c(1,14,74), # Number of false alarms for each confidence level
NL=259, # Number of lesions
NI=57, # Number of images
C=3) # Number of confidence level

viewdata(dat)

# where,
# c denotes confidence level, i.e., rating of reader.
# 3 = Definitely diseased,
# 2 = subtle,.. diseased
# 1 = very subtle
# h denotes number of hits (True Positives: TP) for each confidence level,
# f denotes number of false alarms (False Positives: FP) for each confidence level,
# NL denotes number of lesions,
# NI denotes number of images,

# For example, in the above example data,
# the number of hits with confidence level 3 is 97,
# the number of hits with confidence level 2 is 32,
# the number of hits with confidence level 1 is 31,
# the number of false alarms with confidence level 3 is 1,
# the number of false alarms with confidence level 2 is 14,
# the number of false alarms with confidence level 1 is 74,

# 2) Fit an FROC model to the above dataset.
fit <- BayesianFROC::fit_Bayesian_FROC(
  dat, # dataset
  ite=1111, #To run in time <5s.
  cha=1 # number of chains, it is better more large.
)

# The return value "fit" is an S4 object of class "stanfitExtended" which is inherited
# from the S4 class "stanfit".

# Change the S4 class of fitted model object

# Change the S4 class from "stanfitExtended" to "stanfit" to apply other packages.
# The fitted model object of class "stanfit" is available for the package ggmc, rstan
# Thus, to use such package, we coerce the class into "stanfit" as follows:

# Change the class from stanfitExtended to stanfit

fit.stan <- methods::as(fit,"stanfit")

# Then, return value "fit.stan" is no longer an S4 object of class "stanfitExtended" but
# the S4 object of class "stanfit".

# Apply the functions for the class stanfit in other packages

rstan::stan_hist(fit.stan, bins=33)
rstan::stan_hist(fit.stan, bins=22)
rstan::stan_hist(fit.stan, bins=11)

# I am not sure why the above stan_hist also works for the new S4 class "stanfitExtended"

# Get pipe operator

`%>%` <- utils::getFromNamespace("%>%", "magrittr")

# Plot about MCMC samples of parameter name "A", representing AUC
# Trace-plot density for parameter "A"

ggmcmc::ggs(fit.stan) %>% ggmcmc::ggs_traceplot(family = "A")

# Posterior density for parameter "A"

ggmcmc::ggs(fit.stan) %>% ggmcmc::ggs_density(family = "A")

# Auto-correlation for parameter "A"

ggmcmc::ggs(fit.stan) %>% ggmcmc::ggs_autocorrelation(family = "A")

# The author does not think the inherited class "stanfitExtended" is good,
# Since the size of object is very redundant and large,
# which caused by the fact that inherited class contains plot data for FROC curve.
# To show the difference of size for the fitted model object of class
# stanfitExtended and stanfit, we execute the following code;

size_of_return_value(fit) - size_of_return_value(methods::as(fit,"stanfit"))

#4) Using the S4 object fit, we can go further step, such as calculation of the
# Chisquare and the p value of the Bayesian version for testing the goodness of fit.
# I think p value has problems that it relies on the sample size with monotonicity.
# But it is well used, thus I hate but I implement the p value.

# Should not write the above data as follows:

# MANNER (A) dat <- list(c=c(1,2,3),h=c(31,32,97),f=c(74,14,1),NL=259,NI=57,C=3)
# Even if user write data in the above MANNER (A),
# the program interpret it as the following MANNER (B);

# MANNER (B)  dat <- list(c=c(3,2,1),h=c(31,32,97),f=c(74,14,1),NL=259,NI=57,C=3)

# Because the vector c is ignored in the program,
# and it is generated by rep(C:1) automatically in the internal of the function.
# So, we can omit the vector c from the list.

#This package is very rigid format, so please be sure that your format is
#exactly same to the data in this package.
#More precisely, the confidence level vector should be denoted rep(C:1) (Not rep(1:C)).
# Note that confidence level vector c should not be specified.
# If specified, will be ignored,
# since it is created by  c <-c(rep(C:1)) in the program and
# do not refer from user input confidence level vector,
# where C is the highest number of confidence levels.

#========================================================================================
# The 2-nd example
#========================================================================================
#
# (1)First, we prepare the data from this package.

dat <- BayesianFROC::dataList.Chakra.1

# (2)Second, we run fit_Bayesian_FROC() in which the rstan::stan() is implemented.
# with data named "dat" and the author's Bayesian model.

fit <- fit_Bayesian_FROC(dat)
# Now, we get the stan's output, i.e., an S4 class object named "fit".

# << Minor Comments>>
# More precisely, this is an S4 object of some inherited class (named stanfitExtended)
# which is extended using stan's S4 class named "stanfit". This new S4 class
# has new slots for the information such as user data, plotting data for FROC curves,
# input data to run this function, etc.

# Using the output "fit",
# we can use the functions in the "rstan" package, for example, as follows;

rstan::stan_trace(fit) # stochastic process of a posterior estimate
rstan::stan_hist(fit) # Histogram of a posterior estimate
rstan::stan_rhat(fit) # Histogram of rhat for all parameters
rstan::summary(fit) # summary of fit by rstan

#========================================================================================
# The 3-rd example
#========================================================================================

# Fit a model to a hand made data

# 1) Build the data for a single reader and a single modality case.

dat <- list(
  c = c(3, 2, 1), # Confidence level, which is ignored.
  h = c(97, 32, 31), # Number of hits for each confidence level
  f = c(1, 14, 74), # Number of false alarms for each confidence level
  NL = 259, # Number of lesions
  NI = 57, # Number of images
  C = 3) # Number of confidence level

# where,
# c denotes confidence level, , each components indicates that
# 3 = Definitely lesion,
# 2 = subtle,
# 1 = very subtle
# That is the high number indicates the high confidence level.
# h denotes number of hits
# (True Positives: TP) for each confidence level,
# f denotes number of false alarms
(False Positives: FP) for each confidence level,
NL denotes number of lesions,
NI denotes number of images,

2) Fit and draw FROC and AFROC curves.

\[
\text{fit} \leftarrow \text{fit\_Bayesian\_FROC(dat, DrawCurve = TRUE)}
\]

(( REMARK ))
Changing the hits and false alarms denoted by h and f
in the dataset denoted by dat, respectively,
user can draw the various curves.
Enjoy drawing the curves for various datasets in case of
a single reader and a single modality data

# For Prior and Bayesian Update:
Calculates a posterior mean and variance
for each parameter
# Mean values of posterior samples are used as point estimates, and
# Although the variance of posteriors receives less attention,
# but to make a prior, we will need the it.
# For example, if we assume that model parameter m has prior distributed by
# Gaussian, then we have to know the mean and variance to characterize prior.

e <- rstan::extract(fit)

# model parameter m and v is a number,
# indicating the mean and variance of signal distribution, respectively.
stats::var(e$m)
mean(e$m)
stats::var(e$v)
mean(e$v)

# The model parameter z or dz is a vector, and thus we execute the following;
# z = ( z[1], z[2], z[3] )
# dz = ( z[2]-z[1], z[3]-z[2] )

# 'Posterior mean of posterior MCMC samples for parameter z and dz
apply(e$dz, 2, mean)
apply(e$z, 2, mean)

# 'Posterior variance of posterior MCMC samples for parameter z and dz
apply(e$dz, 2, var)
apply(e$z, 2, var)
apply(e$d1, 2, mean)
apply(e$l, 2, mean)
apply(e$p, 2, mean)
apply(e$p, 2, var)
# Revised 2019 Sept 6

#========================================================================================
# The 4-th example
#========================================================================================
#
# 1) Build the data by create_dataset() which endowed in this package.
dataList <- create_dataset()
#Now, as a return value of create_dataset(), we get the FROC data (list) named dataList.
#
# 2) Fit an MRMC or srsc FROC model.
fit <- fit_Bayesian_FROC(dataList)

#========================================================================================
# The 5-th example
#========================================================================================
# Comparison of the posterior probability for AUC

# In the following, we calculate the probability of the events that
# the AUC of some modality is greater than the AUC of another modality.

# Posterior Probability for some events of AUCs by using posterior MCMC samples

# This example shows how to use the stanfit (stanfit.Extended) object.
# Using stanfit object, we can extract posterior samples and using these samples,
# we can calculate the posterior probability of research questions.
fit <- fit_Bayesian_FROC(dataList.Chakra.Web.ordered, ite = 1111, summary = FALSE)

# For example, we shall show the code to compute the posterior probability of the ever
# that the AUC of modality 1 is larger than that of modality 2:

e <- extract(fit)

# This code means that the MCMC samples are retained in the object e for all parameters.
# For example, the AUC is extracted by the code e$A and it is a two dimensional array.
# The first component indicates the MCMC samples and
# the second component indicate the modality ID.

# For example, the code e$A[,1] means the vector of MCMC samples of the 1st modality.
# For example, the code e$A[,2] means the vector of MCMC samples of the 2nd modality.
# For example, the code e$A[,3] means the vector of MCMC samples of the 3rd modality.
# To calculate the posterior probability of the ever
# that the AUC of modality 1 is larger than that of modality 2,
# we execute the following R script:

mean(e$A[,1] > e$A[,2])

# Similarly, to compute the posterior probability that
# the AUC of modality 1 is larger than that of modality 3:

mean(e$A[,1] > e$A[,3])

# Similarly, to compute the posterior probability that
# the AUC of modality 1 is larger than that of modality 4:

mean(e$A[,1] > e$A[,4])

# Similarly, to compute the posterior probability that
# the AUC of modality 1 is larger than that of modality 5:

mean(e$A[,1] > e$A[,5])

# Similarly, to compute the posterior probability that
# the AUC of modality 1 is larger than that of modality 5 at least 0.01

mean(e$A[,1] > e$A[,5]+0.01)

# Similarly,
mean( e$A[,1] > e$A[,5] + 0.01 )
mean( e$A[,1] > e$A[,5] + 0.02 )
mean( e$A[,1] > e$A[,5] + 0.03 )
mean( e$A[,1] > e$A[,5] + 0.04 )
mean( e$A[,1] > e$A[,5] + 0.05 )
mean( e$A[,1] > e$A[,5] + 0.06 )
mean( e$A[,1] > e$A[,5] + 0.07 )
mean( e$A[,1] > e$A[,5] + 0.08 )

# Since any posterior distribution tends to the Dirac measure whose center is
# true parameter under the assumption that the model is correct in the sense that the
# true distribution is belongs to a family of models.
# Thus using this procedure, we will get
# the true parameter if any more large sample size we can take.

# Close the graphic device to avoid errors in R CMD check.

Close_all_graphic_devices()

#========================================================================================
# The 6-th Example for MRMC data
#========================================================================================

# To draw FROC curves for each modality and each reader, the author provides codes.
# First, we make a fitted object of class stanfitExtended as following manner.

fit <- fit_Bayesian_FROC( ite = 1111,
                           cha = 1,
                           summary = F,
                           Null.Hypothesis = F,
                           dataList = dd # This is a MRMC dataset.
)

# Using this fitted model object called fit, we can draw FROC curves for the
# 1-st modality as following manner:

```r
drawCurves(
 fit, # This is a fitted model object
 modalityID = 1, # Here, the modality is specified
 readerID = 1:4, # Reader is specified 1,2,3,4
 new.imaging.device = T, # Since it is T = TRUE, the new imaging device is created and curves are drawn in it.
)
```

# The next codes are quite same, except modality ID and new.imaging.device
# The code that "new.imaging.device = F" means that the curves are drawn using
# the previous imaging device to plot the 1-st and 2-nd modality curves draw in the same
# Plot plain. Drawing in different curves in same plain, we can compare the curve
# of modality. Of course, the interpretation of FROC curve is the ordinal ROC curve,
# that is,  
# if curve is upper then the observer performance with its modality is more greater.
# So, please enjoy drawing curves.

```r
drawCurves(fit, modalityID = 2, readerID = 1:4, new.imaging.device = F)
drawCurves(fit, modalityID = 3, readerID = 1:4, new.imaging.device = F)
drawCurves(fit, modalityID = 4, readerID = 1:4, new.imaging.device = F)
drawCurves(fit, modalityID = 5, readerID = 1:4, new.imaging.device = F)
```

# Never let your direction of life or methods of working by the others.
# If so, and if you lose somethings, then you will regret.
# What I want to say it the most important things is healthy.
# Sarfactant is very familiar among people, but it is dangerous.

#========================================================================================
# The 7-th example NON-CONVERGENT CASE 2019 OCT.
#========================================================================================

```r
ff <- fit_Bayesian_FROC(ite = 1111, cha = 1, summary = T, dataList = ddd)
```

# THIS CASE DID NOT CONVERGE. THERE IS NOT UNSTABLE CHAIN, 
# BUT ABSOLUTELY CONSTANT CHAINS APPEARS, SUCH CASE IS THE FIRST EXPERIENCE TO ME
# WHY ABSOLUTELY CONSTANT CHAIN APPEARS, AND EXCEPT THESE CONSTANT CHAINS, THE
# ALL CHAINS DID CONVERGES,.... I DO NOT KNOW WHY BUT .... WHY ??

dat <- list(
  c=c(3,2,1), #Confidence level
  h=c(73703933,15661264,12360003), #Number of hits for each confidence level
  f=c(1738825,53666125,254965774), #Number of false alarms for each confidence level
  NL=100000000, #Number of lesions
  NI=200000000, #Number of images
  C=3) #Number of confidence level

# From the examples of the function mu_truth_creator_for_many_readers_MRMCData()
#----------------------------------------------------------------------------------------
# Large number of readers cause non-convergence  
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMCData(M=4,Q=6)
m <- m_truth_creator_for_many_readers_MRMCData(M=4,Q=6)
d <- create_datalist_MRMCD(mu.truth = m, v.truth = v)
fit <- fit_Bayesian_FROC( ite = 1111, cha = 1, summary = T, dataList = d)

plot_FPF_and_TPF_from_a_dataset(fit@dataList)

#----------------------------------------------------------------------------------------
# convergence  
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMCData(M=2,Q=21)
m <- m_truth_creator_for_many_readers_MRMCData(M=2,Q=21)
d <- create_datalist_MRMCD(mu.truth = m, v.truth = v)
fit <- fit_Bayesian_FROC( ite = 200, cha = 1, summary = T, dataList = d)
# non-convergence
#

v <- v_truth_creator_for_many_readers_MRMC_data(M=5,Q=6)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=5,Q=6)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 200, cha = 1, summary = T, dataList = d)

# convergence
#

v <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=36)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 2000, cha = 1, summary = T, dataList = d)

# non-convergence
#

v <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 2000, cha = 1, summary = T, dataList = d)

# donttest
fit_GUI

Fit with GUI via Shiny

Description

First, please execute, then user will understand what it is. This function is the one of the most important function in this package. I do not assume that the user is familiar with R script but FROC analysis. So, I made this function to provide the Graphical User Interface (GUI) for users. I hope it helps someone in the world.

Usage

```r
fit_GUI(display.mode = FALSE)
```

Arguments

- `display.mode` Logical, passing to `runApp`. Default is FALSE corresponding to "normal", and if TRUE, then "showcase" which shows code. The author made this, but it did not work or ignored, that is, showcase did not work. Why???

Value

None

Examples

```r
#No need to consider the variables, it is sufficient in default values.
#fit_GUI()
```

'
**Description**

simple is vest

**Usage**

```r
fit_GUI_dashboard(DF = data.frame(h = c(97L, 32L, 31L), f = c(1L, 14L, 74L)), NL.max = 1111, NI.max = 1111, NL.initial = 259, MCMC.chains.max = 4)
```

**Arguments**

- **DF**: initial data to be fitted
- **NL.max**: max number of bins indicating the maximal number in which the number of lesions can move
- **NI.max**: max number of bins indicating the maximal number in which the number of images can move
- **NL.initial**: Natural number indicating the initial number of lesions. Default value =259. The reason why the author made this is in example code, the author made a very strange data in it, the default value = 259 is not satisfies the data format. That is in the example, total number of hits is greater than 259 and it is impossible. So, I have to change the default value.
- **MCMC.chains.max**: max number of bins indicating number of MCMC chains

**Details**

First, please execute, then user will understand what it is. This function is the one of the most important function in this package. I do not assume that the user is familiar with R script but FROC analysis. So, I made this function to provide the Graphical User Interface (GUI) for users. I hope it helps someone in the world.

**Value**

None

**Author(s)**

Issei Tsunoda
Examples

#----------------------------------------------------------------------------------------
# 1) Use the default User Interface
#----------------------------------------------------------------------------------------

#No need to consider the variables, it is sufficient in default values.

#fit_GUI_dashboard()

#----------------------------------------------------------------------------------------
# 2) Change the User Interface
#----------------------------------------------------------------------------------------

# We can change the max input of the number of lesions and the max of number of images
#
#fit_GUI_dashboard(NL.max = 2222,
#                  NI.max = 3333)

#----------------------------------------------------------------------------------------
# 3) Change the Default value
#----------------------------------------------------------------------------------------

# fit_GUI_dashboard(
# DF= data.frame( h=dataList.Chakra.4$h,
#                 f=dataList.Chakra.4$f
#                 )
#                 )
# Or equivalently,

# fit_GUI_dashboard(
# DF= data.frame( h = c(160, 25, 15, 7),
#                 f = c( 8, 16, 18, 13)
#                 )
#                 )
#fit_GUI_MRMC

# 4) Change the user Interface

#fit_GUI_dashboard(
  #   DF= data.frame(
  #       h = c(160, 25, 15, 7),
  #       f = c(8, 16, 18, 13)
  #   ),
  #
  #       NL.max = 1192,
  #       NI.max = 794,
  #       MCMC.chains.max = 6
  #   )

---

**fit_GUI_MRMC**  
*Fit with GUI via Shiny in case of MRMC*

**Description**

First, please execute, then user will understand what it is. This function is the one of the most important function in this package. I do not assume the user is familiar with R script but FROC analysis. So, I made this function to provide the Graphical User Interface (GUI) for users. I hope it helps someone in the world.

**Usage**

`fit_GUI_MRMC(M = 2, Q = 3, C = 4)`

**Arguments**

- **M**  
  No. of modalities
- **Q**  
  No. of readers
- **C**  
  No. of confidence levels revised 2019 Nov. 21
Value

None

---

**fit_GUI_MRMC_new**  
*Fit an MRMC model to data with Shiny GUI*

Description

I love you.

Usage

```r
fit_GUI_MRMC_new(M = 2, Q = 3, C = 4)
```

Arguments

- `M`  
- `Q`  
- `C`

Details

I need you.

Value

`ret`

---

**fit_GUI_Shiny**  
*Fit with GUI via Shiny (Simple version)*

Description

simple is vest

Usage

```r
fit_GUI_Shiny(DF = data.frame(h = c(97L, 32L, 31L), f = c(1L, 14L, 74L)),
 NL.max = 1111, NI.max = 1111, NL.initial = 259,
 MCMC.chains.max = 4)
```
**Arguments**

- **DF**: initial data to be fitted
- **NL.max**: max number of bins indicating the maximal number in which the number of lesions can move
- **NI.max**: max number of bins indicating the maximal number in which the number of images can move
- **NL.initial**: Natural number indicating the initial number of lesions, Default value = 259. The reason why the author made this is in example code, the author made a very strange data in it, the default value = 259 is not satisfies the data format. That is in the example, total number of hits is greater than 259 and it is impossible. So, I have to change the default value.
- **MCMC.chains.max**: max number of bins indicating number of MCMC chains

**Details**

First, please execute, then user will understand what it is. This function is the one of the most important function in this package. I do not assume that the user is familiar with R script but FROC analysis. So, I made this function to provide the Graphical User Interface (GUI) for users. I hope it helps someone in the world.

**Value**

None

**Author(s)**

Issei Tsunoda

**Examples**

```r
#--
1) Use the default User Interface
#--
'

#No need to consider the variables, it is sufficient in default values.

fit_GUI_Shiny()
```
# 2) Change the User Interface
#----------------------------------------------------------------------------------------

# We can change the max input of the number of lesions and the max of number of images
#
fit_GUI_Shiny(NL.max = 2222,
             NI.max = 3333)

#----------------------------------------------------------------------------------------

# 3) Change the Default value
#----------------------------------------------------------------------------------------

fit_GUI_Shiny(
    DF= data.frame( h=dataList.Chakra.4$h,
                    f=dataList.Chakra.4$f
                    )
    )

# Or equivalently,

fit_GUI_Shiny(
    DF= data.frame( h = c(160, 25, 15, 7),
                    f = c( 8, 16, 18, 13)
                    )
    )

#----------------------------------------------------------------------------------------

# 4) Change the user Interface
#----------------------------------------------------------------------------------------

fit_GUI_Shiny(
    DF= data.frame( h = c(160, 25, 15, 7),
                    f = c( 8, 16, 18, 13)
                    ),
    NL.max = 1192,
    NI.max = 794,
    MCMC.chains.max = 6
)
#----------------------------------------------------------------------------------------
# 5) CUI rather than GUI input
#----------------------------------------------------------------------------------------

# How to input data using CUI?
# This example gives an answer.
#
# CUI: Characteristic user interface

# Here, I show the very strange data, that is, the number of hits is all 33
# and replicated 10 times, that is,
# h is substituted by rep(33L,10) indicating 33 33 33 33 33 33 33 33 33 33
# f is also same as h.

fit_GUI_Shiny(NL.initial=555,
DF =data.frame(
   h= as.integer(rep(33,10)),
   f= as.integer(rep(33,10))
)
)

# The author made this example since, when I check my program,
# such as whether the color used in polygon() is appropriate or not.

# If user thinks that it is very hard to input hits and false alarms
# by GUI manner, then use this characteristic like manner.

---

**fit_GUI_Shiny_MRMCG**

**Fit with GUI via Shiny (in case of MRMC case)**

---

**Description**

Fit a hierarchical Bayesian model with GUI.
Revised 2019 Nov.

Usage

```r
fit_GUI_Shiny_MRMC(DF = data.frame(m = as.integer(BayesianFROC::dd$m), q = as.integer(BayesianFROC::dd$q), c = as.integer(BayesianFROC::dd$c), h = as.integer(BayesianFROC::dd$h), f = as.integer(BayesianFROC::dd$f)), NL.max = 1111, NI.max = 1111, NL.initial = 142, NI.initial = 199, seed.initial.of.MCMC = 237410, MCMC.chains.max = 4)
```

Arguments

- **DF**: A dataframe, consisting of five vectors: reader ID, modality ID, confidence levels, hits, false alarms. Initial data to be fited.
- **NL.max**: Max number of bins indicating the maximal number in which the number of lesions can move.
- **NI.max**: Max number of bins indicating the maximal number in which the number of images can move.
- **NL.initial**: Natural number indicating the initial number of lesions. Default value = 142.
- **NI.initial**: Natural number indicating the initial number of images. Default value = 199.
- **seed.initial.of.MCMC**: Positive integers indicating the initial seed of MCMC sampling. Default is 1234.
- **MCMC.chains.max**: Max number of bins indicating number of MCMC chains.

Details

In what follows, we assume that our dataset has more than two readers or modalities, namely, our dataset is the MRMC case. By imaging methods, we mean such as MRI, CT, PET, etc.

Revised 2019 Nov 25.

Value

None

Examples

```r
#--
1) Use the default User Interface
#--
#' #No need to consider the variables, it is sufficient in default values.
```
**fit_GUI_simple_from_apppp_file**

*Fit with GUI via Shiny*

**Description**

First, please execute, then user will understand what it is. This function is the one of the most important function in this package. I do not assume that the user is familiar with R script but FROC analysis. So, I made this function to provide the Graphical User Interface (GUI) for users. I hope it helps someone in the world.

**Usage**

```r
fit_GUI_simple_from_apppp_file(display.mode = FALSE)
```
Arguments

display.mode Logical, passing to runApp. Default is FALSE corresponding to "normal", and if TRUE, then "showcase" which shows code. The author made this, but it did not work or ignored, that is, showcase did not work. Why???

Value

None

Author(s)

Issei Tsunoda

Examples

```r
No need to consider the variables, it is sufficient in default values.
fit_GUI_simple_from_apppp_file()
```

Description

Fit and Draw the FROC models (curves).

Usage

```r
fit_MRMC(dataList, DrawCurve = FALSE, verbose = TRUE,
print_CI_of_AUC = TRUE, PreciseLogLikelihood = FALSE,
summary = TRUE, dataList.Name = "", prior = 1,
ModifiedPoisson = TRUE, mesh.for.drawing.curve = 10000,
significantLevel = 0.7, cha = 1, war = floor(ite/5), ite = 10000,
dig = 3, see = 1234569, Null.Hypothesis = FALSE,
prototype = FALSE, model_reparametrized = FALSE,
Model_MRMC_non_hierarchical = TRUE, zz = 1)
```
Arguments

dataList  A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable
in the function rstan::sampling() in which it is named data.

For the single reader and a single modality data, the dataList is the following
forms:

dataList.Example <- list(
    h = c(41,22,14,8,1),  # number of hits for each confidence level
    f = c(1,2,5,11,13),  # number of false alarms for each confidence level

    NL = 124,  # number of lesions (signals)
    NI = 63,  # number of images (trials)
    C = 5)  # number of confidence, . the author thinks it can be calculated
    as the length of h or f ...? ha,why I included this. ha .. should be omitted.
)

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).

To make this R object dataList representing FROC data, this package provides three functions:

    convertFromJafroc()  If data is a JAFROC xlsx formulation.
    dataset_creator_new_version()  Enter TP and FP data by table .
    create_dataset()  Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function viewdata().

________________________________________________________________________

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

f  Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

h  Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL  A positive integer, representing Number of Lesions.

NI  A positive integer, representing Number of Images.

C  A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored , since it is created by C = c(rep(C:1)) in the program and do not refer from user input data, where C is the highest number of confidence
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

**data Format:**

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

**Multiple readers and multiple modalities case, i.e., MRMC case**

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, c, M, Q:

C A positive integer, representing the **highest** number of confidence level, this is a scalar.
M A positive integer vector, representing the number of modalities.
Q A positive integer, representing the number of readers.
c A vector of positive integers, representing the confidence level. This vector must be made by rep(rep(C:1), M*Q)
m A vector of positive integers, representing the modality ID vector.
q A vector of positive integers, representing the reader ID vector.
h A vector of non-negative integers, representing the number of hits.
f A vector of non-negative integers, representing the number of false alarm.
NL A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

* false alarms = False Positives = FP
* hits = True Positives = TP

DrawCurve Logical: TRUE of FALSE. Whether the curve is to be drawn. TRUE or FALSE. If you want to draw the FROC and AFROC curves, then you set DrawCurve = TRUE, if not then DrawCurve = FALSE. The reason why the author make this variable DrawCurve is that it takes long time in MRMC case to draw curves, and thus default value is FALSE in the case of MRMC data.

verbose A logical, if TRUE, then the redundant summary is printed in R console.

print_CI_of_AUC Logical, if TRUE then Credible intervals of AUCs for each modality are plotted.
PreciseLogLikelihood
Logical, that is TRUE or FALSE. If PreciseLogLikelihood = TRUE (default), then Stan calculates the precise log likelihood with target formulation. If PreciseLogLikelihood = FALSE, then Stan calculates the log likelihood by dropping the constant terms in the likelihood function. In past, I distinct the stan file, one is target formulation and the another is not. But non-target formulation cause some Jacobian warning, thus I made all stanfile with target formulation when I uploaded to CRAN. Thus this variable is now meaningless.

summary
Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

dataList.Name
This is not for user, but the author for this package development.
prior
positive integer, to select the prior

ModifiedPoisson
Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion. Similarly,
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omiited from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c )

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where \( N_L \) is a number of lesions (signal). To emphasize its denominator \( N_L \), we also call it the False Positive Fraction (FPF) per lesion.
On the other hand, if `ModifiedPoisson = FALSE` (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

where \( N_I \) is the number of images (trial). To emphasize its denominator \( N_I \), we also call it the *False Positive Fraction (FPF) per image*. The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (`ModifiedPoisson = FALSE`) or as the expected pairs of FPF per image and TPF per lesion (`ModifiedPoisson = TRUE`).

If `ModifiedPoisson = TRUE`, then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if `ModifiedPoisson = FALSE`, then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether `ModifiedPoisson = TRUE` or `FALSE`. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether `ModifiedPoisson = TRUE` or `FALSE`. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

**mesh.for.drawing.curve**

A positive large integer, indicating number of dots drawing the curves, default =10000.

**significantLevel**

This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.
To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `chains`. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `warmup`. A positive integer representing the Burn in period, which must be less than `ite`. Defaults to `war = floor(ite/5)=10000/5=2000`.

To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `iter`. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `...`. A positive integer representing the Significant digits, used in stan Cancellation. default = 5.

To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `seed`. A positive integer representing seed used in stan, default = 1234567.

Logical, that is `TRUE` or `FALSE`. If `Null.or.Alternative.Hypothesis = FALSE`(default), then fit the alternative model to `dataList` (for details of models, see vignettes ). If `Null.or.Alternative.Hypothesis = TRUE`, then fit the null model to `dataList` (for details of models, see vignettes ). Note that the null model is constructed under the null hypothesis that all modality are same observer performance ability. The alternative model is made under the assumption that all modality are not same. The reason why author creates this parameter is to test the null hypothesis by the Bayes factor. But the result of test is not desired one for me. Thus the test is under construction.

A logical, if `TRUE` then the model is no longer a generative model. Namely, in generally speaking, a dataset drawn from the model cannot satisfy the condition that the sum of the numbers of hits over all confidence levels is bounded from the above by the number of lesions, namely,

\[ \sum c H_c \leq N_L \]

However, this model (`TRUE`) is good in the sense that it admits various initial values of MCMC sampling.

if `FALSE`, then the model is precisely statistical model in the sense that any dataset drawn from the model satisfies that the sum of the number of hits is not greater than the number of lesions, namely,

\[ \sum c H_c \leq N_L \]

This model is theoretically perfect. However, in the practically, the calculation will generates some undesired results which caused by the so-called flood .... I forget English :-D. The flood point?? I forgooooooooooool!! Ha. So, prior
generates very small hit rates such as 0.0000000000000001234 and it cause the non accurate calculation such as 0.00000000000012345=0.0012 which becomes hit rate and thus OH No!. Then it generates Bernoulli success rate which is not less than 1!! To avoid this, the author should develop the theory of prior to avoid this very small numbers, however the author has idea but now it does not success.

If prototype = TRUE, then the model for hits is the following:

\[
H_5 \text{ Binomial}(p_5, N_L) \\
H_4 \text{ Binomial}(p_4, N_L - H_5) \\
H_3 \text{ Binomial}(\frac{p_3}{1 - p_5 - p_4}, N_L - H_5 - H_4) \\
H_2 \text{ Binomial}(\frac{p_2}{1 - p_5 - p_4 - p_3}, N_L - H_5 - H_4 - H_3) \\
H_1 \text{ Binomial}(\frac{p_1}{1 - p_5 - p_4 - p_3 - p_2}, N_L - H_5 - H_4 - H_3 - H_2)
\]

On the other hand, if prototype = FALSE, then the model for hits is the following:

\[
H_5 \text{ Binomial}(p_5, N_L) \\
H_4 \text{ Binomial}(\frac{p_4}{1 - p_5}, N_L - H_5) \\
H_3 \text{ Binomial}(\frac{p_3}{1 - p_5 - p_4}, N_L - H_5 - H_4) \\
H_2 \text{ Binomial}(\frac{p_2}{1 - p_5 - p_4 - p_3}, N_L - H_5 - H_4 - H_3) \\
H_1 \text{ Binomial}(\frac{p_1}{1 - p_5 - p_4 - p_3 - p_2}, N_L - H_5 - H_4 - H_3 - H_2)
\]

Each number of lesions is adjusted so that the sum of hits \(\Sigma_c H_c\) is less than the number of lesions (signals, targets) \(N_L\). And hence the model in case of prototype = FALSE is a generative model in the sense that it can replicate datasets of FROC arises. Note that the adjustment of the number of lesions in the above manner leads us the adjustment of hit rates. The reason why we use the hit rates such as \(\frac{p_2}{1 - p_5 - p_4 - p_3}\) instead of \(p_c\) is that it ensures the equality \(E[H_c/N_L] = p_c\). This equality is very important. To establish Bayesian FROC theory so that it is compatible to the classical FROC theory, we need two equations of expectation,

\[
E[H_c/N_L] = p_c, \\
E[F_c/N_X] = q_c,
\]

where \(E\) denotes the expectation and \(N_X\) is the number of lesion or the number of images and \(q_c\) is a false alarm rate, namely, \(F_c \text{ Poisson}(N_X q_c)\).

Using the above two equations, we can establish the alternative Bayesian FROC theory preserving classical notions and formulas. For the details, please see the author’s pre print:
Bayesian Models for ... for?? I forget my paper title .... :-D. What the hell!? I forget.... My health is so bad to forget , .... I forget.

The author did not notice that the prototype is not a generative model. And hence the author revised the model so that the model is exactly generative model.

But the reason why the author remains the prototype model(prototype = TRUE) is that the convergence of MCMC sampling in case of MRMC is not good in the current model (prototype = FALSE). Because it uses fractions $\frac{p_1}{1-p_5-p_4-p_3-p_2}$ and which is very dangerous to numerical perspective. For example, if $p_1$ is very small, then the numerator and denominator of $\frac{p_1}{1-p_5-p_4-p_3-p_2}$ is very small. Both of them is like 0.000000000000000123.... and such small number causes the non accurate results. So, sometimes, it occurs that $\frac{p_1}{1-p_5-p_4-p_3-p_2} > 1$ which never occur in the theoretical perspective but unfortunately, in numerically occurs.

SO, now, the author try to avoid such phenomenon by using priors but it now does not success.

Here of course we interpret the terms such as $N_L - H_5 - H_4 - H_3$ as the remained targets after reader get hits. The author thinks it is another manner to do so like $N_L - H_1 - H_2 - H_3$, but it does not be employed. Since the author thinks that the reader will assign his suspicious lesion location from high confidence level and in this view point the author thinks it should be considered that targets are found from the highest confidence suspicious location.

**model_reparametrized**

A logical, if TRUE, then a model under construction is used.

**Model_MRMC_non_hierarchical**

A logical. If TRUE, then the model of multiple readers and multiple modalities consists of no hyper parameters. The reason why the author made this parameter is that the hyper parameter make the MCMC posterior samples be unstable. And also, my hierarchical model is not so good in theoretical perspective. Thus, I made this. The default is TRUE.

**zz**

A real number: parameter of prior

---

**fit_MRMC_versionTWO**  
*Fit and Draw the FROC models (curves) version2.*

**Description**

Fit and Draw the FROC models (curves). This model is aimed to draw a free-response ROC curves for multiple readers, that is, resulting FROC curve is one for multiple readers and reflects their hits and false alarms.

**Usage**

```r
fit_MRMC_versionTWO(dataList, DrawFROCcurve = TRUE, DrawCFPCTP = TRUE,
version = 2, mesh.for.drawing.curve = 10000,
significantLevel = 0.7, cha = 1, war = floor(ite/5), ite = 10000,
dig = 5, see = 1234569)
```
Arguments

dataList A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable in the function rstan::sampling() in which it is named data.
For the single reader and a single modality data, the dataList is the following forms:
dataList.Example <- list(
  h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
  f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level

  NL = 124, # number of lesions (signals)
  NI = 63, # number of images (trials)
  C = 5) # number of confidence, . . the author thinks it can be calculated as the length of h or f . . .? ha, why I included this. ha . . should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).
To make this R object dataList representing FROC data, this package provides three functions:

  convertFromJafroc() If data is a JAFROC xlsx formulation.
  dataset_creator_new_version() Enter TP and FP data by table.
  create_dataset() Enter TP and FP data by interactive manner.
Before fitting a model, we can confirm our dataset is correctly formulated by using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

  f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

  h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

  NL A positive integer, representing Number of Lesions.

  NI A positive integer, representing Number of Images.

  C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) in the program and do not refer from user input data, where C is the highest number of confidence level.
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

**Data Format:**

*A single reader and a single modality case*

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function viewdata().

---

**Multiple readers and multiple modalities case, i.e., MRMC case**

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function fit_Bayesian_FROC(), dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, C, M, Q:

C A positive integer, representing the **highest** number of confidence level, this is a scalar.
M A positive integer vector, representing the number of **modalities**.
Q A positive integer, representing the number of **readers**.
c A vector of positive integers, representing the **confidence level**. This vector must be made by rep(rep(C:1), M*Q)
m A vector of positive integers, representing the modality ID vector.
q A vector of positive integers, representing the reader ID vector.
h A vector of non-negative integers, representing the number of hits.
f A vector of non-negative integers, representing the number of false alarm.
NL A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function viewdata() shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

DrawFROCcurve Logical: TRUE or FALSE. Whether the FROC curve is to be drawn.

DrawCFPCTP Logical: TRUE or FALSE. Whether the CFP and CTP points are to be drawn. 
CFP: Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).

version 2 or 3

mesh.for.drawing.curve A positive large integer, indicating number of dots drawing the curves, default =10000.
significantLevel
This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.

cha
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

war
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named warmup. A positive integer representing the Burn in period, which must be less than ite. Defaults to war = floor(ite/5)=10000/5=2000,

ite
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

dig
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

see
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named seed. A positive integer representing seed used in stan, default = 1234567.

Author(s)
Issei Tsunoda

See Also
Example data:
BayesianFROC::dataList.one.modality
This dataset is a single modality dataset with multiple readers.

Examples
## Not run:
```
#(1)First, we prepare the data from this package.

dat <- BayesianFROC::dataList.one.modality

#(2)Second, we run fit_Bayesian_FROC() in which the rstan::stan() is implemented.
#with data named "dat" and the author's Bayesian model.
```
```r
fit <- fit_MRMC_versionTWO(dat, see = 12, ite = 2222)
It needs a lot of memory and so, in this example we take the small iteration,
i.e., ite = 2222. However if user execute this, then the ite = 30000 is recommended
for getting reliable estimates.

Note that we change the seed from default to 12 to get a convergence model.
If users encounter the convergence issues,
then please consider changing the seed like this example.
The resulting FROC curve means the summarizing curve over all readers

Second example
(1) First, we prepare the data from this package.
 dat <- BayesianFROC::dataList.Chakra.Web

Second, we run fit_Bayesian_FROC() in which the rstan::stan() is implemented.
with data named "dat" and the author's Bayesian model.

 fit <- fit_MRMC_versionTWO(dataList.Chakra.Web, ite = 2222)
The resulting FROC curve means the summarizing curve over all readers

It needs a lot of memory and so, in this example we take the small iteration,
i.e., ite = 2222. However if user execute this, then the ite = 30000 is recommended
for getting reliable estimates.

#' # Close the graphic device to avoid errors in R CMD check.

if (!grDevices::dev.cur() >= 2) {
 for (i in 1:grDevices::dev.cur() - 1) message("The", i, "-th graphic device is omitted.")
 grDevices::dev.off()
}
```
fit_Null_hypothesis_model_to_(
    dataList, DrawCurve = FALSE, 
    PreciseLogLikelihood = FALSE, dataList.Name = "", 
    ModifiedPoisson = FALSE, verbose = TRUE, summary = TRUE, 
    mesh.for.drawing.curve = 10000, significantLevel = 0.7, cha = 1, 
    war = floor(ite/5), ite = 10000, dig = 3, see = 1234569)

Arguments

dataList A list, consisting of f,h,NL,NI,C. The detail of these dataset, please see the endowed datasets. Note that the maximal number of confidence level, denoted by C, are included, however, should not include its each confidence level in dataList

DrawCurve Logical: TRUE or FALSE. Whether the curve is to be drawn. TRUE or FALSE. If you want to draw the FROC and AFROC curves, then you set DrawCurve =TRUE, if not then DrawCurve =FALSE. The reason why the author make this variable DrawCurve is that it takes long time in MRMC case to draw curves, and thus default value is FALSE in the case of MRMC data.

PreciseLogLikelihood Logical, that is TRUE or FALSE. If PreciseLogLikelihood = TRUE(default), then Stan calculates the precise log likelihood with target formulation. If PreciseLogLikelihood = FALSE, then Stan calculates the log likelihood by dropping the constant terms in the likelihood function. In past, I distinct the stan file, one is target formulation and the another is not. But non-target formulation cause some Jacobian warning, thus I made all stanfile with target formulation when I uploaded to CRAN. Thus this variable is now meaningless.

dataList.Name This is not for user, but the author for this package development.

ModifiedPoisson Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly,
If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated *per image*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF *per image*.

To know details, see the author’s paper in which I explained *per image* and *per lesion*. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the *False Positive Fraction (FPF)* is defined as follows (*F_c* denotes the number of false alarms with confidence level *c*)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where *N_L* is a number of lesions (signal). To emphasize its denominator *N_L*, we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if `ModifiedPoisson = FALSE` (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]
where \( N_l \) is the number of images (trial). To emphasize its denominator \( N_l \), we also call it the **False Positive Fraction (FPF) per image**.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\( \text{ModifiedPoisson} = \text{FALSE} \))

or as the expected pairs of FPF per image and TPF per lesion (\( \text{ModifiedPoisson} = \text{TRUE} \)).

If \( \text{ModifiedPoisson} = \text{TRUE} \), then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \( \text{ModifiedPoisson} = \text{FALSE} \), then FROC curve means the expected pair of **FPF per image** and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \( \text{ModifiedPoisson} = \text{TRUE} \) or \( \text{FALSE} \). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \( \text{ModifiedPoisson} = \text{TRUE} \) or \( \text{FALSE} \). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

### verbose
A logical, if \( \text{TRUE} \), then the redundant summary is printed in \( \text{R} \) console.

### summary
Logical: \( \text{TRUE} \) of \( \text{FALSE} \). Whether to print the verbose summary, i.e., logical; If \( \text{TRUE} \) then verbose summary is printed in the \( \text{R} \) console. If \( \text{FALSE} \), the output is minimal. I regret, this variable name should be verbose.

### mesh.for.drawing.curve
A positive large integer, indicating number of dots drawing the curves, default =10000.

### significantLevel
This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.

### cha
To be passed to the function \text{rstan::sampling()} in \text{rstan}. An argument of \text{rstan::sampling()} in which it is named \text{chains}. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

### war
To be passed to the function \text{rstan::sampling()} in \text{rstan}. An argument of \text{rstan::sampling()} in which it is named \text{warmup}. A positive integer representing the Burn in period, which must be less than \text{ite}. Defaults to war = floor(ite/5)=10000/5=2000.

### ite
To be passed to the function \text{rstan::sampling()} in \text{rstan}. An argument of \text{rstan::sampling()} in which it is named \text{iter}. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

### dig
To be passed to the function \text{rstan::sampling()} in \text{rstan}. An argument of \text{rstan::sampling()} in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named seed. A positive integer representing seed used in stan, default = 1234567.

Author(s)
Issei Tsunoda

Description
Build a fitted model object in case of single reader and single modality data dataList. FPF is per image.

Usage
fit_srsc(dataList, prior = -1, new.imaging.device = TRUE, dataList.Name = "", ModifiedPoisson = FALSE, model_reparametrized = FALSE, verbose = TRUE, DrawCurve = TRUE, PreciseLogLikelihood = TRUE, Drawcol = TRUE, make.csv.file.to.draw.curve = FALSE, mesh.for.drawing.curve = 10000, summary = TRUE, DrawFROCcurve = TRUE, DrawAFROCcurve = FALSE, DrawCFPCTP = TRUE, cha = 4, ite = 3000, dig = 5, war = floor(ite/5), see = 1234, prototype = FALSE, zz = 2.55)

Arguments
dataList A list, consisting of f,h,NL,NI,C. The detail of these dataset, please see the endowed datasets. Note that the maximal number of confidence level, denoted by C, are included, however, should not include its each confidence level in dataList
prior positive integer, to select the prior
new.imaging.device Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.
dataList.Name This is not for user, but the author for this package development.
ModifiedPoisson Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
Similarly,
If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author’s paper in which I explained per image and per lesion. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the False Positive Fraction (FPF) is defined as follows ($F_c$ denotes the number of false alarms with confidence level $c$)

$$ \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L}, $$

$$ \frac{F_2 + F_3 + F_4 + F_5}{N_L}, $$

$$ \frac{F_3 + F_4 + F_5}{N_L}, $$

$$ \frac{F_4 + F_5}{N_L}, $$

$$ \frac{F_5}{N_L}, $$

where $N_L$ is a number of lesions (signal). To emphasize its denominator $N_L$, we also call it the False Positive Fraction (FPF) per lesion.

On the other hand, if `ModifiedPoisson = FALSE` (Default), then False Positive Fraction (FPF) is given by

$$ \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I}, $$

$$ \frac{F_2 + F_3 + F_4 + F_5}{N_I}, $$

$$ \frac{F_3 + F_4 + F_5}{N_I}, $$

$$ \frac{F_4 + F_5}{N_I}, $$

$$ \frac{F_5}{N_I}, $$
where \( N_I \) is the number of images (trial). To emphasize its denominator \( N_I \), we also call it the \textit{False Positive Fraction (FPF) per image.}

The model is fitted so that the estimated FROC curve can be graded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE})

or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE})

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of FPF \textbf{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\texttt{model_reparametrized}

A logical, if TRUE, then a model under construction is used.

\texttt{verbose}

A logical, if TRUE, then the redundant summary is printed in \texttt{R} console.

\texttt{DrawCurve}

Logical: TRUE of FALSE. Whether the curve is to be drawn. TRUE or FALSE. If you want to draw the FROC and AFROC curves, then you set \texttt{DrawCurve =TRUE}, if not then \texttt{DrawCurve =FALSE}. The reason why the author make this variable \texttt{DrawCurve} is that it takes long time in MRMC case to draw curves, and thus default value is \texttt{FALSE} in the case of MRMC data.

\texttt{PreciseLogLikelihood}

Logical, that is TRUE or FALSE. If \texttt{PreciseLogLikelihood = TRUE}(default), then Stan calculates the precise log likelihood with target formulation. If \texttt{PreciseLogLikelihood = FALSE}, then Stan calculates the log likelihood by dropping the constant terms in the likelihood function. In past, I distinct the stan file, one is target formulation and the another is not. But non-target formulation cause some Jacobian warning, thus I made all stanfile with target formulation when I uploaded to CRAN. Thus this variable is now meaningless.

\texttt{Drawcol}

Logical: TRUE of FALSE. Whether the (A)FROC curve is to be drawn by using color of dark theme. The default value is a TRUE.

\texttt{make.csv.file.to.draw.curve}

Logical: TRUE of FALSE. Whether to create a csv file. If TRUE then csv file is created in your desktop to draw an FROC curve and cumulative hits and false alarms by scatter plot. Default is FALSE since it took times to create csv files.

\texttt{mesh.for.drawing.curve}

A positive large integer, indicating number of dots drawing the curves, default =10000.
summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

DrawFROCcurve Logical: TRUE of FALSE. Whether the FROC curve is to be drawn.

DrawAFROCcurve Logical: TRUE of FALSE. Whether the AFROC curve is to be drawn.

DrawCFPCTP Logical: TRUE of FALSE. Whether the CFP and CTP points are to be drawn. CFP: Cumulative false positive per lesion (or image) which is also called False Positive Fraction (FPF). CTP Cumulative True Positive per lesion which is also called True Positive Fraction (TPF).

cha To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

ite To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

dig To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named digits. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

war To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named warmup. A positive integer representing the Burn in period, which must be less than ite. Defaults to war = floor(ite/5)=10000/5=2000,

see To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named seed. A positive integer representing seed used in stan, default = 1234567.

prototype A logical, if TRUE then the model is no longer a generative model. Namely, in generally speaking, a dataset drawn from the model cannot satisfy the condition that the sum of the numbers of hits over all confidence levels is bounded from the above by the number of lesions, namely,

$$\Sigma_c H_c \leq N_L$$

However, this model (TRUE ) is good in the sense that it admits various initial values of MCMC sampling, if FALSE, then the model is precisely statistical model in the sense that any dataset drawn from the model satisfies that the sum of the number of hits is not greater than the number of lesions, namely,

$$\Sigma_c H_c \leq N_L .$$

This model is theoretically perfect. However, in the practically, the calculation will generates some undesired results which caused by the so-called flood point??? I forget English :-D. The flood point?? I forgseeeeddeeeet!! Ha. So, prior
generates very small hit rates such as 0.0000000000000001234 and it cause
the non accurate calculation such as 0.0000000000000000000012345=
0.0012 which becomes hit rate and thus OH No!. Then it generates Bernoulli
success rate which is not less than 1 !! To avoid this, the author should develop
the theory of prior to avoid this very small numbers, however the author has idea
but now it does not success.

If prototype = TRUE, then the model for hits is the following:

\[ H_5 \text{ Binomial}(p_5, N_L) \]
\[ H_4 \text{ Binomial}(p_4, N_L - H_5) \]
\[ H_3 \text{ Binomial}(p_3, N_L - H_5 - H_4) \]
\[ H_2 \text{ Binomial}(p_2, N_L - H_5 - H_4 - H_3) \]
\[ H_1 \text{ Binomial}(p_1, N_L - H_5 - H_4 - H_3 - H_2) \]

On the other hand, if prototype = FALSE, then the model for hits is the follow-
ing:

\[ H_5 \text{ Binomial}(p_5, N_L) \]
\[ H_4 \text{ Binomial}(\frac{p_4}{1 - p_5}, N_L - H_5) \]
\[ H_3 \text{ Binomial}(\frac{p_3}{1 - p_5 - p_4}, N_L - H_5 - H_4) \]
\[ H_2 \text{ Binomial}(\frac{p_2}{1 - p_5 - p_4 - p_3}, N_L - H_5 - H_4 - H_3) \]
\[ H_1 \text{ Binomial}(\frac{p_1}{1 - p_5 - p_4 - p_3 - p_2}, N_L - H_5 - H_4 - H_3 - H_2) \]

Each number of lesions is adjusted so that the sum of hits \( \Sigma_c H_c \) is less than
the number of lesions (signals, targets) \( N_L \). And hence the model in case
of prototype = FALSE is a generative model in the sense that it can replicate
datasets of FROC arises. Note that the adjustment of the number of lesions
in the above manner leads us the adjustment of hit rates. The reason why we
use the hit rates such as \( \frac{p_2}{1 - p_5 - p_4 - p_3} \) instead of \( p_c \) is that it ensures the equality
\( E[H_c/N_L] = p_c \). This equality is very important. To establish Bayesian
FROC theory so that it is compatible to the classical FROC theory, we need two
equations of expectation,

\[ E[H_c/N_L] = p_c, \]
\[ E[F_c/N_X] = q_c, \]

where \( E \) denotes the expectation and \( N_X \) is the number of lesion or the number
of images and \( q_c \) is a false alarm rate, namely, \( F_c \text{ Poisson}(N_X q_c) \).

Using the above two equations, we can establish the alternative Bayesian FROC
theory preserving classical notions and formulas. For the details, please see the author’s pre print:
Bayesian Models for ... for?? I forget my paper title .... ’-D. What the hell!? I forget,... My health is so bad to forget,... I forget.

The author did not notice that the prototype is not a generative model. And hence the author revised the model so that the model is exactly generative model. But the reason why the author remains the prototype model(prototype = TRUE) is that the convergence of MCMC sampling in case of MRMC is not good in the current model (prototype = FALSE). Because it uses fractions $\frac{p_1}{1-p_5-p_4-p_3-p_2}$ and which is very dangerous to numerical perspective. For example, if $p_1$ is very small, then the numerator and denominator of $\frac{p_1}{1-p_5-p_4-p_3-p_2}$ is very small. Both of them is like 0.000000000000000123.... and such small number causes the non accurate results. So, sometimes, it occurs that $\frac{p_1}{1-p_5-p_4-p_3-p_2} > 1$ which never occur in the theoretical perspective but unfortunately, in numerically occurs.

SO, now, the author try to avoid such phenomenon by using priors but it now does not success.

Here of course we interpret the terms such as $N_L - H_5 - H_4 - H_3$ as the remained targets after reader get hits. The author thinks it is another manner to do so like $N_L - H_1 - H_2 - H_3$, but it does not be employed. Since the author thinks that the reader will assign his suspicious lesion location from high confidence level and in this view point the author thinks it should be considered that targets are found from the highest confidence suspicious location.

\[zz\]
A real number: parameter of prior

Details

Revised 2019.Jun. 17

Value

An S4 object of class `stanfitExtended`, which is an inherited S4 class from `stanfit`.

To change the S4 class, use

Examples

#First, prepare the example data from this package.

dat <- get(data("dataList.Chakra.1"))

#Second, fit a model to data named "dat"
fit <- fit_srsc(dat)

# Close the graphic device to avoid errors in R CMD check.
Close_all_graphic_devices()

# dotest

---

foo

Description

wait

Usage

foo(X)

Arguments

X sequence of

---

foo

Description

wait

Usage

foo()
foo_of_a_List_of_Arrays

Variance of a List of Arrays

Description

Then the function calculates the variance over all list for each array component.

Usage

foo_of_a_List_of_Arrays(x, name.of.function)

Arguments

x

A List of Arrays. The dimension of array is fixed for all list component.

name.of.function

This is an operator, such as mean, var, sum,... Note that user no need to surround the input by "". For example, mean instead of "mean".

Details

Of course variance can change to sum or mean or any other functions whose entry is a vector. One can find this function in the Stack over flow, since I ask there, and thus the example given in here can also find also there. In my hierarchical Bayesian Model, the estimates has the format arrays. For example the hit rate are array whose subscript is confidence level, modality, and reader. So, when one desire to validate the estimates, it needs to calculate such variance of arrays. When I validate the estimates, I used the function.

Value

An array being reduced form use input list of array via user input operator such as mean, var, sum,...

Examples

#Suppose that x is the following list of arrays:

    a <- array(1,c(2,3,4));
    b <- array(2,c(2,3,4));
    c <- array(3,c(2,3,4));
    d <- array(4,c(2,3,4));
    x <- list(a=a,b=b,c=c,d=d)

foo_of_a_List_of_Arrays(x,sum)
foo_of_a_List_of_Arrays(x,mean)
foo_of_a_List_of_Arrays(x,stats::var)
#Note that the component of list can be vectors with fixed same length.

```r
y <- list(c(1,2,3),
 c(11,22,33),
 c(1111,2222,3333))
```

```r
a <- foo_of_a_List_of_Arrays(y,sum)
```

---

**FROC_curve**

*FROC curve as an embedding map*

**Description**

FROC curve as an embedding map

**Usage**

```r
FROC_curve(x)
```

**Arguments**

- `x` A real number moves in domain of FROC curve

**Value**

`none`

**Examples**

```r
I love you!
```
from_array_to_vector  

Transform from an array to a vector

Description

In stan files of this package, the number of hits, false alarms and hit rates in binomial assumption for MRMC case are written with **the three indexed array** format. Three index indicates confidence levels, modality ID, reader ID. However, hit data passed to the function `BayesianFROC::fit_Bayesian_FROC()` are written with **the vector**. So, in order to connect these different format, (i.e. vector and array,) the author made this function.

Usage

```r
from_array_to_vector(Three.dim.array)
```

Arguments

- **Three.dim.array**
  
  Three dimensional array, such as the number of hits for each confidence level, modality and reader. Or false alarms. Since the author construct the substituting data list as one dimensional (one index) array, it needs to reconstruct to the three indexed array from one dimensional array whose subscript is [confidence level, modality, reader] or vice versa.

Value

One dimensional array transformed from user input three dimensional array.

Examples

```r
h.array.etc <- hits_from_thresholds()

h.vector <- from_array_to_vector(h.array.etc$h)
```

```r

a <- array_easy_example()

a.vector <- from_array_to_vector(a)
```

# Revised 2019 August 20
get_posterior_variance

(UNDER CONSTRUCTION) Alternative of rstan::get_posterior_mean()

Description
This function is under construction. I validate only the example of this function. For MRMC case, I have to write or modify code. 2019 Sept 6

Usage
get_posterior_variance(StanS4class, name.of.parameter)

Arguments
StanS4class
An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc
name.of.parameter
An parameter name (given as a character string, should not surround by ''). The name of parameter which user want to extract. Parameters are contained in the parameter block of each Stan file in the path: inst/extdata.

Value
variance or posterior parameters, if it is an array, then return is also an array.

Examples

fit <- fit_Bayesian_FROC(BayesianFROC::dd)

e <- rstan::extract(fit)

# Check the return value is desired one.

apply(e$z, 2, var) == get_posterior_variance(fit,z)
get_samples_from_Posterior_Predictive_distribution

Get Samples from the Predictive Posterior Distribution (PPD).

Description

Get samples from the posterior predictive distribution.

Usage

get_samples_from_Posterior_Predictive_distribution(StanS4class, 
  counter.plot.via.schatter.plot = TRUE, new.imaging.device = TRUE, 
  upper_x, upper_y, Colour = TRUE, plot.replicated.points = TRUE)

Arguments

StanS4class  An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

counter.plot.via.schatter.plot
  Logical: TRUE of FALSE. Whether counter plot via schatter plot is drawn, Default = TRUE.

new.imaging.device
  Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.

upper_x  This is a upper bound for the axis of the horizontal coordinate of FROC curve.

upper_y  This is a upper bound for the axis of the vertical coordinate of FROC curve.

Colour  Logical: TRUE of FALSE. whether Colour of curves is dark theme or not.

plot.replicated.points  TRUE or FALSE. If true, then plot replicated points (hits, false alarms) by the scatter plot. This process will takes a long times. So if user has no time, then FALSE will help you.
Details

This methods to draw from the PPD is described in Gelman book, Bayesian Data Analysis. The aim of this function is to evaluate the chi square test statistics as a Bayesian sense. According to Gelman book, the chi square test need the samples from the PPD. So, we use this function to accomplish this task.

Value

A list of datalists from the posterior predictive distribution

Examples

```r
fit <- fit_Bayesian_FROC(
 ite = 1111,
 summary = FALSE,
 dataList = BayesianFROC::dataList.Chakra.1)

#====== The first example ================
TPs.FPs <- get_samples_from_Posterior_Predictive_distribution(fit)

#====== The Second Example: Short cut ================
If user has no time, then plot.replicated.points=FALSE will help you.
By setting FALSE, the replicated data from the posterior predictive
distribution does not draw, and hence the running time of function become shorter.
TPs.FPs <- get_samples_from_Posterior_Predictive_distribution(fit,
 plot.replicated.points = FALSE)

Close the graphic device to avoid errors in R CMD check.
grDevices::dev.new();plot(stats::runif(100),stats::runif(100))

#====== The third example: From Hand made data to fitting ================
If user want to use the scatter plots of hits and false alarms from the posterior
predictive distribution for the submission, then the color plot is not appropriate.
So, by setting the argument Colour = FALSE, the scatter plot become black and white.
So, user can use this scatter plot for submission.
```
```r
get_samples_from_Posterior_Predictive_distribution(fit, Colour = FALSE)

g <- get_samples_from_Posterior_Predictive_distribution(fit)

x <- g$CFP
y <- g$CTP

plot(hexbin::hexbin(unlist(x), unlist(y)))

Close the graphic device to avoid errors in R CMD check.
Close_all_graphic_devices()
dotest
```

---

**ggplotFROC**  
*Draw FROC curves by two parameters a and b*

---

**Description**
Plot FROC curves based on two parameters a and b.

**Usage**
```
ggplotFROC(a, b, mesh.for.drawing.curve = 10000, upper.x = 1, upper.y = 1, lower.y = 0, dataList, StanS4class)
```

**Arguments**
- `a`: An arbitrary real number. It is no need to require any assumption, but I use such as \( a = \mu/\sigma \), where \( \mu \) is a mean of signal distribution and \( \sigma \) is its standard deviation in the bi-normal assumption.
- `b`: An arbitrary positive real number. I use such as \( b = 1/\sigma \), where \( \sigma \) is a standard deviation of signal distribution in the bi-normal assumption.
- `mesh.for.drawing.curve`: A positive large integer, indicating number of dots drawing the curves, default =10000.
- `upper.x`: The frame size of drawing picture.
- `upper.y`: The frame size of drawing picture.
- `lower.y`: The frame size of drawing picture.
**dataList**

A list, consisting of data of numbers of TPs, FPs, lesions, etc. To be passed to the function `rstan::sampling()` in `rstan`. This is a variable in the function `rstan::sampling()` in which it is named `data`. For the single reader and a single modality data, the `dataList` is the following forms:

```r
dataList.Example <- list(
 h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
 f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level

 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence... the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha... should be omitted.
```

And using this object `dataList.Example`, we can apply `fit_Bayesian_FROC()` such as `fit_Bayesian_FROC(dataList.Example)`.

To make this R object `dataList` representing FROC data, this package provides three functions:

- `convertFromJafroc()` If data is a *JAFROC xlsx* formulation.
- `dataset_creator_new_version()` Enter TP and FP data by table.
- `create_dataset()` Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function `viewdata()`.

---

**A Single reader and a single modality (SRSC) case.**

In a single reader and a single modality case (srsc), `dataList` is a list consisting of `f`, `h`, `NL`, `NI`, `C` where `f`, `h` are numeric vectors and `NL`, `NI`, `C` positive integers.

- `f` Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- `h` Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- `NL` A positive integer, representing Number of Lesions.
- `NI` A positive integer, representing Number of Images.
- `C` A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored , since it is created by `c <- c(rep(C:1))` in the program and do not refer from user input data, where C is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.
**data Format:**
*A single reader and a single modality case*

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, all confidence level means *present* (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are *present*, and marked positions generates the hits or false alarms, *thus* each confidence level represents that lesion is *present*. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by `c <- c(rep(C:1))` automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

---

**Multiple readers and multiple modalities case, i.e., MRMC case**

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, c, M, Q:

- C A positive integer, representing the **highest** number of confidence level, this is a scalar.
- M A positive integer vector, representing the number of **modalities**.
- Q A positive integer, representing the number of **readers**.
- c A vector of positive integers, representing the **confidence level**. This vector must be made by `rep(rep(C:1),M*Q)`
- m A vector of positive integers, representing the **modality** ID vector.
A vector of positive integers, representing the **reader** ID vector.

h  A vector of non-negative integers, representing the number of **hits**.

f  A vector of non-negative integers, representing the number of **false alarm**.

NL  A positive integer, representing the Total number of **lesions** for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by \( C \)) are included in the above \( R \) object. However, each confidence level vector is not included in the data, because it is created automatically from \( C \). To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function **viewdata()** shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

**Example data.**

---

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

* **false alarms** = False Positives = FP

* **hits** = True Positives = TP

**StanS4class** An S4 object of class **stanfitExtended** which is an inherited class from the S4 class **stanfit**. This \( R \) object can be passed to the **DrawCurves()**, **ppp()** and ... etc

---

**Draw FROC curves by two parameters a and b**
Description

Plot FROC curves based on two parameters a and b.

Usage

ggplotFROC.EAP(a, b, mesh.for.drawing.curve = 10000, upper_x = 1, upper_y = 1, lower_y = 0, dataList, StanS4class)

Arguments

- **a**: An arbitrary real number. It is no need to require any assumption, but I use such as $a = \mu / \sigma$, where $\mu$ is a mean of signal distribution and $\sigma$ is its standard deviation in the bi-normal assumption.
- **b**: An arbitrary positive real number. I use such as $b = 1 / \sigma$, where $\sigma$ is a standard deviation of signal distribution in the bi-normal assumption.
- **mesh.for.drawing.curve**: A positive large integer, indicating number of dots drawing the curves, default = 10000.
- **upper_x**: The frame size of drawing picture.
- **upper_y**: The frame size of drawing picture.
- **lower_y**: The frame size of drawing picture.
- **dataList**: A list, consisting of data of numbers of TPs, FPs, lesions, etc. To be passed to the function `rstan::sampling()` in `rstan`. This is a variable in the function `rstan::sampling()` in which it is named `data`. For the single reader and a single modality data, the `dataList` is the following forms:

  ```
dataList.Example <- list(
h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level
NL = 124, # number of lesions (signals)
NI = 63, # number of images (trials)
C = 5) # number of confidence, ... the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha ... should be omitted.
```

And using this object `dataList.Example`, we can apply `fit_Bayesian_FROC()` such as `fit_Bayesian_FROC(dataList.Example).

To make this R object `dataList` representing FROC data, this package provides three functions:

- **convertFromJafroc()** If data is a JAFROC xlsx formulation.
- **dataset_creator_new_version()** Enter TP and FP data by table.
- **create_dataset()** Enter TP and FP data by interactive manner.
Before fitting a model, we can confirm our dataset is correctly formulated by using the function `viewdata()`.

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), `dataList` is a list consisting of `f, h, NL, NI, C` where `f, h` are numeric vectors and `NL, NI, C` positive integers.

- `f` Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- `h` Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- `NL` A positive integer, representing Number of Lesions.
- `NI` A positive integer, representing Number of Images.
- `C` A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. Note that the maximal number of confidence level, denoted by `C`, are included, however, Note that confidence level vector `c` should not be specified. If specified, will be ignored, since it is created by `c <- c(rep(C:1))` in the program and do not refer from user input data, where `C` is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created `c` vector.

**data Format:**

**A single reader and a single modality case**

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* *false alarms* = False Positives = FP
* *hits* = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that
lesion is *present*. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector $c$ should not be specified. If specified, will be ignored, since it is created by $c <- c(rep(C:1))$ automatically in the program and do not refer from user input data even if it is specified explicitly, where $C$ is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

**Multiple readers and multiple modalities case, i.e., MRMC case**

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components $m, q, c, h, f, NL, C, M, Q$:

- **C**: A positive integer, representing the highest number of confidence level, this is a scalar.
- **M**: A positive integer vector, representing the number of modalities.
- **Q**: A positive integer, representing the number of readers.
- **c**: A vector of positive integers, representing the confidence level. This vector must be made by `rep(rep(C:1), M*Q)`.
- **m**: A vector of positive integers, representing the modality ID vector.
- **q**: A vector of positive integers, representing the reader ID vector.
- **h**: A vector of non-negative integers, representing the number of hits.
- **f**: A vector of non-negative integers, representing the number of false alarm.
- **NL**: A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by $C$) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from $C$. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table.

**Example data.**

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
</tbody>
</table>
**give_name_srsc_CFP_CTP_vector**

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2</th>
<th>15</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP*

*hits = True Positives = TP*

**StanS4class**  
An S4 object of class StanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

**give_name_srsc_CFP_CTP_vector**

*Give a Name For CTP CFP vector*

**Description**

Give a Name for a vector representing cumulative true positives (CTPs) or cumulative false positives (CFPs).

**Usage**

```r
give_name_srsc_CFP_CTP_vector(vector, CFP.or.CTP = "CFP", ModifiedPoisson = FALSE)
```

**Arguments**

- `vector`: A vector representing cumulative true positives (CTPs) or cumulative false positives (CFPs).
- `CFP.or.CTP`: "CFP" or "CTP". Default value is “CFP”.
- `ModifiedPoisson`: Logical, that is TRUE or FALSE.
  - If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
  - Similarly, if `ModifiedPoisson = FALSE`, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained *per image* and *per lesion*. (For details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If `ModifiedPoisson = TRUE`, then the *False Positive Fraction (FPF)* is defined as follows ($F_c$ denotes the number of false alarms with confidence level $c$)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where $N_L$ is a number of lesions (signal). To emphasize its denominator $N_L$, we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if `ModifiedPoisson = FALSE` (default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where $N_I$ is the number of images (trial). To emphasize its denominator $N_I$, we also call it the *False Positive Fraction (FPF) per image*. 


The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson} = \texttt{FALSE})
or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson} = \texttt{TRUE})
If \texttt{ModifiedPoisson} = \texttt{TRUE}, then FROC curve means the expected pair of FPF \texttt{per lesion} and TPF.
On the other hand, if \texttt{ModifiedPoisson} = \texttt{FALSE}, then FROC curve means the expected pair of FPF \texttt{per image} and TPF.
So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson} = \texttt{TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson} = \texttt{TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

Details

Some function in this package give the return values of vectors representing the CFP or CTPs. Using this function, we specify what the components of vector means. This is important since its order is not deterministic, that is, its order give two case, one is decreasing and one is increasing order. So, to avoid such confusion, the name should be specified. Of course this function is no needed for user to know or to use it.

Value

A vector representing cumulative true positives (CTPs) or cumulative false positives (CFPs) with its name.

Examples

```r
h <- BayesianFROC::dataList.Chakra.1$h
NL <- BayesianFROC::dataList.Chakra.1$NL
CTP.vector <- cumsum(h)/NL
CTP.vector.with.name <- give_name_srsc_CFP_CTP_vector(CTP.vector)
```
**Give a name for srsc data list component**

**Description**

By specifying the data, the names are given for each component vectors.

**Usage**

```r
give_name_srsc_data(dataList)
```

**Arguments**

- `dataList` A list, consisting of data of numbers of TPs, FPs, lesions, etc.
  . To be passed to the function `rstan::sampling()` in `rstan`. This is a variable in the function `rstan::sampling()` in which it is named `data`.
  For the single reader and a single modality data, the `dataList` is the following forms:

```r
dataList.Example <- list(
 h = c(41,22,14,8,1), # number of hits for each confidence level
 f = c(1,2,5,11,13), # number of false alarms for each confidence level
 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence, ... the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha .. should be omitted.
```

And using this object `dataList.Example`, we can apply `fit_Bayesian_FROC()` such as `fit_Bayesian_FROC(dataList.Example)`.

To make this R object `dataList` representing FROC data, this package provides three functions:

- `convertFromJafroc()` If data is a JAFROC xlsx formulation.
- `dataset_creator_new_version()` Enter TP and FP data by **table**.
- `create_dataset()` Enter TP and FP data by **interactive** manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function `viewdata()`.

---

**A Single reader and a single modality (SRSC) case.**

In a single reader and a single modality case (srsc), `dataList` is a list consisting of `f, h, NL, NI, C` where `f, h` are numeric vectors and `NL, NI, C` positive integers.

- `f` Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL A positive integer, representing Number of Lesions.

NI A positive integer, representing Number of Images.

C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored , since it is created by \( c <-c(rep(C:1)) \) in the program and do not refer from user input data, where \( C \) is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

**data Format:**

A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -&gt;</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored , since it is created by \( c <-c(rep(C:1)) \) automatically in the program and do not refer from user input data even if it is specified explicitly, where \( C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.
Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components \( m, q, c, h, f, NL, C, M, Q \):

- **C**: A positive integer, representing the highest number of confidence level, this is a scalar.
- **M**: A positive integer vector, representing the number of modalities.
- **Q**: A positive integer, representing the number of readers.
- **c**: A vector of positive integers, representing the confidence level. This vector must be made by `rep(rep(C:1), M*Q)`.
- **m**: A vector of positive integers, representing the modality ID vector.
- **q**: A vector of positive integers, representing the reader ID vector.
- **h**: A vector of non-negative integers, representing the number of hits.
- **f**: A vector of non-negative integers, representing the number of false alarm.
- **NL**: A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by \( C \)) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from \( C \). To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

**Example data.**

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>
false alarms = False Positives = FP
* hits = True Positives = TP

Details

This is only available on single reader and single modality case, not available on MRMC case.

Examples

```r
#> dataList.Chakra.2
#$f
[1] 4 13 44
#
#$h
[1] 122 31 20
#
#$NL
[1] 269
#
#$NI
[1] 57
#
#$C
[1] 3

dataList.with.name <- give_name_srsc_data(dataList.Chakra.2)
```

```r
#> dataList.with.name
$f
f(3) f(2) f(1)
4 13 44
#
$h
h(3) h(2) h(1)
122 31 20
#
$NL
Number of Lesions
269
#
$NI
Number of Images
57
#
$C
Number of Confidence levels
3
```
MRMC Dataset Creator From Hit Rate.

Description
From hit rates, data of hits are created.

Usage
```r
hits_creator_from_rate(NL = 252, seed = 123,
 p.truth = BayesianFROC::p_truth)
```

Arguments
- **NL**: Number of Lesions.
- **seed**: The seed for creating hits which are generated by the binomial distributions with the specified seed.
- **p.truth**: Array of dimension (C, M, Q), where C = number of confidence levels, M = number of modalities, Q = number of readers.

Details
Random variables of hits are distributed as follows.

\[ h_{5,m,r} \sim \text{Binomial}(p_{5,m,r}, NL) \]

then \( h_{4,m,r} \) should be drawn from the binomial distribution with remaining targets

\[ h_{4,m,r} \sim \text{Binomial}\left( \frac{p_{4,m,r}}{1 - p_{5,m,r}}, NL - h_{5,m,r} \right) \]

Similarly,

\[ h_{3,m,r} \sim \text{Binomial}\left( \frac{p_{3,m,r}}{1 - p_{5,m,r} - p_{4,m,r}}, NL - h_{5,m,r} - h_{4,m,r} \right) \]

\[ h_{2,m,r} \sim \text{Binomial}\left( \frac{p_{2,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r}}, NL - h_{5,m,r} - h_{4,m,r} - h_{3,m,r} \right) \]

\[ h_{1,m,r} \sim \text{Binomial}\left( \frac{p_{1,m,r}}{1 - p_{5,m,r} - p_{4,m,r} - p_{3,m,r} - p_{2,m,r}}, NL - h_{5,m,r} - h_{4,m,r} - h_{3,m,r} - h_{2,m,r} \right) \]

p.truth is an array representing \( p_{c,m,r} \). By specifying the array p.truth (and hence \( p_{c,m,r} \)), with the above model, we can calculate hit data \( h_{c,m,r} \) for each \( c, m, r \).
Value

Hits Data, an array of dimension [Confidence, Modality, Reader].

Examples

#----------------------------------------------------------------------------------------
#2019 Sept 6 1) Using the default hit values, hit data are created as follows;
#----------------------------------------------------------------------------------------

    hits <- hits_creator_from_rate()

#----------------------------------------------------------------------------------------
#2019 Sept 6 2) If user want to use their own hit rates, then use the following codes:
#----------------------------------------------------------------------------------------

    h <- hits_creator_from_rate(
        NL=252,
        seed =123,
        p.truth =
            array(c(
                c(0.03,0.13,0.2,0.3,0.4, #for M=1 Q=1
                    0.04,0.23,0.3,0.4,0.5), #for M=2 Q=1 ,
                c(0.05,0.33,0.4,0.5,0.6, #for M=1 Q=2
                    0.06,0.43,0.5,0.6,0.7),#for M=2 Q=2,
                c(0.07,0.53,0.6,0.7,0.8, #for M=1 Q=3
                    0.08,0.63,0.7,0.8,0.9)#for M=2 Q=3 ),
            dim = c(5,2,3) #C M Q
        )#array
    )
#2019 Sept 6 3) If user want to use their own hit rates, then use the following codes:

```
h <- hits_creator_from_rate(
 NL=252,
 seed =123,
 p.truth =
 array(c(
 c(0.03,0.1,0.2,0.3,0.4, #for M=1 Q=1
 0.04,0.2,0.3,0.4,0.5, #for M=2 Q=1
 0.05,0.3,0.4,0.5,0.6), #for M=3 Q=1
 c(0.05,0.33,0.4,0.5,0.6, #for M=1 Q=2
 0.06,0.43,0.5,0.6,0.7, #for M=2 Q=2
 0.05,0.3,0.4,0.5,0.6), #for M=3 Q=2
 c(0.07,0.53,0.6,0.7,0.8, #for M=1 Q=3
 0.08,0.63,0.7,0.8,0.9, #for M=2 Q=3
 0.05,0.3,0.4,0.5,0.6) #for M=3 Q=3
),
 dim = c(5,3,3) #C M Q
)
)
```

#2019 Sept 6 3) Only one reader

```
h <- hits_creator_from_rate(
 NL=252,
 seed =123,
 p.truth =
)```
The third example

The hits rate cannot take any values, since there is a trend that a hit rate of a higher confidence level is a higher. So, if it is difficult for user to create a true hit rates, then by taking estimates as true parameters, user can replicate datasets. To do so, work follow is first fitting, secondly extracting estimates, thirdly apply this function (hits_creator_from_rate()).

Fitting

```r
fit <- fit_Bayesian_FROC(
  dataList.Chakra.Web.orderd,
  ite = 1111, # For simplicity, we take small MCMC samples.
  summary = FALSE)
```

Extracting

```r
estimates <- extract_estimates_MRMC(fit)
ppp <- estimates$ppp.EAP
```

Note that ppp is an array whose dimension is constituted by number of confidence levels, modalities, readers.

Replicating as an true values is ppp

```r
hits <- hits_creator_from_rate(p.truth = ppp)
```

Remark

ppp is an array. Ignoring its indices, we can write that
hits ~ Binomial(ppp, NL)
Where NL is a number of lesions.
By writing its component explicitly, we can write
Hits[c,m,r] ~ Binomial(ppp[c,m,r], NL)
Where c means the c-th confidence level,
m means the m-th modality,
r means the r-th reader.

Description

From the parameter of the bi-normal assumptions, hits and false alarms are generated.

Usage

```r
hits_false_alarms_creator_from_thresholds(replicate.dataset = 3,
  ModifiedPoisson = FALSE, mean.truth = 0.6, sd.truth = 5.3,
  z.truth = c(-0.8, 0.7, 2.38), NL = 259, NI = 57, summary = TRUE,
  initial.seed = 12345)
```

Arguments

- **replicate.dataset**
 A Number indicate that how many you replicate dataset from user’s specified dataset.

- **ModifiedPoisson**
 Logical, that is TRUE or FALSE.
 If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
 Similarly,
 If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
 To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
 If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)
\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_4 + F_5}{N_L},
\]

\[
\frac{F_5}{N_L},
\]

where \(N_L\) is a number of lesions (signal). To emphasize its denominator \(N_L\), we also call it the \textit{False Positive Fraction (FPF)} \textit{per lesion}.

On the other hand, if \texttt{ModifiedPoisson} = \texttt{FALSE} (Default), then \textit{False Positive Fraction (FPF)} is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where \(N_I\) is the number of images (trial). To emphasize its denominator \(N_I\), we also call it the \textit{False Positive Fraction (FPF)} \textit{per image}.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson} = \texttt{FALSE})
or as the expected pairs of FPF per image and TPF per lesion (ModifiedPoisson = TRUE)

If ModifiedPoisson = TRUE, then FROC curve means the expected pair of FPF per lesion and TPF.
On the other hand, if ModifiedPoisson = FALSE, then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether ModifiedPoisson = TRUE or FALSE. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is a redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

mean.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
sd.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
z.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
NL Number of Lesions.
NI Number of Images.
summary Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
initial.seed Replicated datasets are created using a continuous sequence of seeds and its initial seed is specified by this argument. For example, if you choose initial.seed = 12300, then the replicated datasets are created from using the sequence of seeds: 12301,12302,12303,12304,...

Details

From the fixed parameters of bi-normal assumptions, we replicate data, that is, we draw the data from the distributions whose parameters are known. Especially, we interest the hits and false alarms since the number of images, lesions and confidence level is same for all replications. So, it is sufficient to check the hits and false alarms.

Value

Datasets Including Hits and False Alarms

Examples

#================The first example======================================
Replication of Data from Fixed (specified) Parameters.
a <- hits_false_alarms_creator_from_thresholds(replicate.dataset = 1)

Extract the first replicated dataset:

a[[1]]$NL
a[[1]]$NI
a[[1]]$f
a[[1]]$h
a[[1]]$C

The second example

Replication of Data from Fixed (specified) Parameters.

b <- hits_false_alarms_creator_from_thresholds(replicate.dataset = 2)

Extract the first replicated dataset:

b[[1]]$NL
b[[1]]$NI
b[[1]]$f
b[[1]]$h
b[[1]]$C

Extract the second replicated dataset:

b[[2]]$NL
b[[2]]$NI
b[[2]]$f
b[[2]]$h
b[[2]]$C

The third example

Replication of Data from Fixed (specified) Parameters.

c <- hits_false_alarms_creator_from_thresholds(replicate.dataset = 3)

Extract the first replicated dataset:

c[[1]]$NL
c[[1]]$NI
c[[1]]$f
c[[1]]$h
c[[1]]$C

Extract the second replicated dataset:
Extract the third replicated dataset:

```r
c[[3]]$NL
c[[3]]$NI
c[[3]]$f
c[[3]]$h
c[[3]]$C
```

dottest

hits_from_thresholds
MRMC Hit Creator from thresholds, mean and S.D.

Description

From threshold, mean and S.D., data of hit rate are created.

Usage

```r
hits_from_thresholds(z.truth = BayesianFROC::z_truth,
                      mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,
                      NL = 252, seed = 123)
```

Arguments

- **z.truth**
 Vector of dimension = C represents the thresholds of bi-normal assumption.

- **mu.truth**
 array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.

- **v.truth**
 array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.

- **NL**
 Number of Lesions.

- **seed**
 The seed for creating hits which are generated by the binomial distributions with the specified seed.

Value

Hits Data for MRMC. The reason that hits is multiple reader and multiple modalities arise from the multiple indices of mean and S.D. of signal distribution of the bi-normal assumption.
From thresholds, data of hit rate are created.
Note that the return values has changed from \(p \) (in \(R \) notation: \(\text{ppp} \)) to
\[
\text{hitrate}_c := \frac{p_c(\theta)}{1 - p_C(\theta) - p_{C-1}(\theta) - \ldots - p_{c+1}(\theta)}.
\]

Arguments
- `z.truth` Vector of dimension = \(C \) represents the thresholds of bi-normal assumption.
- `mu.truth` array of dimension (\(M, Q \)). Mean of represents the signal distribution of bi-normal assumption.
- `v.truth` array of dimension (\(M, Q \)). Standard Deviation of represents the signal distribution of bi-normal assumption.
- `is_hit_rate_adjusted` whether the return value is a vector of
\[
p_c(\theta)
\]
or
\[
\text{hitrate}_c := \frac{p_c(\theta)}{1 - p_C(\theta) - p_{C-1}(\theta) - \ldots - p_{c+1}(\theta)}.
\]
The former is the default (FALSE) and the later is returned if `is_hit_rate_adjusted`=TRUE.

Value
A vector of the hit rate:
\[
\text{hitrate}_c := \frac{p_c(\theta)}{1 - p_C(\theta) - p_{C-1}(\theta) - \ldots - p_{c+1}(\theta)}
\]
Do not confuse the old version \(\text{ppp} \) which is an array with three indices: \(\text{ppp}[C,M,Q] \).
initial_values_specification_for_stan_in_case_of_MRMC

Internal function. Should not be interested.

Usage

initial_values_specification_for_stan_in_case_of_MRMC(dataList)
Arguments

dataList A list, consisting of data of numbers of TPs, FPs, lesions, etc.
. To be passed to the function rstan::sampling() in rstan. This is a variable
in the function rstan::sampling() in which it is named data.
For the single reader and a single modality data, the dataList is the following
forms:

dataList.Example <- list(
 h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
 f = c(1, 2, 5, 11, 13), # number of false alarms for each confidence level

 NL = 124, # number of lesions (signals)
 NI = 63, # number of images (trials)
 C = 5) # number of confidence, the author thinks it can be calculated
 # as the length of h or f ...? ha, why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as
fit_Bayesian_FROC(dataList.Example).
To make this R object dataList representing FROC data, this package provides
three functions:

 convertFromJafroc() If data is a JAFROC xlsx formulation.
 dataset_creator_new_version() Enter TP and FP data by table.
 create_dataset() Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by
using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting
of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

 f Non-negative integer vector specifying number of False Alarms associated
 with each confidence level. The first component corresponding to the highest
 confidence level.

 h Non-negative integer vector specifying number of Hits associated with each
 confidence level. The first component corresponding to the highest confidence
 level.

 NL A positive integer, representing Number of Lesions.

 NI A positive integer, representing Number of Images.

 C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note
that the maximal number of confidence level, denoted by C, are included, how-
ever, Note that confidence level vector c should not be specified. If specified,
will be ignored, since it is created by c <-c(rep(C:t)) in the program and
do not refer from user input data, where C is the highest number of confidence.
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

Data Format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>probably present</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>equivocal</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

NI=63, NL=124

In R console ->

```
c <- c(rep(C:1))
```

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by `c <- c(rep(C:1))` automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function `viewdata()`.

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function `fit_Bayesian_FROC()`, dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, C, M, Q:

- C A positive integer, representing the **highest** number of confidence level, this is a scalar.
- M A positive integer vector, representing the number of **modalities**.
- Q A positive integer, representing the number of **readers**.
- c A vector of positive integers, representing the **confidence level**. This vector must be made by `rep(rep(C:1),M*Q)`
m A vector of positive integers, representing the **modality ID vector**.
q A vector of positive integers, representing the **reader ID vector**.
h A vector of non-negative integers, representing the number of **hits**.
f A vector of non-negative integers, representing the number of **false alarm**.
NL A positive integer, representing the **Total number of lesions** for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID (m)</th>
<th>Reader ID (q)</th>
<th>Confidence levels (c)</th>
<th>No. of false alarms (f)</th>
<th>No. of hits (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP
hits = True Positives = TP

Details

This attempt failed, that is, I cannot specify the initial values so that the `rstan::sampling()` does not say the following:

Rejecting initial value:
Log probability evaluates to log(0), i.e. negative infinity.
Stan can’t start sampling from this initial value.
Value

Initial values specification. See the detailed documentation for the init argument in stan().

Examples

```r
init <- initial_values_specification_for_stan_in_case_of_MRMC(dataList.Chakra.Web)

# Where init is the variable of the rstan::stan() or rstan::sampling()
```

install_imports

Installer.

Description

This is an installer for required packages in this package. To install this package BayesianFROC, we use the package xlsx which require the Java. So, if use buy a new computer and and it does not have installed the Java, then please install Java.

Usage

```r
install_imports()
```

make_TeX

Make a TeX file for summary

Description

Under Construction... “This only inner funtion, in the future I run this in the fit_Bayesian_FROC().

Usage

```r
make_TeX()
```

Value

TeX file reflected the analysis
make_true_parameter_MRMC

Make a true model parameter and include it in this package

Description

Make a true model parameter and include it in this package

Usage

```r
make_true_parameter_MRMC(StanS4class)
```

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and `...` etc.

metadata_srsc_per_image

Create metadata for MRMC data.

Description

The so-called *false positive fraction (FPF)* and the *true positive fraction (TPF)* are calculated from the number of hits (True Positives: TPs) and the number of false alarms (False Positives: FPs)

Usage

```r
metadata_srsc_per_image(dataList, ModifiedPoisson)
```

Arguments

- **dataList**: A list, should include `m,q,c,h,f,NL,C,M,Q` which means `c` should be created by `c <- c(rep(C:1))`, where `C` is the number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created `c` vector.
 - `h` means the number of hits
 - `f` means the number of false alarm
 - `NL` means the Total number of lesions for all images
 - `C` means the highest number of confidence level
ModifiedPoisson

Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly,

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

$$
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_4 + F_5}{N_L},
$$

$$
\frac{F_5}{N_L},
$$

where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion.

On the other hand, if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by

$$
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
$$

$$
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
$$

$$
\frac{F_3 + F_4 + F_5}{N_I},
$$
\[\frac{F_4 + F_5}{N_I}, \]

\[\frac{F_5}{N_I}, \]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the **False Positive Fraction (FPF) per image**.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{FALSE} \))

or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE} \))

If \(\text{ModifiedPoisson} = \text{TRUE} \), then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE} \), then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson} = \text{TRUE} \) or \(\text{FALSE} \). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \(\text{ModifiedPoisson} = \text{TRUE} \) or \(\text{FALSE} \). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

Details

From data of number of hits (True Positive: TP) and false alarms (False Positive: FP), we calculate the number of cumulative false positives (FPF) and cumulative hits (TPF).

Because there are three subscripts, reader, modality, and image, we create array format and vector format etc...

Value

A metadata such as number of cumulative false alarms and hits to create and draw the curve.

Examples

```r
#----------------------------------------------------------------------------------------
# TP and FP
#----------------------------------------------------------------------------------------
```
metadata_to_DrawCurve_MRMC

Create metadata for MRMC data

Description
From data of number of hits and false alarms, we calculate the number of cumulative false positives and hits. Since there are three subscripts, reader, modality, and image, we create array format and vector format etc...

Usage
metadata_to_DrawCurve_MRMC(StanS4class, mesh.for.drawing.curve = 5000)

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

mesh.for.drawing.curve
A positive large integer, indicating number of dots drawing the curves, default = 10000.

Value
A metadata such as number of cumulative false alarms and hits to create and draw the curve.
Create metadata for MRMC data

Description

The so-called false positive fraction (FPF) and the true positive fraction (TPF) are calculated from the number of hits (True Positives: TPs) and the number of false alarms (False Positives: FPs).

Usage

metadata_to_fit_MRMC(dataList, ModifiedPoisson = FALSE)

Arguments

dataList
A list, consisting of the following R objects: m, q, c, h, f, NL, C, M, Q each of which means from the right:
m: A vector, indicating the modality ID = 1, 2, ... which does not include zero.
q: A vector, indicating the reader ID = 1, 2, ... which does not include zero.
c: A vector, indicating the confidence = 1, 2, ... which does not include zero.
h: A vector, indicating the number of hits
f: A vector, indicating the number of false alarm
NL: An positive integer, indicating the number of lesions for all images
C: An positive integer, indicating the highest number of confidence level
M: An positive integer, indicating the number of modalities
Q: An positive integer, indicating the number of readers.
The detail of these dataset, please see the example datasets, e.g. dd.

ModifiedPoisson
Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
Similarly,
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

$$\frac{F_1 + F_2 + F_3 + F_4 + F_5}{NL},$$
\[\frac{F_2 + F_3 + F_4 + F_5}{N_L}, \]
\[\frac{F_3 + F_4 + F_5}{N_L}, \]
\[\frac{F_4 + F_5}{N_L}, \]
\[\frac{F_5}{N_L}, \]

where \(N_L \) is a number of lesions (signal). To emphasize its denominator \(N_L \), we also call it the \emph{False Positive Fraction (FPF) per lesion}. On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE} \) (Default), then \emph{False Positive Fraction (FPF)} is given by

\[\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I}, \]
\[\frac{F_2 + F_3 + F_4 + F_5}{N_I}, \]
\[\frac{F_3 + F_4 + F_5}{N_I}, \]
\[\frac{F_4 + F_5}{N_I}, \]
\[\frac{F_5}{N_I}, \]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the \emph{False Positive Fraction (FPF) per image}. The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{FALSE} \)) or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE} \)). If \(\text{ModifiedPoisson} = \text{TRUE} \), then FROC curve means the expected pair of FPF \emph{per lesion} and TPF.
On the other hand, if ModifiedPoisson = FALSE, then FROC curve means the expected pair of **FPF per image** and TPF. So, data of FPF and TPF are changed thus, a fitted model is also changed whether ModifiedPoisson = TRUE or FALSE. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Details

To fit a model to data, we need a hit data and false data formulated by both an array and a vector. It also calculates the so-called False Positive Fractions (FPF) (resp. True Positive Fractions (TPF)) which are cumulative sums of false alarms (resp. hits) over number of lesions or images. From data of number of hits and false alarms, we calculate the number of cumulative false positives and hits per image or lesion, in other words, *False Positive Fraction (FPF)* and *True Positive Fraction (TPF)*. Since there are three subscripts, reader, modality, and image, we can create array format or vector format etc...

Abbreviations

FPF: false positive fraction
TPF: true positive fraction
hit: True Positive = TP
false alarms: False Positive = FP

The traditionally, the so-called FPF: *False Positive Fraction* and TPF: *True Positive Fraction* are used. Recall that our data format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI, NL</th>
<th>confidence level</th>
<th>No. of false alarms (FP:False Positive)</th>
<th>No. of hits (TP:True Positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>definitely present</td>
<td>5</td>
<td>F_5</td>
<td>H_5</td>
</tr>
<tr>
<td>probably present</td>
<td>4</td>
<td>F_4</td>
<td>H_4</td>
</tr>
<tr>
<td>equivocal</td>
<td>3</td>
<td>F_3</td>
<td>H_3</td>
</tr>
<tr>
<td>subtle</td>
<td>2</td>
<td>F_2</td>
<td>H_2</td>
</tr>
<tr>
<td>very subtle</td>
<td>1</td>
<td>F_1</td>
<td>H_1</td>
</tr>
</tbody>
</table>

FPF is defined as follows;
\[FP{F}(5) := \frac{F_5}{NI}, \]
\[FP{F}(4) := \frac{F_4 + F_5}{NI}, \]
\[FP{F}(3) := \frac{F_3 + F_4 + F_5}{NI}, \]
\[FP{F}(2) := \frac{F_2 + F_3 + F_4 + F_5}{NI}, \]
\[FP{F}(1) := \frac{F_1 + F_2 + F_3 + F_4 + F_5}{NI}. \]

TPF is defined as follows;

\[TP{F}(5) := \frac{H_5}{NL}, \]
\[TP{F}(4) := \frac{H_4 + H_5}{NL}, \]
\[TP{F}(3) := \frac{H_3 + H_4 + H_5}{NL}, \]
\[TP{F}(2) := \frac{H_2 + H_3 + H_4 + H_5}{NL}, \]
\[TP{F}(1) := \frac{H_1 + H_2 + H_3 + H_4 + H_5}{NL}. \]

Value

A list, which includes arrays and vectors. A metadata such as number of cumulative false alarms and hits to create and draw the curve.

The *False Positive Fraction (FPF)* and *True Positive Fraction (TPF)* are also calculated.

The components of list I rediscover it at 2019 Jun 18, I am not sure it is useful? 2019 Dec 8

- **harray** An array of hit, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
- **farray** An array of false alarms, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
- **hharray** An array of *cumulative* hits, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
- **ffarray** An array of *cumulative* false alarms, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
- **hharrayN** An array of TPF, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
- **ffarrayN** An array of FPF, dimension \([C,M,Q]\), where \(C,M,Q\) are a number of confidence level, modalities, readers, respectively.
h An vector of hit, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

f An vector of false alarms, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

hh An vector of cumulative hits, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

ff An vector of cumulative false alarms, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

hhN An vector of TPF, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

ffN An vector of FPF, dimension \([C*\mathit{M}*\mathit{Q}]\), where \(C, M, Q\) are a number of confidence level, modalities, readers, respectively.

Revised Nov. 21

Examples

```r
#----------------------------------------------------------------------------------------
# First, we prepare the data endowed with this package.
#----------------------------------------------------------------------------------------

dat <- get(data("dataList.Chakra.Web"))

#----------------------------------------------------------------------------------------
# Calculate FPFs and TPFs and etc.
#----------------------------------------------------------------------------------------

a <- metadata_to_fit_MRMC(dat)

#Now, we get a meta-data object named "a".

#----------------------------------------------------------------------------------------
# Check of Definition
#----------------------------------------------------------------------------------------

a$hh/dat$NL == a$hhN

# Since all of aboves are TRUE, the hhN is a TPF per NL.
```
Plot a FPFs and TPFs

#
FPF = affN
TPF = ahhN

dark_theme()
plot(FPF, TPF)

Plot a FPFs and TPFs via ggplot

length(dat$f)==length(FPF)

q <- dat$q
m <- dat$m
df <- data.frame(FPF,
 TPF,
 m,
 q
)

ggplot(df, aes(x =FPF, y = TPF, colour = q, group = m)) + geom_point()

Revised 2019 Jun 18, Revised 2019 Sept 9

dottest

Mean of signal: parameter of an MRMC model
mu_truth

Description
A posterior mean of the model parameter for data ddd as an example of truth parameter.

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

See Also
make_true_parameter_MRMC

Examples

```r
#> BayesianFROC::mu

[1,] 1.914686 0.7933306 1.526482 0.9543375
[2,] 2.008008 1.2005846 2.081756 1.0197703
[3,] 1.532117 0.5851726 1.513018 0.8879678

# [modality, reader]
```

mean of signal: parameter of an MRMC model

Description
A posterior mean of the model parameter for data ddd as an example of truth parameter.

Details
Mean Rate data of some MRMC data to use as a default value of the function hits_creator_from_rate. This is an array obtained from estimates of some data contained in this package. To simulate a replication of dataset, the default values should be used from an actual values. Thus the author prepare this data.

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>
See Also

hits_creator_from_rate

Examples

```r
#> mu_truth
#[1,] 1.730751 0.829819 1.334771 0.6386057
#[2,] 1.812523 1.188922 1.883562 0.7185546
#[3,] 1.319588 0.606292 1.248589 0.5458920
```

mu_truth_creator_for_many_readers_MRMC_data

mu of MRMC model paramter

Description

mu of MRMC model paramter

Usage

```
mu_truth_creator_for_many_readers_MRMC_data(M, Q)
```

Arguments

- `M` An integer, indicating a number of modalities
- `Q` An integer, indicating a number of readers

Value

An array, representing a mu of MRMC model paramter
Examples

```r
m <- mu_truth_creator_for_many_readers_MRMC_data(M=4,Q=50)

#----------------------------------------------------------------------------------------
# Large number of readers cause non-convergence
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMC_data(M=4,Q=6)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=4,Q=6)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 1111, cha = 1, summary = T, dataList = d )

plot_FPF_and_TPF_from_a_dataset(fit@dataList)

#----------------------------------------------------------------------------------------
# convergence
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMC_data(M=2,Q=21)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=2,Q=21)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 200, cha = 1, summary = T, dataList = d )

#----------------------------------------------------------------------------------------
# non-convergence
#----------------------------------------------------------------------------------------

v <- v_truth_creator_for_many_readers_MRMC_data(M=5,Q=6)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=5,Q=6)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit <- fit_Bayesian_FROC( ite = 200, cha = 1, summary = T, dataList = d )

#----------------------------------------------------------------------------------------
# convergence
#----------------------------------------------------------------------------------------
```
m_q_c_vector_from_M_Q_C

Description

Makes m, q, c vectors from a collection of three integers M, Q, C, where three vectors m, q, c denotes modality ID, reader ID, confidence level, respectively.

Usage

```r
m_q_c_vector_from_M_Q_C(M, Q, C)
```
Arguments

- \(M \): A positive integer, representing modality ID
- \(Q \): A positive integer, representing reader ID
- \(C \): A positive integer, representing confidence level

Details

My research is not supported any found, I am completely independent and only my own or my parents are supported my research. No internet, poor condition, I made this. I must go on until journal accepts my manuscripts.

I am not happy to spent with FROC analysis, since it is not my interest. I want to research pure mathematics. I do not want to waste a time. I do not want to waste a time in hospital or plurigo nodularis. When I become happy? This program helps me? With great pain at 2019 Sept. 2019 Sept. 8

Value

A data-frame, including three vectors, which are named \(m, q, c \) representing modality ID and reader ID and confidence level, respectively.

For example, the object of \(a \leftarrow m_q_c_vector_from_M_Q_C(2, 3, 4) \) is given by

<table>
<thead>
<tr>
<th>(m)</th>
<th>(q)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Examples

Create a ID vectors

```r
a <- m_q_c_vector_from_M_Q_C(2,3,4)
```

```r
a$m
a$q
a$c
```

validation of this function

```r
/quotesingle.Var
a <- m_q_c_vector_from_M_Q_C(5,4,5)
```

```r
a$m == dd$m
a$c == dd$c
a$q == dd$q
```

p

Hit Rate: parameter of an MRMC model

Description

A posterior mean of the model parameter for data *ddd* as an example of truth parameter.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

See Also

`make_true_parameter_MRMC`
Description

If divergent transition occurs, the author often forget the variable par or pars. So, I made this to avoid such confusion.

Usage

pairs_plot_if_divergent_transition_occurred(StanS4class, character.representing.paramter = "z")

Arguments

StanS4class An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc
character.representing.paramter Character, surrounded by ",", indicating the parameter of model.

Examples

Create a fitted model object of class stanfitExtended inherited from stanfit.

fit <- fit_Bayesian_FROC(ite = 1111, summary = FALSE, cha = 1, Null.Hypothesis = FALSE, dataList = dd)

Pairs plot to examine the divergent transition.

pairs_plot_if_divergent_transition_occurred(fit)
pause

Pause for Demo

Usage

pause(simple = FALSE)

Arguments

simple A logical. If false, then verbose.

pause()

Phi

The Cumulative distribution function \(\Phi(x) \) of the Standard Gaussian, namely, mean = 0 and variance =1.

Description

\[\Phi(x) := \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \]

Usage

Phi(x)

Arguments

x A real. To be passed to the function stats::pnorm()

Value

\[\Phi(x) := \int_{-\infty}^{x} Gaussian(z|0,1)dz \]

See Also

Phi_inv()
Examples

#--
1) validation of this function
#--
#
' x<-0.2
Phi(x)==stats::pnorm(x)

#--
1) Build the data
#--
#
' a <- 0.1;
NX <- 222;
x <- runif(100,-11,11)
y <- Phi_inv(exp(a/NX) *Phi(x))-x
plot(x,y)

a <- 0.1;
NX <- 222;
x <- runif(100,0,11)
y <- Phi_inv(exp(a/NX) *Phi(x))-x
plot(x,y)

a <- 0.1;
NX <- 222;
x <- runif(100,2,4)
y <- Phi_inv(exp(a/NX) *Phi(x))-x
plot(x,y)

a <- 0.01;
NX <- 222;
x <- runif(100,2,4);
y <- Phi_inv(exp(a/NX) *Phi(x))-x
plot(x,y)

a <- 0.01;
NX <- 222;
x <- runif(100,3.5,4);
y <- Phi_inv(exp(a/NX) *Phi(x))-x
plot(x,y)
Inverse function of the Cumulative distribution function \(\Phi(x) \) of the Standard Gaussian. where \(x \) is a real number.

Usage

\[\text{Phi_inv}(x) \]

Arguments

- \(x \) A real. To be passed to the function `stats::qnorm()`

Details

In Stan file, it is `inv_Phi()` and not `inv_phi.`

Value

A real number: \(\Phi^{-1}(x) \)

See Also

- `Phi()`

Examples

```r
x <- runif(100)

Phi_inv(x) == stats::qnorm(x)
```
A generic function `plot()`

Description

A generic function `plot()`

plotFROC

Draw FROC curves by two parameters a and b

Description

Plot FROC curves based on two parameters a and b.

Usage

```r
plotFROC(a, b, mesh.for.drawing.curve = 10000, upper_x = 1, upper_y = 1, lower_y = 0)
```

Arguments

- **a**: An arbitrary real number. It is no need to require any assumption, but I use such as \(a=\mu/\sigma\), where \(\mu\) is a mean of signal distribution and \(\sigma\) is its standard deviation in the bi-normal assumption.
- **b**: An arbitrary positive real number. I use such as \(b=1/\sigma\), where \(\sigma\) is a standard deviation of signal distribution in the bi-normal assumption.
- **mesh.for.drawing.curve**: A positive large integer, indicating number of dots drawing the curves, default = 10000.
- **upper_x**: The frame size of drawing picture.
- **upper_y**: The frame size of drawing picture.
- **lower_y**: The frame size of drawing picture.

Details

FROC curve is the alternative notion of ROC curve in the signal detection theory.

The definition of FROC curve is

\[
(x(t), y(t)) = (t, 1 - \Phi(b * \Phi^{-1}(\exp(-t)) - a))
\]

where, \(\Phi()\) is the cumulative distribution function of the standard Gaussian distribution and \(\Phi^{-1}()\) is its inverse mapping.

Revised 2019 NOv 27
Examples

```r
dark_theme()
plotFROC(0.1,0.2)
```

plot_curve_and_hit_rate_and_false_rate_simultaneously

Curve and signal distribution and noise $d \log \Phi$ for a single reader and a single modality

Description

Draws FROC curve and signal and noise ($d \log \Phi$) are drawn in a same plain. The author of this package developed the FROC theory, and find that the noise distribution is not the so-called bi normal assumption. But instead, we use the differential logarithmic Gaussian for the noise distribution. *Note that MRMC data is not allowed.*

Usage

```r
plot_curve_and_hit_rate_and_false_rate_simultaneously(StanS4class)
```

Arguments

- **StanS4class** An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc

Details

This function is made to pass this plot to Shiny. If someone knows how to divide the main panel of Shiny, please tell me!! I cannot, thus I divide the plot before passing to Shiny.

With pain from all my body, but today 2019 July 23 is good. Neuralgia or muscle aches makes my feeling down and down. If I can transform into Anpanman, then I want to give my head.

I fails, this is very small plot, so I cannot use this function for my package. I will remove this function or extende plot region for more confortable exhibition.

Value

None

See Also

- `DrawCurves`
- `draw_latent_noise_distribution`
Examples

#--
1) Build the data
#--

For singler reader and single modality case.

dat <- list(c=c(3,2,1), #Confidence level. Note that c is ignored.
 h=c(97,32,31), #Number of hits for each confidence level
 f=c(1,14,74), #Number of false alarms for each confidence level
 NL=259, #Number of lesions
 NI=57, #Number of images
 C=3) #Number of confidence level

where,
c denotes confidence level, i.e., rating of reader.
3 = Definitely diseased,
2 = subtle... diseased
1 = very subtle
h denotes number of hits (True Positives: TP) for each confidence level,
f denotes number of false alarms (False Positives: FP) for each confidence level,
NL denotes number of lesions,
NI denotes number of images,

For example, in the above example data,
the number of hits with confidence level 3 is 97,
the number of hits with confidence level 2 is 32,
the number of hits with confidence level 1 is 31,
#
the number of false alarms with confidence level 3 is 1,
the number of false alarms with confidence level 2 is 14,
the number of false alarms with confidence level 1 is 74,

#--
2) Fit the FROC model.
#--

#Since dataset named dat are a single reader and a single modality,
#the function build the such model by running the following code.
plot_FPF_and_TPF_from_a_dataset

Plot FPF and TPF from MRMC data

Description

From data (srsc or MRMC), empirical FROC is plotted, namely FPF and TPF.

Usage

plot_FPF_and_TPF_from_a_dataset(dataList, ModifiedPoisson = FALSE)

Arguments

dataList A list, consisting of data of numbers of TPs, FPs, lesions, etc.

To be passed to the function rstan::sampling() in rstan. This is a variable in the function rstan::sampling() in which it is named data.

For the single reader and a single modality data, the dataList is the following forms:

dataList.Example <- list(h = c(41, 22, 14, 8, 1), # number of hits for each confidence level
\[f = c(1, 2, 5, 11, 13), \] number of false alarms for each confidence level

NL = 124, \# number of lesions (signals)
NI = 63, \# number of images (trials)
\(C = 5 \) \# number of confidence, the author thinks it can be calculated as the length of \(h \) or \(f \)...? ha, why I included this. ha... should be omitted.

And using this object \(\text{dataList.Example} \), we can apply \(\text{fit_Bayesian_FROC()} \) such as \(\text{fit_Bayesian_FROC(dataList.Example)} \).

To make this \(R \) object \(\text{dataList} \) representing FROC data, this package provides three functions:

- \(\text{convertFromJafroc()} \) If data is a JAFROC xlsx formulation.
- \(\text{dataset_creator_new_version()} \) Enter TP and FP data by \textbf{table}.
- \(\text{create_dataset()} \) Enter TP and FP data by \textbf{interactive} manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function \(\text{viewdata()} \).

\begin{center}
\textbf{A Single reader and a single modality (SRSC) case.}
\end{center}

In a single reader and a single modality case (srsc), \(\text{dataList} \) is a list consisting of \(f, h, \text{NL}, \text{NI}, \text{C} \) where \(f, h \) are numeric vectors and \(\text{NL}, \text{NI}, \text{C} \) positive integers.

- \(f \) Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.
- \(h \) Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.
- \(\text{NL} \) A positive integer, representing Number of Lesions.
- \(\text{NI} \) A positive integer, representing Number of Images.
- \(\text{C} \) A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. Note that the maximal number of confidence level, denoted by \(\text{C} \), are included, however, Note that confidence level vector \(c \) should not be specified. If specified, will be ignored, since it is created by \(c = \text{rep}(\text{C}: 1) \) in the program and do not refer from user input data, where \(\text{C} \) is the highest number of confidence levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created \(c \) vector.

\textbf{data Format:}

\begin{center}
\textit{A single reader and a single modality case}
\end{center}

<table>
<thead>
<tr>
<th>\textbf{NI=63, NL=124}</th>
<th>\textbf{confidence level}</th>
<th>\textbf{No. of false alarms}</th>
<th>\textbf{No. of hits}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{c}</td>
<td>\textbf{f}</td>
<td>\textbf{h}</td>
<td></td>
</tr>
</tbody>
</table>
plot_FPF_and_TPF_from_a_dataset

definitely present
c[1] = 5
f[1] = F_5 = 1
h[1] = H_5 = 41

probably present
c[2] = 4
f[2] = F_4 = 2
h[2] = H_4 = 22

equivocal
c[3] = 3
h[3] = H_3 = 14

subtle
c[4] = 2
f[4] = F_2 = 11
h[4] = H_2 = 8

very subtle
c[5] = 1
f[5] = F_1 = 13
h[5] = H_1 = 1

false alarms = False Positives = FP
hits = True Positives = TP

Note that in FROC data, all confidence level means present *(diseased, lesion)* case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, *thus* each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by c = c(rep(C:1)) automatically in the program and do not refer from user input data even if it is specified explicitly, where C is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function viewdata().

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function fit_Bayesian_FROC(), dataset represented by an R list object representing FROC data must contain components m, q, c, h, f, NL, C, M, Q:

C A positive integer, representing the highest number of confidence level, this is a scalar.

M A positive integer vector, representing the number of modalities.

Q A positive integer, representing the number of readers.

c A vector of positive integers, representing the confidence level. This vector must be made by rep(rep(C:1), M*Q)

m A vector of positive integers, representing the modality ID vector.

q A vector of positive integers, representing the reader ID vector.

h A vector of non-negative integers, representing the number of hits.

f A vector of non-negative integers, representing the number of false alarm.

NL A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the
data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector,

the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5 Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP
*hits = True Positives = TP

ModifiedPoisson

Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion. Similarly,

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

$$\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},$$
where \(N_L \) is a number of lesions (signal). To emphasize its denominator \(N_L \), we also call it the \textit{False Positive Fraction (FPF) per lesion}.

On the other hand, if \texttt{ModifiedPoisson} = \texttt{FALSE} (Default), then \textit{False Positive Fraction (FPF)} is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where \(N_I \) is the number of images (trial). To emphasize its denominator \(N_I \), we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson} = \texttt{FALSE}) or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson} = \texttt{TRUE}).

If \texttt{ModifiedPoisson} = \texttt{TRUE}, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.
On the other hand, if ModifiedPoisson = FALSE, then FROC curve means the expected pair of FPF per image and TPF. So, data of FPF and TPF are changed thus, a fitted model is also changed whether ModifiedPoisson = TRUE or FALSE. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

Value

TPF and FPF

See Also

draw.CFP.CTP.from.dataList

Examples

```r
#======================================================================================
# srsc
#======================================================================================
# FPF is Per image

plot_FPF_and_TPF_from_a_dataset(d)

#======================================================================================
# MRMC
#======================================================================================

# FPF is Per lesion

plot_FPF_and_TPF_from_a_dataset(dd)
```
plot_test

Definition of a method for the inherited class stanfitExtended from stanfit

Description

This is a function for a method in the generic function plot.

Usage

plot_test(x)

Arguments

x

This is an object of an S4 class named stanfitExtended which is an inherited S4 class from the stanfit S4 class in the rstan package.

pnorm_or_qnorm

pnorm or qnorm

Description

Thu author always forget which is cumulative distribution of Gaussia, so I made this and this tells me which is mmy desired one. In this package, I often use Φ() for the standard Gaussian, and it is pnorm(). I am very confuse, since probability density has initial alphabet p, but pnorm() is not it.

Usage

pnorm_or_qnorm()

ppp

MRMC or srsc: Posterior Predictive P value (PPP) for MRMC or srsc.

Description

PPP for chi square goodness of fit statistic.

Usage

ppp(StanS4class, Colour = TRUE, dark_theme = TRUE, plot = TRUE, summary = TRUE)
Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and etc.

- **Colour**: Logical: TRUE or FALSE. Whether Colour of curves is dark theme or not.

- **dark_theme**: TRUE or FALSE

- **plot**: Logical, whether replicated datasets are drawn.

- **summary**: Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

Details

I hate the notion of p value and this is the motivation that I developed new FROC theory. However, I cannot overcome the traditional bitch. I love mathematics thoughtful sweet kisses, but I hate statistics since p value is bitch, monotonically decreases when sample size become large. In some papers, I forget the name, but in some papers, one pointed out that the frequentist p values is precisely coincides some poseterior probability of some event (I forget this but such as mean1 is greater than mean2).

In some suitable condition, I conjecture that Bayesian p value coincides to frequentist p value in some sense such as analytically or its expectation of a posterior or etc or large MCMC samples. So, p value is bitch and bitch and bitch. I emphasize that notion of p value is bitch and its background is unknown. In suitable condition, frequentist p value bitch is equal to a probability of some event measured by posterior. So,... Bayesian method cannot break the traditional frequentist bitch. Bayesian and frequentist are all bitch!! Of course, intuitively, it is good. But, the theoretically, it does not satisfies naturalist.

Value

A positive number between zero and one, indicating Posterior Predictive P value (PPP). In addition, it plots replicated datasets which are used to calculate a ppp.

Examples

```r
# The 1-st example: MRMC data
#----------------------------------------------------------------------------------------
# 1) Fit a Model to MRMC Data
#----------------------------------------------------------------------------------------
```
fit <- fit_Bayesian_FROC(ite = 1111, dataList = ddd)

2) Evaluate Posterior Predictive P value for the Goodness of Fit

ppp(fit)

If this quantity, namely a p value is greater,
then we may say that our model is better.

Of course, even if p-values is small, we should not ignore our result.
P value bitch is not so clear what it does and in frequentist methods,
we experienced p value is bitch with respect to sample size.
So, in Bayesian context, this bitch might be bitch with respect to ...
Anyway, but ha....many statisticians like this bitch.

The 2-nd example uses data named d

fitt <- fit_Bayesian_FROC(ite = 1111, dataList = d)
2) Evaluate Posterior Predictive P value for the Goodness of Fit
#--

```r
ppp(fitt)
```

If this quantity is greater, then we may say that our model is better.
I made this ppp at 2019 August 25.

#--

PPP is problematic
#--

Consider the dataset:

```r
dat <- list(c=c(77,3,2,1), # Confidence level. Note that c is ignored.
             h=c(77,97,32,31), # Number of hits for each confidence level
             f=c(1,14,74), # Number of false alarms for each confidence level
             NL=259,      # Number of lesions
             NI=57,       # Number of images
             C=3)         # Number of confidence level#
```

Fit a model to the data

```r
fit <- fit_Bayesian_FROC(dat)
```

calculate p value

```r
ppp(fit)
```

Then we can see that FPF and TPF are far from FROC curve, but p value is not
so small, and thus in this case, ppp is not the desired one for us.

In our model, we need monotonicity condition, namely
#
However the above dataset is far from this condition, and it would relate the above undesired p value.

Revised 2019 Sept 7

Of course it is no need to satisfy this monotonicity precisely, but good data should satisfy.

Since doctor should not wrong (false positive) diagnosis with his high confidence.

ppp

<table>
<thead>
<tr>
<th>ppp</th>
<th>MRMC: Posterior Predictive P value (PPP) for MRMC,</th>
</tr>
</thead>
</table>

Description

PPP for chi square goodness of fit statistic

Usage

```r
ppp_MRMC(StanS4class, summary = TRUE, 
replicate.number.from.model.for.each.MCMC.sample = 2)
```

Arguments

<table>
<thead>
<tr>
<th>StanS4class</th>
<th>An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.</td>
</tr>
<tr>
<td>replicate.number.from.model.for.each.MCMC.sample</td>
<td>A positive integer, representing (J) in the following notation. Now, I think all I needed is love! ttu ttu tututu Love is all I need. Suppose that (\theta_1, \theta_2, \theta_3, ..., \theta_n) is drawn from posterior (\pi(\theta</td>
</tr>
</tbody>
</table>
$y_1 \sim \text{likelihood}(., \theta_1)$,
$y_2 \sim \text{likelihood}(., \theta_2)$,
$y_3 \sim \text{likelihood}(., \theta_3)$,
...
$y_n \sim \text{likelihood}(., \theta_N)$,

Then the list of return values retains the following:

- **chisq_at_observed_data**
 \[\chi(D|\theta_1), \chi(D|\theta_2), \chi(D|\theta_3), \ldots, \chi(D|\theta_n) \]

- **chisq_not_at_observed_data**
 \[\chi(y_1|\theta_1), \chi(y_2|\theta_2), \chi(y_3|\theta_3), \ldots, \chi(y_n|\theta_n) \]

- **Logical** The i-th component is a logical vector indicating whether
 \[\chi(y_2|\theta_2) > \chi(D|\theta_2) \]
 is satisfied or not. Oppai ga Ippai. If TRUE, then the inequality holds.

- **p.value** From the component Logical, we calculate the so-called *Posterior Predictive P value*. Note that the author hate this notion!! I hate it!! Akkan Beeeee!!!

Details

The author hates the notion of p value and this is the motivation that he developed new theory without p values. However, he cannot overcome the traditional people. he loves mathematics, but he hates statistics. he emphasizes that notion of p value is dangerous (monotonicity w.r.t. sample size) and its background is unknown. Of course, intuitively, it is good. But, the theoretically, it does not ensure some criterion in large sample context.

So, p value said that my effort is rarely admissible, since its p value said that he is small for various datasets. So, this funcking p value said my effort is wrong, or should change model. Unfortunately, my hand aches cannot program more models. Ha,... why many peoply like p value bitch.

Value

A positive number indicates Posterior Predictive P value (ppp).

Examples

```r
#----------------------------------------------------------------------------------------
# 1) Fit a Model to MRMC Data
```
fit <- fit_Bayesian_FROC(ite = 1111, dataList = ddd)

1) Evaluate Posterior Predictive P value for the Goodness of Fit

ppp_MRMC(fit)

If this quantity is greater, then we may say that our model is better.

I made this ppp at 2019 August 25. Tinko Tinko Tinko oppai ga ippai!! hentai banzai!

#'

ppp_srsc

Calculates PPP for Models of a single reader and a single modality (Calculation is correct! :'-D)

Description

Calculates Posterior Predictive P value for chi square (goodness of fit)

Usage

```r
ppp_srsc(StanS4class, Colour = TRUE, dark_theme = TRUE, plot = TRUE,
          summary = TRUE,
          replicate.number.from.model.for.each.MCMC.sample = 100)
```

Arguments

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.
- **Colour**: Logical: TRUE of FALSE. whether Colour of curves is dark theme or not.
- **dark_theme**: TRUE or FALSE
- **plot**: Logical, whether replicated data are drawn, in the following notation, replicated data are denoted by \(y_1, y_2, \ldots, y_N \).
- **summary**: Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
replicate.number.from.model.for.each.MCMC.sample

A positive integer, representing J in the following notation. Now, I think all I needed is love! tuu tuu tututu Love is all I need.

Suppose that $\theta_1, \theta_2, \theta_3, ..., \theta_n$ is drawn from posterior $\pi(\theta|D)$ of given data D.

Let $y_1, y_2, ..., y_n$ be samples drawn from

\[y_1 \sim \text{likelihood}(\cdot|\theta_1), \]
\[y_2 \sim \text{likelihood}(\cdot|\theta_2), \]
\[y_3 \sim \text{likelihood}(\cdot|\theta_3), \]

..., \[y_n \sim \text{likelihood}(\cdot|\theta_N), \]

Then the list of return values retains the following:

- **chisq_at_observed_data**
 \[\chi(D|\theta_1), \chi(D|\theta_2), \chi(D|\theta_3), ..., \chi(D|\theta_n), \]

- **chisq_not_at_observed_data**
 \[\chi(y_1|\theta_1), \chi(y_2|\theta_2), \chi(y_3|\theta_3), ..., \chi(y_n|\theta_n), \]

Logical The i-th component is a logical vector indicating whether

\[\chi(y_2|\theta_2) > \chi(D|\theta_2) \]

is satisfied or not. Oppai ga Ippai. If TRUE, then the inequality holds.

p.value From the component Logical, we calculate the so-called Posterior Predictive P value. Note that the author hate this notion!! I hate it!! Akkan Beeeee!!!

Details

In addition, this function plots replicated datasets from model at each MCMC sample generated by HMC. Using the Hamiltonian Monte Carlo Sampling: HMC. we can draw the MCMC samples of size n, say

\[\theta_1, \theta_2, \theta_3, ..., \theta_n \]

, namely,

\[\theta_1 \sim \pi(\cdot|D), \]
\[\theta_2 \sim \pi(\cdot|D), \]
\[\theta_3 \sim \pi(\cdot|D), \]

..., \[\theta_n \sim \pi(\cdot|D). \]

where $\pi(\theta|D)$ is the posterior for given data D.
Then, the function plots the following datasets $y_1^1, y_1^2, ..., y_I^1$.

$$y_1^1, y_1^2, y_1^3, ..., y_I^1, ..., y_I^J \sim L(.|\theta_1),$$

$$y_2^1, y_2^2, y_2^3, ..., y_2^I, ..., y_2^J \sim L(.|\theta_2),$$

$$y_3^1, y_3^2, y_3^3, ..., y_3^I, ..., y_3^J \sim L(.|\theta_3),$$

$$\ldots,$$

$$y_J^1, y_J^2, y_J^3, ..., y_J^I, ..., y_J^J \sim L(.|\theta_J),$$

where $L(.|\theta_i)$ is a likelihood at parameter θ_i.

Let $\chi(y|\theta)$ be a chi square goodness of fit statistics of our hierarchical Bayesian Model

$$\chi(y|\theta) := \sum_{r=1}^{R} \sum_{m=1}^{M} \sum_{c=1}^{C} \frac{(H_{c,m,r} - N_L \times p_{c,m,r})^2}{N_L \times p_{c,m,r}} + \frac{(F_{c,m,c} - (\lambda_c - \lambda_{c+1}) \times N_L)^2}{(\lambda_c - \lambda_{c+1}) \times N_L}.$$

and a chi square goodness of fit statistics of our non-hierarchical Bayesian Model

$$\chi(y|\theta) := \sum_{c=1}^{C} \frac{(H_c - N_L \times p_c)^2}{N_L \times p_c} + \frac{(F_c - (\lambda_c - \lambda_{c+1}) \times N_L)^2}{(\lambda_c - \lambda_{c+1}) \times N_L}.$$

where a dataset y denotes $(F_{c,m,r}, H_{c,m,r})$ in MRMC case and (F_c, H_c) in a single reader and a single modality case, and model parameter θ.

Then we can calculate the posterior predictive p value for a given dataset y_0.

$$\int \int I(\chi(y|\theta) > \chi(y_0|\theta)) f(y|\theta) \pi(\theta|y_0) d\theta dy$$

$$\approx \int \sum_i I(\chi(y|\theta_i) > \chi(y_0|\theta_i)) f(y_i|\theta_i) dy$$

$$\approx \sum_j \sum_i I(\chi(y_i^j|\theta_i) > \chi(y_0|\theta_i))$$

When we plot these replicated data y_i^j, we use the jitter() which adds a small amount of noise to avoid overlapping points. For example, jitter(c(1,1,1,1)) returns values: 1.0161940 1.0175678 0.9862400 0.9986126, which is changed from 1,1,1,1 to be not exactly 1 by adding tiny errors to avoid overlapping. I love you. 2019 August 19 Nowadays, I cannot remove my self from some notion, such as honesty, or pain, or... maybe these thing is no longer with myself. This programi is made to fix previous release calculation. Now, this program calculates correct p value.
So... I calculate the ppp for MCMC and Graphical User Interface based on Shiny for MRMC, which should be variable such as number of readers, modalities, to generate such ID vectors automatically. Ha,... tired! Boaring, I want to die...t, diet!! Tinko, tinko unko unko. Manko manko. ha.

Leberiya, he will be die, ha... he cannot overcome, very old, old guy. I will get back to meet him. Or I cannot meet him? Liberiya....very wisdom guy. Ary you already die? I will get back with presents for you. Ball, I have to throgh ball, and he will catch it.

The reason why the author made the plot of data drawn from Posterior Predictive likelihoods with each MCMC parameters is to understand our programm is correct, that is, each drawing is very mixed. Ha,... when wright this,... I always think who read it. I love you, Ruikobach. Ruikobach is tiny and tiny, but,... cute. Ruikosan...Ruiko... But he has time only several years. He will die, he lives sufficiently so long, ha.

Using this function, user would get reliable posterior predictive p values. Cheers! Pretty Crowd!

We note that the calculation of posterior perdicive p value (PPP) relies on the law of large number. Thus, in order to obtain the relicable PPP, we need to enough large MCMC samples to approximate the double integral of PPP. For example, the MCMC samples is small, then R hat is far from 1 but, the low MCMC samples leads us to incorrect p value which sometimes said that the model is correct even if the R hat criteria reject the MCMC results.

Value

A list, including p value and materials to calculate it.

Author(s)

Issei Tsunoda, Prof. of Curlbus University, Mosquitobus and Gostbus univ. also. My technique of catch mosquitos are excellent, so, I am a prof. ha,, employ me. My health is bad, my life will be over.

Examples

```r
#----------------------------------------------------------------------------------------
# 1) Create a fitted model object with data named only one word d
#----------------------------------------------------------------------------------------

fit <- fit_Bayesian_FROC(d)

#----------------------------------------------------------------------------------------
# 2) Calculate p value and meta data
#----------------------------------------------------------------------------------------
```
print

ppp <- ppp(fit)

#--
3) Extract a p value
#--

ppp$p.value

Revised 2019 August 19
Revised 2019 Nov 27

print

A method for a generic function print() for class "stanfitExtended"

Description

This is a method for print and stanfitExtended S4 class.

Arguments

x

An S4 object of class stanfitExtended inherited from the class stanfit in the rstan package.

Examples

How to use a new method for generic function "print".
#===The First Example===

#(1) First, we prepare the example data from this package.

dat <- BayesianFROC::dataList.Chakra.1

The R object named dat is a list which contains the hits and false alarms representing
an FROC dataset. To confirm it, the function viewdata() can be used;

```r
viewdata(dat)
```

#(2)Second, we run fit_Bayesian_FROC() in which the rstan::sampling() is implemented.
#Fit to data named "dat" the author's Bayesian model by

```r
fit <- fit_Bayesian_FROC(dat)
```

#(3)Thirdly, we obtain the R object fit of S4 class
named stanfitExtended that is an inherited class from the S4 class stanfit
defined in the package rstan.
For the S4 class stanfitExtended defined in this package, we can use
the generic function print for this new S4 class.

```r
print(fit)
```

To use the generic function print() as a object of class "stanfit",
we coerce class of fit into stanfit from stanfitExtended as follows;

```r
fitt <- methods::as(fit,"stanfit")
```

The R object "fitt" is a fitted model object of class stanfit,
thus we can also apply the generic function print() as follows:

```r
print(fitt)
```

#==The Second Example==

```r
```
#(1) First, we prepare the example data from this package.

dat <- BayesianFROC::dataList.Chakra.Web

#(2) Second, we run fit_Bayesian_FROC() in which the rstan::sampling() is implemented.
Fit to data named "dat" the author's Bayesian model by

fit <- fit_Bayesian_FROC(dat)

#(3) Thirdly, we obtain the R object fit of S4 class
named stanfitExtended that is an inherited class from the S4 class stanfit
defined in the package rstan.
For the S4 class stanfitExtended defined in this package, we can use
the generic function print for this new S4 class.

print(fit)

2019.05.21 Revised.

dottest

print_stanfitExtended

print_stanfitExtended *Definition of a method for the inherited class stanfitExtended from stanfit*

Description

This is a function for a method for a generic function print() for class "stanfitExtended"

Usage

print_stanfitExtended(x)

Arguments

x This is an R object of an S4 class named stanfitExtended inherited class from the stanfit in the rstan package.
Details

Print of stanfit has many parameters, but one of them, the AUC is the most important parameter. Thus in particular, we explain how to interpret the printout messages for AUCs.

--- Print of stanfit object ---

* The AUC denoted by AA[modalityID,readerID] are shown by the function print() with a stanfit object.
* The column of 2.5% and 97.5% means the lower and upper bounds of the 95%
* For example, AA[2,3] means the AUC of the 2nd modality and the 3rd reader.

prior_predictor

Description

Predict some estimates of parameter

Usage

prior_predictor(d = d)

Arguments

d A list of data, which can be passed to the fit_Bayesian_FROC.

Value

none

prior_print_MRMC

Description

Prints prior in R console

Usage

prior_print_MRMC(prior = 0)

Arguments

prior An integer, representing type of Prior
Value
none

Examples

prior_print_MRMCE()

prior_print_srsc Print What Prior Are Used

Description
Prints prior in R console

Usage
prior_print_srsc(prior = 0)

Arguments
prior An integer, representing type of Prior

Value
none

Examples

prior_print_srsc()

p_truth Hit Rate: parameter of an MRMC model

Description
A posterior mean of the model parameter for data ddd as an example of truth parameter.

Details
Hit Rate data of some MRMC data to use as a default value of the function hits_creator_from_rate. This is an array obtained from estimates of some data contained in this package. To simulate a replication of dataset, the default values should be used from an actual values. Thus the author prepare this data.
p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit

Author(s)
Issei Tsunoda <tsunoda.issei1111@gmail.com>

See Also
hits_creator_from_rate

Description
Calculates the p value of the chi-squared test statistic for our model.

Get the Chi square values
\[\chi(D_i|\theta_j) \]
with indexed by the all possible pair of replicated data \(D_1, D_2, ..., D_i, ... \) and MCMC samples \(\theta_1, \theta_2, ..., \theta_i, ... \).

Usage
```
p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit(StanS4class, 
dig = 3, Colour = TRUE, plot.replicated.points = FALSE, 
head.only = FALSE, counter.plot.via.schatter.plot = TRUE, 
Show.table = TRUE)
```

Arguments
- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
- **dig**: To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
- **Colour**: Logical: TRUE of FALSE. whether Colour of curves is dark theme or not.
- **plot.replicated.points**: TRUE or FALSE. If true, then plot replicated points (hits, false alarms) by the scatter plot. This process will takes a long times. So if user has no time, then FALSE will help you.
- **head.only**: Logical: TRUE of FALSE. Whether head part or entire of the table are shown. If TRUE, only head part are shown. Default is FALSE.
- **counter.plot.via.schatter.plot**: Logical: TRUE of FALSE. Whether counter plot via schatter plot is drawn, Default = TRUE.
- **Show.table**: Logical: TRUE of FALSE. Whether table includes the terms used calculation of p-value are shown.
Details

Here, we briefly review how to get the chi square samples in the Bayesian paradigm.

First, Let

\[f(y|\theta) \]

be a model (likelihood) with a future data-set \(y \) and a model parameter \(\theta \). Let

\[\pi(\theta|D) \]

be the posterior for given data \(D \). In this situation, the Hamiltonian Monte Carlo method is performed to obtain the MCMC samples of size \(N \), say \(\theta_1, \theta_2, \theta_3, ..., \theta_N \) from posterior \(p(\theta|D) \) of given data \(D \). Alternatively, we get the sequence of models

\[f(y|\theta_1), f(y|\theta_2), f(y|\theta_3), ..., f(y|\theta_N). \]

To get the samples

\[y_1, y_2, ..., y_N \]

from the posterior predictive distribution, we merely draw the \(y_1, y_2, ..., y_N \) from \(f(y|\theta_1), f(y|\theta_2), f(y|\theta_3), ..., f(y|\theta_N) \), respectively. That is for all \(y_i \) is drawn from the distribution \(f(y|\theta_i) \). In notation, it may write:

\[
\begin{align*}
 y_1 & \sim f(y|\theta_1) \\
 y_2 & \sim f(y|\theta_2) \\
 y_3 & \sim f(y|\theta_3) \\
 & \quad \vdots \\
 y_N & \sim f(y|\theta_N)
\end{align*}
\]

Once, we get the samples from the posterior predictive density, we can calculate an arbitrary integral with the posterior measure by the law of large number, or it sometimes is called MonteCarlo integral. Recall that the chi square goodness of fit statistics \(\chi \) is dependent of the model parameter \(\theta \) and data \(D \), that is,

\[\chi = \chi(D|\theta) \]

. So, by integrating

\[\chi(D|\theta) \]

with the posterior predictive measure, we get the

\[\chi(D) \]

which depends only of the data \(D \), that is,

\[
p - \text{value for } D := \int I(\chi(Data|\theta) > \chi(D|\theta)) f(\theta|Data) \pi(\theta|D) d\theta d(Data)
\]

So, in the return value of this function is p value.
My hand, especially right has ache, so I quit this documentation, Good Luck, 2019 May 29. I do not have confidence whether my explanation success.

In this manner we get the two sequence of samples, one is from the posterior distribution and one is the posterior predictive distribution. Using these two kind of samples, we can calculate the test statistics as the Bayesian manner. That is, in frequentist method, the test statistics are calculated by the fixed model parameters, such as the maximal likelihood estimators. However, in Bayesian context, the parameter is not deterministic and hence we should calculate test statistics with the posterior measure. To accomplish this task, this package include the function.

Value

The main return is a nonnegative real number indicating p value of the Chi square goodness of fit. And the other components to calculate p values.

See Also

get_samples_from_Posterior_Predictive_distribution, chi_square_goodness_of_fit_from_input_all_param

Examples

First, fit the model to data. The number of sampling of the Hamiltonian Monte Carlo
methods should be a little number, if user computer has low ability,
since the calculation of the posterior predictive p values is heavy.

fit <- fit_Bayesian_FROC(BayesianFROC::dataList.Chakra.1 ,ite = 1111)

Next, extract the posterior predictive p value from the fitted model object "fit",
and to do so, we have to make a object "output".

output <- p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit(fit)

From the above R script, the table will appear in the R cosole.
If the TRUE is more, then model fitting is better.
Finally, we obtain the following p value;

p.value <- output$p.values.for.chisquare

The significant level of p value is 0.05 in frequentist paradium, but,
In this p value I think it should be more greater, and
should use e.g., 0.6 instead of 0.05 for significant level.
If significant level is 0.5, then test
p.value > 0.5

If it is FALSE, then the fitting is bad.
If p value is more greater than the fitting is more better.

If user has no time, then plot.replicated.points=FALSE will help you.
By setting FALSE, the replicated data from the posterior predictive
distribution does not draw, and hence the running time of function become shorter.

TPs.FPs <- p.value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit(fit,
 plot.replicated.points = FALSE)

If user want to use the scatter plots of hits and false alarms from the posterior
predictive distribution for the submission, then the color plot is not appropriate.
So, by setting the argument Colour = FALSE, the scatter plot become black and white.
So, user can use this scatter plot for submission.

p.value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit(fit,Colour = FALSE)

Since p values are depend on data only, so it is better to show this dependency more
explicitly as follows;

p.value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit(
 fit_Bayesian_FROC(dataList.High)
)

 # Close the graphic device

Close_all_graphic_devices()

 # dottest

Description

Rank Statistics
Usage

 rank_statistics_with_two_parameters(values.of.f.at.one.MCMC.samples,
 values.of.f.at.a.sample.from.priors)

Arguments

values.of.f.at.one.MCMC.samples
 The value of f at a vector whose components are constructed by the all parameters at one MCMC sample.
values.of.f.at.a.sample.from.priors
 The value of f at a vector of model parameters from the prior distribution.

Value

 The value of the Rank Statistics

Examples

 #======== The first example ===
 rank_statistics_with_two_parameters(c(1,2,3,4,5),4)

 #======== The Second Example ==
 a <- Draw_a_simulated_data_set_and_Draw_posterior_samples()

 rank_statistics_with_two_parameters(
 a$MCMC.samples.sended.by.fun,
 a$prior.samples.sended.by.fun
)

 # dottest

replicate_model_MRMC Replicate Models

Description

 Replicate Models For Replicated Data From True Distributions.
Usage

replicate_model_MRMC(initial.seed = 123,
 mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,
 z.truth = BayesianFROC::z_truth, NI = 200, NL = 142,
 ModifiedPoisson = FALSE, replication.number = 2, summary = FALSE,
 ite = 1111)

Arguments

initial.seed The variable initial.seed is used to replicate datasets. That is, if you take initial.seed = 1234, then the seed 1234, 1235, 1236, 1237, 1238, etc are for the first replication, the second replication, the third replication, etc. If the n-th model does not converge for some n, then such model has no mean and thus the non-convergent models are omitted to calculate the errors.

mu.truth array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.

v.truth array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.

z.truth This is a parameter of the latent Gaussian assumption for the noise distribution.

NI Number of Images.

NL Number of Lesions.

ModifiedPoisson Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.

Similarly, If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.

To know details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

$$
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
$$

$$
\frac{F_3 + F_4 + F_5}{N_L},
$$
\[
\frac{F_4 + F_5}{N_L},
\]
\[
\frac{F_5}{N_L},
\]
where \(N_L\) is a number of lesions (signal). To emphasize its denominator \(N_L\), we also call it the *False Positive Fraction (FPF) per lesion*.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\) (Default), then *False Positive Fraction (FPF)* is given by

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_2 + F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_3 + F_4 + F_5}{N_I},
\]
\[
\frac{F_4 + F_5}{N_I},
\]
\[
\frac{F_5}{N_I},
\]
where \(N_I\) is the number of images (trial). To emphasize its denominator \(N_I\), we also call it the *False Positive Fraction (FPF) per image*.

The model is fitted so that the estimated FROC curve can be regraded as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{FALSE}\)) or as the expected pairs of FPF per image and TPF per lesion (\(\text{ModifiedPoisson} = \text{TRUE}\)).

If \(\text{ModifiedPoisson} = \text{TRUE}\), then FROC curve means the expected pair of FPF per lesion and TPF.

On the other hand, if \(\text{ModifiedPoisson} = \text{FALSE}\), then FROC curve means the expected pair of FPF per image and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of number of images, so, it does not matter whether \(\text{ModifiedPoisson} = \text{TRUE}\) or \(\text{FALSE}\). This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28
replication.number
For fixed number of lesions, images, the dataset of hits and false alarms are replicated, and the number of replicated datasets are specified by this variable.

summary
Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

ite
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

Value
A list, each component is an S4 object of class stanfitExtended.

Examples

```r
#---------------------------------------------------------------
# Draw FROC curves with only one of the replicated model
#---------------------------------------------------------------

list.of.fit <- replicate_model_MRMC(replication.number = 2)
DrawCurves(list.of.fit[[2]],
           modalityID = 1:list.of.fit[[2]]@dataList$M,
           readerID = 1:list.of.fit[[2]]@dataList$Q )

# Revised 2019 Sept 9
```

MRMC: Replicates Datasets From Threshold, Mean and S.D.

Description
Make several datasets from a given model parameter.
Usage

```
replicate_MRMC_dataList(replication.number = 2, initial.seed = 123,
mu.truth = BayesianFROC::mu_truth, v.truth = BayesianFROC::v_truth,
z.truth = BayesianFROC::z_truth, NI = 200, NL = 142,
ModifiedPoisson = TRUE, summary = FALSE)
```

Arguments

- **replication.number**
 - A positive integer, specifying number of replicated datasets by this function.
 - For fixed number of lesions, images, the dataset of hits and false alarms are replicated, and the number of replicated datasets are specified by this variable.

- **initial.seed**
 - The variable `initial.seed` is used to replicate datasets. That is, if you take `initial.seed = 1234`, then the seed 1234, 1235, 1236, 1237, 1238, ... etc are for the first replication, the second replication, the third replication, ... etc. If the n-th model does not converge for some n, then such model has no mean and thus the non-convergent models are omitted to calculate the errors.

- **mu.truth**
 - array of dimension (M,Q). Mean of represents the signal distribution of bi-normal assumption.

- **v.truth**
 - array of dimension (M,Q). Standard Deviation of represents the signal distribution of bi-normal assumption.

- **z.truth**
 - This is a parameter of the latent Gaussian assumption for the noise distribution.

- **NI**
 - Number of Images.

- **NL**
 - Number of Lesions.

- **ModifiedPoisson**
 - Logical, that is TRUE or FALSE.
 - If `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
 - Similarly, if `ModifiedPoisson = TRUE`, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
 - To know details, see the author’s paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
 - If `ModifiedPoisson = TRUE`, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

 \[
 \frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
 \]

 \[
 \frac{F_2 + F_3 + F_4 + F_5}{N_L},
 \]
$F_3 + F_4 + F_5 \over N_L$,

$F_4 + F_5 \over N_L$,

$F_5 \over N_L$,

where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the \textit{False Positive Fraction (FPF) per lesion}.

On the other hand, if $ModifiedPoisson = \text{FALSE}$ (Default), then \textit{False Positive Fraction (FPF)} is given by

$F_1 + F_2 + F_3 + F_4 + F_5 \over N_I$,

$F_2 + F_3 + F_4 + F_5 \over N_I$,

$F_3 + F_4 + F_5 \over N_I$,

$F_4 + F_5 \over N_I$,

$F_5 \over N_I$,

where N_I is the number of images (trial). To emphasize its denominator N_I, we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be ragraded as the expected pairs of FPF per image and TPF per lesion ($ModifiedPoisson = \text{FALSE}$) or as the expected pairs of FPF per image and TPF per lesion ($ModifiedPoisson = \text{TRUE}$).

If $ModifiedPoisson = \text{TRUE}$, then FROC curve means the expected pair of FPF \textit{per lesion} and TPF.

On the other hand, if $ModifiedPoisson = \text{FALSE}$, then FROC curve means the expected pair of FPF \textit{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether $ModifiedPoisson = \text{TRUE}$ or FALSE. In traditional FROC analysis, it uses only
per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether ModifiedPoisson = TRUE or FALSE. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

Value

A list, each component is also a list, representing an FROC dataset.

Examples

```r
# Replicates datasets from a model with user specified parameters (now, it is default).
a <- replicate_MRMC_dataList()

# Calculates FPF and TPF and plot it for the first replicate dataset
plot_FPF_and_TPF_from_a_dataset(a[[1]])

# Calculates FPF and TPF and plot it for the second replicate dataset
plot_FPF_and_TPF_from_a_dataset(a[[2]])
```

Revised 2019 Oct 9

showGM

Show the Graphical Model for a single reader and a single modality
Description

This function shows the graphical model for a single reader and a single modality FROC statistical model.

Usage

```
showGM()
```

Examples

```
showGM()
# dotest
```

Simulation_Based_Calibration_histogram

Draw a histogram of the rank statistics

Description

To validate that the MCMC procedure is correct or not, we show the histogram of rank statistics. If the resulting histogram is uniformly distributed, then we can conclude that the MCMC sampling is correct. If the histogram is far from uniformity, then the MCMC sampling or specification of priors is not correct or not appropriate.

Usage

```
Simulation_Based_Calibration_histogram(N = 3, sd = 5, C = 5, 
initial.seed.for.drawing.a.rank.statistics = 1234567,
fun = stats::var, NI = 259, NL = 259, 
initial.seed.for.drawing.a.data = 1234, ModifiedPoisson = FALSE, 
ite = 1111, DrawCurve = FALSE)
```

Arguments

- **N** samples size of the rank statistics.
- **sd** Standard Deviation of priors
- **C** No. of Confidence levels
- **initial.seed.for.drawing.a.rank.statistics** seed
- **fun** An one dimensional real valued function defined on the parameter space. This is used in the definition of the rank statistics. Generally speaking, the element of the parameter space is a vector, so the function should be defined on vectors. In my model parameter is mean, standard deviation, C thresholds of the latent Gaussian, so this function should be defined on the C+2 dimensional Euclidean space.
NI No. of images
NL No. of Lesions
initial.seed.for.drawing.a.data
seed

ModifiedPoisson
Logical, that is TRUE or FALSE.
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per lesion, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF per lesion.
Similarly,
If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated per image, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF per image.
To know details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)
If ModifiedPoisson = TRUE, then the False Positive Fraction (FPF) is defined as follows (F_c denotes the number of false alarms with confidence level c)

$$\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},$$

$$\frac{F_2 + F_3 + F_4 + F_5}{N_L},$$

$$\frac{F_3 + F_4 + F_5}{N_L},$$

$$\frac{F_4 + F_5}{N_L},$$

$$\frac{F_5}{N_L},$$

where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion.
On the other hand,
if ModifiedPoisson = FALSE (Default), then False Positive Fraction (FPF) is given by

$$\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},$$

$$\frac{F_2 + F_3 + F_4 + F_5}{N_I},$$
\[
\frac{F_3 + F_4 + F_5}{N_I},
\]

\[
\frac{F_4 + F_5}{N_I},
\]

\[
\frac{F_5}{N_I},
\]

where \(N_I\) is the number of images (trial). To emphasize its denominator \(N_I\), we also call it the \textit{False Positive Fraction (FPF) per image.}

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = FALSE})

or as the expected pairs of FPF per image and TPF per lesion (\texttt{ModifiedPoisson = TRUE})

If \texttt{ModifiedPoisson = TRUE}, then FROC curve means the expected pair of FPF \textit{per lesion} and TPF.

On the other hand, if \texttt{ModifiedPoisson = FALSE}, then FROC curve means the expected pair of FPF \textit{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether \texttt{ModifiedPoisson = TRUE} or \texttt{FALSE}. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28

\texttt{ite}

To be passed to the function \texttt{rstan::sampling} in \texttt{rstan}. An argument of \texttt{rstan::sampling()} in which it is named \texttt{iter}. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

\texttt{DrawCurve}

Logical: \texttt{TRUE} or \texttt{FALSE}. Whether the curve is to be drawn. \texttt{TRUE} or \texttt{FALSE}. If you want to draw the FROC and AFROC curves, then you set \texttt{DrawCurve} =\texttt{TRUE}, if not then \texttt{DrawCurve} =\texttt{FALSE}. The reason why the author make this variable \texttt{DrawCurve} is that it takes long time in MRMC case to draw curves, and thus default value is \texttt{FALSE} in the case of MRMC data.

\textbf{Value}

samples of rank statistics
Examples

```r
## Not run:
g <- Simulation_Based_Calibration_histogram(N=10, ite = 3333)
graphics::hist(g$rank.statistics)

# N =100 would be better more than N =10
# But this is only example, we take very small N
N=10,
ite=3333,
sd=1,
initial.seed.for.drawing.a.rank.statistics = 123456789,
DrawCurve = T

#====== The Second Example: =================================================
# If you want to see the replicated data, then the following code is available.
# In the following, I extract the dataset which is very small rank statistics, e.g.
# less than 10. And draw the CFP and CTP for observation of dataset.

gggg <- Simulation_Based_Calibration_histogram(
NI=1111111,
NL=1111111,
N=22,
ite=2222)

a <- gggg$rank.statistics<10
aa <- the_row_number_of_logical_vector(a)
```
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc

Simulation Based Calibration (SBC) for a single reader and a single modality case

Description

Implements the SBC algorithm for a single reader and a single modality case.

Usage

Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(ww = -0.81, www = 0.001, mm = 0.65, mmm = 0.001, vv = 0.05, vvv = 0.1, zz = 1.55, zzz = 0.001, epsilon = 0.001, XXX = 1, YYY = 1, ite = 3333, model_reparametrized = FALSE, NL = 259, NI = 57, C = 3, prior = 1, M = 500)

Arguments

- **ww**: A real number, representing a parameter of prior, indicating mean of prior for the first threshold
- **www**: A real number, representing a parameter of prior, variance of prior for the first threshold
- **mm**: A real number, representing a parameter of prior, mean of prior for the mean of signal distribution
- **mmm**: A real number, representing a parameter of prior, variance of prior for the variance of signal distribution
- **vv**: A real number, representing a parameter of prior, mean of prior for the mean of signal distribution
- **vvv**: A real number, representing a parameter of prior, variance of prior for the variance of signal distribution
- **zz**: A real number, representing a parameter of prior, mean of prior for the differences of thresholds
- **zzz**: A real number, representing a parameter of prior, variance of prior for the differences of thresholds
- **epsilon**: lower bound of Poisson for false positives.
XXX ?
YYY ?

ite To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

model_reparametrized
A logical, if TRUE, then a model under construction is used.

NL number of lesions
NI number of images
C number of confidence levels
prior An integer, representing type of priors
M To be passed to the function rstan::sbc() in rstan.

Details

The implementation is done using the rstan::sbc. The stan file is SBC.stan The implementation is done using the function rstan::sbc. The stan file is SBC.stan The variable in this function is a collection of parameters of priors

If we use non-informative prior, then from the prior the odd model parameter are generated. For example, If two thresholds z[c] and z[c+1] agree for some c, then the false alarm rate becomes zero with the following error from rstan::sbc:

failed to create the sampler; sampling not done

Error in new_CppObject_xp(fields$.module,fields$.pointer,...) :
Exception: poisson_rng: Rate parameter is 0, but must be > 0!

Thus, we have to use very strong prior to avoid to generate such odd parameters of model.

SBC is a validation algorithm for models with respect to its prior.
I cannot fine the prior in which we can fit a model to various datasets.

What is SBC?

Aim of SBC is to evaluate how the computed posteriors are incorrect. To do so, SBC algorithm makes a histogram whose uniformity indicates MCMC samples contains bias.

For example,
If linear histogram is concave, namely there are spikes at the boundaries of histogram, then it indicates that MCMC samples is correlated. If a histogram is convex (∩-shaped), then it indicates that over-dispersed posteriors relative to the true posterior.

if histogram is concave, namely there are spikes at the boundaries of histogram, then it indicates that MCMC samples is correlated.

If a histogram is convex (∩-shaped), then it indicates that over-dispersed posteriors relative to the true posterior.

If a histogram is weighted to right or left, then posterior moves opposite direction, namely left or right respectively.
We may say that SBC is a statistical test of the null hypothesis H_0:

$$H_0 : MCMC_{sampling} is correct.$$

If the histogram is far from uniformity, then we reject H_0 and say that MCMC sampling contains bias.

Parameters of our model

- w The first threshold
- dz The difference of thresholds, that is, $dz[c] := z[c+1] - z[c]$
- m Mean of signal Gaussian
- v Variance of signal Gaussian

Value

A list of S3 class "sbc", which is an output of the function `rstan::sbc()` in `rstan`.

References

data Format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
</table>

Recall our model for the above data format:

$$H_5 \sim Binomial(p_5, N_L)$$

$$H_4 \sim Binomial(p_4, N_L)$$

$$H_3 \sim Binomial(p_3, N_L)$$

$$H_2 \sim Binomial(p_2, N_L)$$

$$H_1 \sim Poisson(p_1, N_L)$$
$F_5 \sim \text{Poisson}(q_5)
F_4 \sim \text{Poisson}(q_4)
F_3 \sim \text{Poisson}(q_3)
F_2 \sim \text{Poisson}(q_2)
F_1 \sim \text{Poisson}(q_1)$

where

$p_5 = p_5(z_1,...,z_C; \mu, \sigma) = \int_{z_5}^{\infty} \text{Gaussian}(z|\mu,\sigma) \, dz
p_4 = p_4(z_1,...,z_C; \mu, \sigma) = \int_{z_4}^{z_5} \text{Gaussian}(z|\mu,\sigma) \, dz
p_3 = p_3(z_1,...,z_C; \mu, \sigma) = \int_{z_3}^{z_4} \text{Gaussian}(z|\mu,\sigma) \, dz
p_2 = p_2(z_1,...,z_C; \mu, \sigma) = \int_{z_2}^{z_3} \text{Gaussian}(z|\mu,\sigma) \, dz
p_1 = p_1(z_1,...,z_C; \mu, \sigma) = \int_{z_1}^{z_2} \text{Gaussian}(z|\mu,\sigma) \, dz$

$q_5 = q_5(z_1,...,z_C) = \int_{z_5}^{\infty} d \log \Phi(z)
q_4 = q_4(z_1,...,z_C) = \int_{z_4}^{z_5} d \log \Phi(z)
q_3 = q_3(z_1,...,z_C) = \int_{z_3}^{z_4} d \log \Phi(z)
q_2 = q_2(z_1,...,z_C) = \int_{z_2}^{z_3} d \log \Phi(z)
q_1 = q_1(z_1,...,z_C) = \int_{z_1}^{z_2} d \log \Phi(z)$

Priors

$w \sim \text{normal}(ww, www);
dz[c] \sim \text{normal}(zz, zzz)I_{[0,\infty]}; c = 1, 2, ..., C
m \sim \text{normal}(mm, mmm);
v \sim \text{normal}(vv, vvv)$

where $dz[c]=z[c+1]-z[c]$.

The variable of this function is the parameters of the priors, namely:
Revised 2019 August 30 Revised 2019 Oct 30

In SBC, we have to specify proper priors, thus, we use the above priors. So, what reader should do is to specify the above parameters, that is, \(ww, www, zz, zzz, mm, mmm, vv, vvv\) and further a number of images \(NL\) and a number of lesion \(NI\) and a number of confidence levels should specify. In the above example data format, the number of confidence level is the number of rows, and now it is 5, that is \(C=5\).

Revised 2019 August 4

I am not statistician nor researcher nor human. My leg is gotten by death who is prurigo nodularis. Death is soon. I cannot understand, I hate statistics. I do not want to waste my time to this FROC analysis. My program is volunteer, I am no money no supported. Completely my own support or my parents. Completely my own. I am tired for this no end point running. I have not money to research or place or circumstance. No healthy condition. This program is made with my blood and pain, great pain. I no longer want to live. I hate all. Honesty.

Examples

```
#----------------------------------------------------------------------------------------
# SBC via rstan::sbc
#----------------------------------------------------------------------------------------

# Provides an Simulations Based Calibration for validation of our sampling.
# We can confirmed that my model has very exact MCMC sampling.
# SBC require suitable priors, and for the author, it seems very informative priors.
# If we do not use the informative priors, then the odd data are generated from
# the likelihood at the parameters drawn from priors. Such odd data has not fitted
# our model, causing odd sampling.
# If we do not choose the informative priors in suitable way, then it causes bias
# in model. Even if the MCMC sampling is good in the sense of SBC, but the choice of
# priors has no reason, then it will cause bias. So, the author of this package
# guess that the bias of MCMC sampling and the bias of priors are trade off.
# I write this program with no good condition of health or not good environment,
# not enough money. So I write this with pain, pain in body, pain in life, pain in
# money. So, this program let me be happy? I have to live. I must live.
#
# The default is three confidence levels,
```

```
#----------------------------------------------------------------------------------------
# Default prior
#----------------------------------------------------------------------------------------
```
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc()

#--
Default prior
#--

Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(prior = 1)

#--
Default prior
#--

#--
SBC via rstan::sbc
#--

fit<-Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
 www=-0.81,www =0.001,
 mm=0.65,mmm=0.001,
 vv=5.31,vvv=0.001,
 zz= 1.55,zzz=0.001)

#--
SBC via rstan::sbc
#--

The following example, we specify the variance of prior of first thresholds
as 1 which is very large for variance. If we take more large variance,
then Stan cannot start sampling since its

Run SBC algorithm
fit <-
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(www=1)

Check uniformity intuitively
plot(fit,bins=10)# Not required since the above function also plot the rank statistics.

Using default variables SBC via rstan::sbc
Run SBC algorithm
fit <- Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc()

Check uniformity intuitively
plot(fit,bins=10)

Number of confidence level is 4 SBC via rstan::sbc
Run SBC algorithm

fit <- Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbcv(C=4)

Check uniformity intuitively

plot(fit,bins=11)

Note that using this prior, the author attempt to fit a model to data named d, but, model did not converge since the prior is too informative. SBC procedure use prior for drawing samples, so, non-informative prior causes odd data, and FROC model cannot fit such a odd dataset. So, even if SBC said it is good with respect to some prior, but such prior cannot use the general fitting procedure. The author emphasizes that the SBC and model fitting to any data is trade off. Thus, I cannot use this SBC prior for the stan file since it is too informative 2019 August 30

Strong informative prior leads us to lack of versatility. However, SBC does not detect or ignore such versatility.

To obtain Large variance

#--
#--
#--
The following histogram has singular on both boundary.

```r
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
    wwww = 1,
    vvvv = 1,
    mmm = 1
)
```

The following SBC is good even if, it sometimes fails,
since Poisson rate becomes sometimes zero:

```r
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
    wwww = 1,
    vvvv = 1,
    zzzz = 1
)
```

#--
SBC failed but adding new prior so that Poisson rate is not zero,
then, it is good SBC histogram.
#--

```r
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
    wwww = 1,
    vvvv = 1,
    zzzz = 1
)
```

#--
SBC failed: Very small samples for the histogram
#--

```r
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
    wwww = 11,
    vvvv = 11,
    zzzz = 11,
    prior = -1
)
```

```r
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc(
    wwww = 11,
```
Simulation Based Calibration (SBC) for a single reader and a single modality case

Description

Implements the SBC algorithm for the a single reader and a single modality case.

Usage

Simulation_Based_Calibration_via_rstan_sbc_MRMC(ww = -0.81, www = 0.001, mm = 0.65, mmm = 0.001, vv = 5.31, vvv = 0.001, zz = 1.55, zzz = 0.001, A_mean = 0.6, A_variance = 0.1, vv_hyper_v = 0.05, vvv_hyper_v = 0.01, NL = 259, NI = 57, C = 3, M = 5, Q = 4)

Arguments

ww A real number representing parameter of prior, indicating mean of prior for the first threshold
www A real number representing parameter of prior, variance of prior for the first threshold

mm A real number representing parameter of prior, mean of prior for the mean of signal distribution

mmm A real number representing parameter of prior, variance of prior for the variance of signal distribution

vv A real number representing parameter of prior, mean of prior for the mean of signal distribution

vvv A real number representing parameter of prior, variance of prior for the variance of signal distribution

zz A real number representing parameter of prior, mean of prior for the differences of thresholds

zzz A real number representing parameter of prior, variance of prior for the differences of thresholds

A_mean A real number representing parameter of prior, indicating mean of prior for the A

A_variance A real number representing parameter of prior, indicating mean of prior for the A

vv_hyper_v A real number representing parameter of prior, indicating mean of prior for the hyper_v

vvv_hyper_v A real number representing parameter of prior, indicating variance of prior for the hyper_v

NL number of lesions

NI number of images

C number of confidence levels

M number of modalities

Q number of readers

Details
The implementation is done using the rstan::sbc. The stan file is SBC.stan

Value
A list of S3 class "sbc", which is an output of the sbc function in rstan.

References

See Also
rstan::sbc, which implements SBC.
Stan file: SBC_MRMC.stan
Examples

```r
# Provides an Simulation Based Calibration for validation of our sampling.
# We can confirmed that my model has very exact MCMC sampling.
# SBC require suitable priors, and for the author, it seems very informative priors.
# If we do not use the informative priors, then the odd data are generated from
# the likelihood with the parameters drawn from priors. Such odd data has not fitted
# our model, causing odd sampling.
# If we do not choose the informative priors in suitable way, then it causes bias
# in model. Even if the MCMC sampling is good in the sence of SBC, but the choise of
# priors has no reasen, then it will cause bias. So, the author of this package
# consider that the bias of MCMC sampling and the bias of priors are trade off.
# I write this program with no good condition of health or not good environment,
# I want to die, I want to die, with great pain pain pain pain die
# not enough money. So I write this with pain, pain in body, pain in life, pain in
# money. So, this program let me be happy? I have to live. I must live.
# All my pains let me take a CT images of my brain, my body, my teeth.
# So, I have many CT images of mine, so I want to include them, but thier size
# is very big, thus, I cannot. So, some section of CT image will be uploaded.
# Healthy condition gives us wings for life. Pains gives us pain and small life.
# I need wings to work or walk or write or calculation of mathematics. I must live.
# Many reviewer gives me wrong or misunderstand comments. I won't hear them anymore.
# So, I upload this program to avoid such damm comments. Fack. My life is damm damm.
# The default is three confidence levels,

# Now, I have no internet environment, thus I cannot gives the reference.
# Please search with internet for the details of SBC.
# I won't, won't, won't, ... 2019 July 18 with pain.

# I have no money for research no envoronment, no books, damm. Amateur. Amateur.

fit<-
Simulation_Based_Calibration_via_rstan_sbc_MRMC(
    wv =-0.81, wvv =0.001,
    mm=0.65, mmm=0.001,
    vv=5.31, vvv=0.001,
    zz = 1.55, zzz=0.001 )

#donttest
size_of_return_value  Size of R object

Description

This return value can add each other or any number by the manner: return + number of R object

Usage

size_of_return_value(object, summary = TRUE, is_return_value = TRUE, base_size = 0, col = FALSE)

Arguments

object Any R object, whose size is measured.
summary A logical, whether the result is printed.
is_return_value A logical, printed word is used as "return value" if it is TRUE.
base_size This value is added to the return value, namely, object size + base_size is the return value. This is for the package developer.
col A logical, wheter print is colored.

Value

return value of utils::object.size()

small_margin  Margin

Description

If each variable is smaller, then the margin of it is smaller, so plot region become larger. But title and x axis title will be vanish.

Usage

small_margin(Down.oma = 1, Left.oma = 1, Top.oma = 1, Right.oma = 1, Down.mar = 1, Left.mar = 1, Top.mar = 1, Right.mar = 1)
Arguments

- `Down.oma` smaller gives larger plot region
- `Left.oma` smaller gives larger plot region
- `Top.oma` smaller gives larger plot region
- `Right.oma` smaller gives larger plot region
- `Down.mar` smaller gives larger plot region
- `Left.mar` smaller gives larger plot region
- `Top.mar` smaller gives larger plot region
- `Right.mar` smaller gives larger plot region

Details

To show FROC curve or signal and noise distributions in Shiny Graphical devices, the author wrote down this function `small_margin`. By taking margin too small, we give more larger plot regions in Shiny Graphical devices. 2019 August 6

Value

NONE

See Also

- `draw_latent_signal_distribution`
- `draw_latent_noise_distribution`
- `DrawCurves`
- `DrawCurves_srsc`

Examples

```r
small_margin()
graphics::plot(1:3,1:3)

small_margin(2,2,2)
graphics::plot(1:3,1:3)

small_margin(2,2,2,4,4,4)
graphics::plot(1:3,1:3)
colors()
graphics::rect(par()$usr[1],
 par()$usr[2],
 par()$usr[3],
 par()$usr[4],
 col = "steelblue3",
```
Description

Snippet for the package BayesianFROC. Copy and paste to the snippet edition tools in your R studio for the conforable usage of the package BayesianFROC. This is under construction. To edit snippet, you should open the editor located in Tools > Global options > Code > Edit snippets.

Usage

snippet_for_BayesianFROC()

Value

nothing

Examples

snippet_for_BayesianFROC()

sortAUC
Make a Ranking for AUCs for MRMC Data

Description

print a modality ranking according to their AUCs.

Usage

sortAUC(StanS4class, digits = 3, simple = FALSE)
sortAUC

Arguments

StanS4class An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
digits To be passed to `round()` for AUC, to determine the significant digits of AUCs.
simple Logical, TRUE or FALSE. If TRUE, then it is simple.

@export

Details

This is a ranking. Sort a data-frame involving AUC and corresponding modality IDs.

Value

A data-frame, representing sorted ranking of modality ID and its AUC. Revised 2019 Sept 9

Examples

```r
#--
1) Fit a model to an MRMC data-set named dd
#--
fit <- fit_Bayesian_FROC(
 ite = 1111,
 summary = FALSE,
 cha = 1,
 dataList = dd
)

#--
1) Sort the AUC and make a ranking table
#--

sortAUC(fit)

Then, a ranking table will appear.
```

# Revised 2019 Sept 9
Description

Inherits from the class `stanfit` which is an S4 class defined in the package `rstan`.

Details


--- To read the table of R object of class stanfit in case of MRMC ---

* The AUC denoted by \( AA[\text{modalityID}, \text{readerID}] \) are shown.
  For example, \( AA[2,3] \) means the AUC of the 2nd modality and the 3rd reader.
* The column of 2.5% and 97.5% means the lower and upper bounds of the 95%

Slots

- `plotdataMRMC` Plot data for MRMC case.
- `plotdata` This is a data frame with four components which is used to draw curves such as FROC curves and AFROC curves. So, this slot includes the component:
  ```r
 fit@plotdata$x.AFROC,
 fit@plotdata$y.AFROC,
 fit@plotdata$x.FROC,
 fit@plotdata$y.AFROC
  ```
  where `fit` is an object of class `stanfitExtended`.
  For example, we can use this slot such as `plot(fit@plotdata$x.AFROC,fit@plotdata$y.AFROC)`.
- `dataList` An FROC dataset. Using the dataset, the fitting has done.
- `studyDesign` A character, e.g., "srsc.per.image", "srsc.per.lesion", according to False Positive Fraction (FPF) is per image or per lesion.
- `metadata` An additional data calculated from `dataList`, such as cumulative hits and false alarms,...,etc.
- `WAIC` A WAIC calculated by the function `waic`.
- `convergence` A logical R object TRUE or FALSE. If TRUE, then it means your model is good in the R hat criterion.
- `PreciseLogLikelihood` This is TRUE or FALSE. If TRUE, then target formulation is used in the `stan` file. However, non-target formulation has warning for non-linear Jacobian issue. So, the author use target formulations for all .stan files, and thus this slot is now, redandunt.
- `chisquare` This is a chi square calculated with Expected A Posterior estimates, i.e., the posterior mean estimates. Chi square statistic is \( \chi^2(\text{Data}|\theta) \), there are three simple ways to get it.
  
  1. \[ \int \chi^2(\text{Data}|\theta)f(\text{Data}|\theta)\pi(\theta|\text{Data})d\theta \]
  2. \[ \chi^2(\text{Data}) \int \theta\pi(\theta|\text{Data})d\theta \]
Stan code

\[ \int \chi_2^2(\text{Data}|\theta)f(\text{Data}|\theta)\pi(\theta|\text{Data})d\theta \]

where, \( f(\text{Data}|\theta) \) denotes a likelihood and \( \pi(\theta|\text{Data}) \) is a posterior. This slot retains the (2)

Note that this is not calculated by integrating the posterior predictive measure. Do not confuse with the p value calculated with the posterior predictive measure implemented in the function \( \text{ppp()} \).

index This is for programming phase.

Divergences This is a number of the divergence transitions in the MCMC simulation.

MCMC.Iterations A MCMC iterations which does not count the burn-in period.

Divergence.rate A divergence rate, that is the number of the divergence iterations over total MCMC iterations. Burn-in period is not included.

model.name A slot from the \texttt{stanfit} which is an S4 class defined in the \texttt{rstan} package.

model.pars A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

par.dims A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

mode A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

sim A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

inits A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

stan.args A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

stanmodel A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

date A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

.MISC A slot from the \texttt{stanfit} which is an S4 class in the package \texttt{rstan}.

Stan code validation

Description

Title

Usage

\begin{verbatim}
Stan_code_validation(z = BayesianFROC::z, mu = BayesianFROC::mu,
                  v = BayesianFROC::v, T.or.F = T)
\end{verbatim}

Arguments

- \( z \) thresholds
- \( \mu \) mean
- \( v \) standard deviation
- \( T.or.F \) logical, if true then a logical is return hit rate <1 and if false hit rate is returned.
StatisticForANOVA

Examples

\[
\text{Stan\_code\_validation}(z=c(4.7,5,6),\mu+555,v/1000000000)
\]

\[
\text{Stan\_code\_validation}(z=c(4.7,5,6),\mu+5,v/10,\text{T. or F} = \text{FALSE})
\]

#ppp[1,3,4]/denoo[1,3,4]

StatisticForANOVA

Statistic for ANOVA

Description

Provides a statistic to test the null hypothesis that all modalities are same.

Usage

StatisticForANOVA()

Value

None

summarize_MRMC

Summarize the estimates for MRMC case

Description

Summarize the estimates for MRMC case

Usage

summarize_MRMC(StanS4class, dig = 3)

Arguments

StanS4class An S4 object of class \texttt{stanfitExtended} which is an inherited class from the S4 class \texttt{stanfit}. This \texttt{R} object can be passed to the \texttt{DrawCurves()}, \texttt{ppp()} and ... etc

dig To be passed to the function \texttt{rstan::sampling()} in \texttt{rstan}. An argument of \texttt{rstan::sampling()} in which it is named \ldots ??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
Value

Nothing

Examples

```r
fit <- fit_Bayesian_FROC(
 dataList.Chakra.Web.ordered,
 ite = 1111,
 summary = FALSE
)

summarize_MRMC(fit)

dottest
```

---

**summary_AUC_comparison_MRMC**

*Print summary for AUC comparisons for MRMC*

---

**Description**

This is print the results of AUC comparison for MRMC data.

**Usage**

```r
summary_AUC_comparison_MRMC(StanS4class, significantLevel = 0.8,
 dig = 3)
```

**Arguments**

- **StanS4class**: An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc.
- **significantLevel**: This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.
- **dig**: To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,
**summary_AUC_comparison_MRMC_without_crayon**

*Print summary for AUC comparisons for MRMC without color*

**Description**

This is print the results of AUC comparison for MRMC data.

**Usage**

```r
summary_AUC_comparison_MRMC_without_crayon(StanS4class,
 significantLevel = 0.8, dig = 3)
```

**Arguments**

- **StanS4class**
  An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc

- **significantLevel**
  This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.

- **dig**
  To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named ...?? A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

---

**summary_AUC_comparison_MRMC_with_crayon**

*Print summary for AUC comparisons for MRMC hier with color*

**Description**

This is print the results of AUC comparison for MRMC data.

**Usage**

```r
summary_AUC_comparison_MRMC_with_crayon(StanS4class,
 significantLevel = 0.8, dig = 3)
```

**Arguments**

- **StanS4class**
  An S4 object of class `stanfitExtended` which is an inherited class from the S4 class `stanfit`. This R object can be passed to the `DrawCurves()`, `ppp()` and ... etc
significantLevel
This is a number between 0 and 1. The results are shown if posterior probabilities are greater than this quantity.
dig
To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named ...??. A positive integer representing the Significant digits, used in stan Cancellation. default = 5,

summary_EAP_CI_srsc

Description
EAP and CI

Usage
summary_EAP_CI_srsc(StanS4class, dig = 5, summary = TRUE)

Arguments
StanS4class
An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc
dig
digits of estimates.
summary
Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

Value
The estimates

Examples

#==The first example===============================

#1) Build the data for singler reader and single modality case.

dat <- list(c=c(3,2,1), #Confidence level
            h=c(97,32,31), #Number of hits for each confidence level
            f=c(1,14,74), #Number of false alarms for each confidence level
            NL=259,       #Number of lesions
            NI=57,        #Number of images
            C=3)          #Number of confidence level


Test_Null_Hypothesis_that_all_modalities_are_same

# where, c denotes Confidence level,
# h denotes number of Hits for each confidence level,
# f denotes number of False alarms for each confidence level,
# NL denotes Number of Lesions,
# NI denotes Number of Images,

# 2) Fit the FROC model to the above data
fit <- BayesianFROC::fit_Bayesian_FROC(dat)

# 3) Extract estimates, that is posterior means and 95% credible intervals
estimates <- summary_EAP_CI_srsc( fit )

# do test

---

Test_Null_Hypothesis_that_all_modalities_are_same

Test the Null hypothesis that all modalities are same

Description

Test null hypothesis that all modalities have same observer performance ability, using Bayes factor.

Usage

Test_Null_Hypothesis_that_all_modalities_are_same(dataList, ite = 1111,
cha = 1, summary = FALSE)

Arguments

dataList MRMC case only.
ite To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.
cha To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.
summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.
Details

From input data (variable: dataList), the two objects of class stanfit are created. one is fitted to the null hypothesis model and the another one representing alternative hypothesis. These two stanfit. objects are compared by the Bayes factor.

Value

none

Examples

Test_Null_Hypothesis_that_all_modalities_are_same(BayesianFROC::dd)
#donttest

---

the_row_number_of_logical_vector

Extract the row number from a logical vector

Description

Extract the row number from a logical vector

Usage

the_row_number_of_logical_vector(vector.logical)

Arguments

vector.logical vector with logical component

Value

the row number of logical component

Author(s)

Issei Tsunoda
Examples

```r
a <- c(TRUE, FALSE, FALSE, TRUE, TRUE)

b <- the_row_number_of_logical_vector(a)
Then, return value object, b is a vector of
#> b
1, 4, 5

From this, we can count the TRUE, as following manner:

Number.of.TRUE <- length(b)
Of course, it is:
#> Number.of.TRUE
3

length(b) == sum(a)
```

TRUE.Counter.in.vector

Count TRUE in a Vector whose components are all Logical R objects

Description

For the posterior predictive p value.

Usage

TRUE.Counter.in.vector(vector.logical)

Arguments

- `vector.logical`: vector with logical component

Value

A positive integer.
Examples

```r
#==
Revised 2019 oct. This is same as sum(), I did not know this
#==

a <-c(TRUE,FALSE,FALSE,TRUE,TRUE)
TRUE.Counter.in.vector(a)

Of course, it is:
Number.of.TRUE
3

sum(a) == TRUE.Counter.in.vector(a)

I did not know this equality,... no longer this function is needed
```

\textit{v} \quad \textit{Standard Deviation: parameter of an MRMC model}

Description

A posterior mean of the model parameter for data \textit{ddd} as an example of truth parameter.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com >

See Also

\texttt{make_true_parameter\_MRMC}

validation.dataset\_srsc

\textit{Error between a give parameter and estimates for the parameters}

Description

Let $\theta_0$ be a given model parameter with a given number of images $N_I$ and a given number of lesions $N_L$, specified by user.

\textbf{(I) Replicates models for $D_1, D_2, ..., D_k, ..., D_K$.}

\textbf{Draw a dataset $D_k$ from a likelihood (model), namely $D_k \text{ likelihood}(\theta_0)$.}
Draw a MCMC samples \( \{ \theta_i(D_k) \} \) from a posterior, namely \( \theta_i \pi(\theta_i | D_k) \).

Calculate a posterior mean, namely \( \bar{\theta}(D_k) := \sum_i \theta_i(D_k) \).

Calculates error \( \epsilon_k := \text{Truth} - \text{estimates} = \theta_0 - \bar{\theta}(D_k) \).

(II) Calculates mean of errors mean of errors \( \bar{\epsilon}(\theta_0, N_I, N_L) = \frac{1}{K} \sum \epsilon_k \).

Running this function, we can see that the error \( \bar{\epsilon}(\theta_0, N_I, N_L) \) decreases monotonically as a given number of images \( N_I \) or a given number of lesions \( N_L \) increases.

Also, the scale of error also will be found. Thus this function can show how our estimates are correct. Scale of error differs for each component of model parameters.

Revised 2019 August 28

Usage

\[
\text{validation.dataset_srsc}(\text{replicate.dataset} = 3, \text{ModifiedPoisson} = \text{FALSE}, \text{mean.truth} = 0.6, \text{sd.truth} = 5.3, \text{z.truth} = c(-0.8, 0.7, 2.38), \text{NL} = 259, \text{NI} = 57, \text{ite} = 1111, \text{cha} = 1, \text{summary} = \text{TRUE}, \text{serial.number} = 1, \text{base.size} = 0)
\]

Arguments

replicate.dataset
A Number indicate that how many you replicate dataset from user’s specified dataset.

ModifiedPoisson
Logical, that is TRUE or FALSE.

If ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated *per lesion*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pairs of TPF per lesion and FPF *per lesion*.

Similarly, if ModifiedPoisson = TRUE, then Poisson rate of false alarm is calculated *per image*, and model is fitted so that the FROC curve is an expected curve of points consisting of the pair of TPF per lesion and FPF *per image*.

To know details, see the author’s paper in which I explained *per image* and *per lesion*. (for details of models, see vignettes, now, it is omitted from this package, because the size of vignettes are large.)

If ModifiedPoisson = TRUE, then the *False Positive Fraction (FPF)* is defined as follows \( (F_c \text{ denotes the number of false alarms with confidence level } c) \)

\[
\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_2 + F_3 + F_4 + F_5}{N_L},
\]

\[
\frac{F_3 + F_4 + F_5}{N_L},
\]
where $N_L$ is a number of lesions (signal). To emphasize its denominator $N_L$, we also call it the \textit{False Positive Fraction (FPF) per lesion}.

On the other hand, if $\text{ModifiedPoisson} = \text{FALSE}$ (Default), then \textit{False Positive Fraction (FPF)} is given by

$$\frac{F_1 + F_2 + F_3 + F_4 + F_5}{N_I},$$

$$\frac{F_2 + F_3 + F_4 + F_5}{N_I},$$

$$\frac{F_3 + F_4 + F_5}{N_I},$$

$$\frac{F_4 + F_5}{N_I},$$

$$\frac{F_5}{N_I},$$

where $N_I$ is the number of images (trial). To emphasize its denominator $N_I$, we also call it the \textit{False Positive Fraction (FPF) per image}.

The model is fitted so that the estimated FROC curve can be regarded as the expected pairs of FPF per image and TPF per lesion ($\text{ModifiedPoisson} = \text{FALSE}$)

or as the expected pairs of FPF per image and TPF per lesion ($\text{ModifiedPoisson} = \text{TRUE}$)

If $\text{ModifiedPoisson} = \text{TRUE}$, then FROC curve means the expected pair of FPF \textbf{per lesion} and TPF.

On the other hand, if $\text{ModifiedPoisson} = \text{FALSE}$, then FROC curve means the expected pair of FPF \textbf{per image} and TPF.

So, data of FPF and TPF are changed thus, a fitted model is also changed whether $\text{ModifiedPoisson} = \text{TRUE}$ or $\text{FALSE}$. In traditional FROC analysis, it uses only per images (trial). Since we can divide one image into two images or more images, number of trial is not important. And more important is per signal. So, the author also developed FROC theory to consider FROC analysis under per signal. One can see that the FROC curve is rigid with respect to change of a number of images, so, it does not matter whether $\text{ModifiedPoisson} = \text{TRUE}$ or $\text{FALSE}$. This rigidity of curves means that the number of images is redundant parameter for the FROC trial and thus the author try to exclude it.

Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28
mean.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
sd.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
z.truth This is a parameter of the latent Gaussian assumption for the noise distribution.
NL Number of Lesions.
NI Number of Images.

ite To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named iter. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

cha To be passed to the function rstan::sampling() in rstan. An argument of rstan::sampling() in which it is named chains. A positive integer representing the number of chains generated by Hamiltonian Monte Carlo method, and, default = 1.

summary Logical: TRUE of FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

serial.number An positive integer or Character. This is for programming perspective. The author use this to print the serial number of validation. This will be used in the validation function.

base.size An numeric for size of object, this is for the package developer.

Value

Return values is,

Stanfit objects for each Replicated datasets
Errors EAPs minus true values, in the above notations, it is \( \bar{\epsilon}(\theta_0, N_I, N_L) \)

Variances of estimators. This calculates the variance of posterior means over all replicated datasets

Examples

#============= The first example ===============

# It is sufficient to run the function with default variable
datasets <- validation.dataset_srsc()

#============= The second example ===============

# If user do not familiar with the values of thresholds, then
# it would be better to use the actual estimated values
# as an example of true parameters. In the following,
# I explain this.
# First, to get estimates, we run the following:

```r
fit <- fit_Bayesian_FROC(dataList.Chakra.1, ite = 1111, summary = FALSE, cha = 3)
```

# Secondly, extract the expected a posterior estimators (EAPs) from the object fit

```r
z <- rstan::get_posterior_mean(fit, par = c("z"))["mean-all chains"]
```

# Thirdly we use this z as a true values.

```r
datasets <- validation.dataset_srsc(z.truth = z)
```

#----------------------------------------------------------------------------------------
# 1) extract replicated fitted model object
#----------------------------------------------------------------------------------------

# Replicates models

```r
a <- validation.dataset_srsc(replicate.datset = 3, ite = 111)
```

# Check convergence, in the above MCMC iterations = 111 which is too small to get
# a convergence MCMC chain, and thus the following example will the example
# of a non-convergent model in the r hat criteria.

```r
ConfirmConvergence(a$fit[[3]])
```

# Check trace plot to confirm whether MCMC chain do converge or not.

```r
stan_trace(a$fit[[3]], pars = "A")
```

# Check p value

```r
ppp(a$fit[[3]])
```
# In the above example, the posterior predictive p value is enough large, but the model did not converge in R that criteria, which will cause that the model does not fit to data. However p value is said we can not reject the null hypothesis that the model does fit. The author think this contradiction cause that the number of MCMC iterations are too small which leads us to incorrect Monte Carlo integral for p value. Thu p value is not correct. Calculation of p value relies on the law of large number and thus to obtain reliable posterior predictive p value, we need enough large MCMC samples. 2019 August 29

# Revised in 2019 August 29

```r
#---
1) Histogram of error of posterior means for replicated datasets
#---
#
'a<- validation.dataset_srsc(replicate.datset = 100)
hist(a$error.of.AUC,breaks = 111)
hist(a$error.of.AUC,breaks = 30)

donttest

validation.draw_srsc Draw Curves for validation dataset

Description
drawing curves.

Red curve indicates an FROC curve of truth parameter.

Other curves are drawn using replicated estimates.

Usage
validation.draw_srsc(validation.data, mesh.for.drawing.curve = 11111,
upper_y = 1, DrawFROCcurve = TRUE)```
Arguments

validation.data
This is a return value of the function validation.dataset_srsc.

mesh.for.drawing.curve
A positive large integer, indicating number of dots drawing the curves, default =10000.

upper_y
This is a upper bound for the axis of the vertical coordinate of FROC curve.

DrawFROCcurve
Logical: TRUE of FALSE. Whether or not FROC curves are shown.

Value
NULL

Examples

#--
1) Draw the curve for each replicated dataset
#--

datasets <- validation.dataset_srsc()
validation.draw_srsc(datasets)

#--
1) Draw the curve for each replicated dataset
#--

datasets <- validation.dataset_srsc(replicate.dataset = 5)
validation.draw_srsc(datasets)

viewdata
Build a table of FROC data

Description
Create a tabular representation of FROC data from FROC data object.
viewdata

Usage

viewdata(dataList, summary = TRUE, head.only = FALSE)

Arguments
dataList

A Single reader and A single modality (SRSC) case.

In a single reader and a single modality case, it should include f, h, NL, NI, C. For example data, see the datasets endowed with this package.

data Format:
A single reader and a single modality case

<table>
<thead>
<tr>
<th>NI=63, NL=124</th>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>In R console -></td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

Multiple readers and multiple modalities case, i.e., MRMC case

In multiple readers and multiple modalities case, i.e., MRMC case, it should include m, q, c, h, f, NL, C, M, Q which means the followings:
- C means the highest number of confidence level, this is a scalar.
- M means the number of modalities.
- Q means the number of readers.
- c means the confidence level vector. This vector must be made by rep(rep(C:1), M*Q).
- m means the modality ID vector.
- q means the reader ID vector.
- h means the number of hits vector.
- f means the number of false alarm vector.
- NL means the Total number of lesions for all images, this is a scalar.

The detail of these dataset, please see the endowed datasets. Note that the maximal number of confidence level, denoted by C, are included, however, its each confidence level vector also created in the program by C. So, to confirm your false positives and hits are correctly correspond to confidence levels, you should confirm the orders by the function viewdata_MRMC.
viewdata_MRMC

summary Logical: TRUE or FALSE. If true then results are printed, if FALSE this function do nothing.

head.only Logical: TRUE or FALSE. Whether it prints data of head part only (TRUE) or entire (FALSE). If TRUE, only head part are shown. Default is FALSE

Value

Nothing

In order to confirm your data, please view table before fitting. Confidence level vector are created in my program regardless of user’s confidence level vectors.

Author(s)

Issei Tsunoda

Examples

The first example, we prepare the data in this package.

dat <- get(data("dataList.Chakra.1"))
viewdata(dat)

The second examle, we consider a dataset of multiple readers and multiple modalities

dat <- get(data("dataList.Chakra.Web"))
viewdata(dat)

dottest

viewdata_MRMC View MRMC data

Description

Build a table for data dataList.
viewdata_srsc

Usage

viewdata_MRMCM(dataList, summary = TRUE, head.only = FALSE)

Arguments

dataList

it should include m, q, c, h, f, NL, C, M, Q which means from the right
m means the modality ID vector
q means the reader ID vector
c means the confidence level
h means the number of hits
f means the number of false alarm
NL means the Total number of lesions for all images
C means the highest number of confidence level
M means the number of modalities
Q means the number of readers.
The detail of these dataset, please see the endowed datasets. Note that the max-
imal number of confidence level, denoted by C, are included, however, its each
confidence level should not included your data. So, to confirm your false pos-
tives and hits are correctly correspondence to confidence levels, you should
confirm the orders by the function viewdata_MRMCM.

summary

TRUE or FALSE, if true then results are printed, if FALSE this function do
nothing.

head.only

Logical: TRUE or FALSE. Whether head part or entire. If TRUE, only head part are
shown. Default is FALSE

viewdata_srsc Build a table of data in the case of A Single reader and A Single modal-
ity (srsc)

Description

In order to confirm your data, please view table. my program makes new column of confidence
levels which are used in my program. So, it is possible that your order of confidence level and
Program’s order of confidence level are inverse. This function’s result table are the one which are
used in program.

Usage

viewdata_srsc(dataList, summary = TRUE)
Arguments

- **dataList**
 - It should include f, h, NL, NI, C. The detail of these dataset, please see the endowed datasets. Note that the maximal number of confidence level, denoted by C, are included, however, its each confidence level should not included your data. So, to confirm your false positives and hits are correctly correspondence to confidence levels, user should confirm the orders by the function.

- **summary**
 - TRUE or FALSE, if true then results are printed, if FALSE this function do nothing.

Examples

```r
# First, we prepare an example FROC data "dataList.Chakra.1" in this package.
# Note that this data should be formed as a single reader and a single modality.
# If data are multiple readers and multiple modalities, i.e., MRMC-data,
# then another function named viewdataMRMC is available for MRMC-data.

dat <- get(data("dataList.Chakra.1"))

# Show data named "dat";

viewdata_srsc(dat)
```

The Reason why the author made this \code{viewdata_srsc} is
the code does not refer your confidence level.
More precisely, my program made the column vector of confidence levels
from the its highest number,
so, it may be occur the interpretation of code for hits and false alarm
are inverse order compared with your data.

dottest

v_truth

Standard Deviation: parameter of an MRMC model

Description

A posterior mean of the model parameter for data **ddd** as an example of truth parameter.

Details

Standard Deviation Rate data of some MRMC data to use as a default value of the function hits_creator_from_rate. This is an array obtained from estimates of some data contained in this package. To simulate a replication of dataset, the default values should be used from an actual values. Thus the author prepare this data.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com >

See Also

hits_creator_from_rate

Description

v of MRMC model paramter

Usage

v_truth_creator_for_many_readers_MRMC_data(M, Q)

Arguments

M An integer, indicating a number of modalities
Q An integer, indicating a number of readers

Value

An array, representing v of MRMC model paramter

Examples

v <- v_truth_creator_for_many_readers_MRMC_data(M=4, Q=50)
waic

WAIC calculator

Description

Using the fitted object of class satnfit whose stan file described using target +=, the function calculates the WAIC.

Usage

waic(StanS4classwithTargetFormulation, dig = 4, summary = TRUE)

Arguments

StanS4classwithTargetFormulation
This is a fitted model object built by rstan::sampling() whose model block is described by target formulation function in the rstan package. This object is available both S4 class, stanfit and stanfitExtended. In this package, we make a new S4 class stanfitExtended which is inherited class of rstan’s S4 class named "stanfit". This function is available for stanfit S4 object.

dig
The number of significant digits of waic.

summary
Logical: TRUE or FALSE. Whether to print the verbose summary, i.e., logical; If TRUE then verbose summary is printed in the R console. If FALSE, the output is minimal. I regret, this variable name should be verbose.

Value

A real number, representing the value of WAIC.

Examples

First, we prepare the data endowed with this package:

dat <- get(data("dataList.Chakra.1"))

Second, create a fitted model object:

fit <- fit_Bayesian_FROC(dat, PreciseLogLikelihood = TRUE)

Using the fitted model object "fit", we obtain the WAIC
waic(fit)

The Author provide two model for FROC for a single reader and a single modality case.
One is false alarm rates means "per lesion" and the other means "per image".
The above "fit" is "per image". Now we shall consider to compare these two model
by WAIC. To do so, next we shall fit the "per lesion" model as follows:

fit2 <- fit_Bayesian_FROC(dat, PreciseLogLikelihood = TRUE, ModifiedPoisson=TRUE)
waic(fit2)

By compare two model's WAIC we can say which model is better.
Note that the smaller WAIC is better.

waic(fit) # per lesion model
waic(fit2) # per image model

2019.05.21 Revised.
dotest

== Threshold: parameter of an MRMC model ==

Description

A posterior mean of the model parameter for data ddd as an example of truth parameter.

Author(s)

Issei Tsunoda <tsunoda.issei1111@gmail.com>

See Also

make_true_parameter_MRMC
z_from_dz
Thresholds from its difference

Description

Thresholds are created from its difference:

\[
\begin{align*}
z[1] &= w \\
\end{align*}
\]

Usage

\[
z_{\text{from dz}}(w, dz)
\]

Arguments

- **w** a real number, indicating the first threshold
- **dz** a vector of real numbers, indicating the difference of thresholds

Value

A vector of real numbers

Examples

```
z_from_dz(1, c(2, 3))
z_from_dz(1, c(0.2, 0.03))
z_from_dz(1, c(0.2, 0.03, 0.004))
```

```
dz <- runif(3, 0.01, 1)  # sample size
w <- rnorm(1, 0, 1)
```
\textit{z_truth} \quad \textit{Threshold : parameter of an MRMC model}

\textbf{Description}

A posterior mean of the model parameter for data ddd as an example of truth parameter.

\textbf{Details}

Threshold Rate data of some MRMC data to use as a default value of the function \texttt{hits_creator_from_rate}. This is an array obtained from estimates of some data contained in this package. To simulate a replication of dataset, the default values should be used from an actual values. Thus the author prepare this data.

\textbf{Author(s)}

Issei Tsunoda <tsunoda.issei1111@gmail.com>

\textbf{See Also}

\texttt{hits_creator_from_rate}

\texttt{\%\% \quad Fit a model}

\textbf{Description}

Fitting is done with single

\textbf{Usage}

\texttt{dataList \%\% ite}
Arguments

dataList

A list, consisting of data of numbers of TPs, FPs, lesions, etc.

To be passed to the function rstan::sampling() in rstan. This is a variable in the function rstan::sampling() in which it is named data.

For the single reader and a single modality data, the dataList is the following forms:

dataList.Example <- list(
 h = c(41,22,14,8,1),# number of hits for each confidence level
 f = c(1,2,5,11,13),# number of false alarms for each confidence level
 NL = 124,# number of lesions (signals)
 NI = 63,# number of images (trials)
 C = 5) # number of confidence, .. the author thinks it can be calculated as the length of h or f ...? ha, why I included this. ha .. should be omitted.

And using this object dataList.Example, we can apply fit_Bayesian_FROC() such as fit_Bayesian_FROC(dataList.Example).

To make this R object dataList representing FROC data, this package provides three functions:

- convertFromJafroc() If data is a JAFROC xlsx formulation.
- dataset_creator_new_version() Enter TP and FP data by table.
- create_dataset() Enter TP and FP data by interactive manner.

Before fitting a model, we can confirm our dataset is correctly formulated by using the function viewdata().

A Single reader and a single modality (SRSC) case.

In a single reader and a single modality case (srsc), dataList is a list consisting of f, h, NL, NI, C where f, h are numeric vectors and NL, NI, C positive integers.

f Non-negative integer vector specifying number of False Alarms associated with each confidence level. The first component corresponding to the highest confidence level.

h Non-negative integer vector specifying number of Hits associated with each confidence level. The first component corresponding to the highest confidence level.

NL A positive integer, representing Number of Lesions.

NI A positive integer, representing Number of Images.

C A positive integer, representing Number of Confidence level.

The detail of these dataset, see the datasets endowed with this package. 'Note that the maximal number of confidence level, denoted by C, are included, however, Note that confidence level vector c should not be specified. If specified, will be ignored, since it is created by c <- c(rep(C:1)) in the program and do not refer from user input data, where C is the highest number of confidence.
levels. So, you should write down your hits and false alarms vector so that it is compatible with this automatically created c vector.

data Format:

A single reader and a single modality case

<table>
<thead>
<tr>
<th>confidence level</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI = 63, NL = 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In R console -></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*false alarms = False Positives = FP

*hits = True Positives = TP

Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader dose not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed.

Note that the first column of confidence level vector c should not be specified. If specified, will be ignored, since it is created by \(c \leftarrow c(rep(C:1)) \) automatically in the program and do not refer from user input data even if it is specified explicitly, where \(C \) is the highest number of confidence levels. So you should check the compatibility of your data and the program’s generating new confidence level vector by a table which can be displayed by the function viewdata().

Multiple readers and multiple modalities case, i.e., MRMC case

In case of multiple readers and multiple modalities, i.e., MRMC case, in order to apply the function fit_Bayesian_FROC(), dataset represented by an R list object representing FROC data must contain components \(m, q, c, h, f, NL, C, M, Q \)

- \(C \) A positive integer, representing the highest number of confidence level, this is a scalar.
- \(M \) A positive integer vector, representing the number of modalities.
- \(Q \) A positive integer, representing the number of readers.
- \(c \) A vector of positive integers, representing the confidence level. This vector must be made by \(rep(rep(C:1), M*Q) \).
A vector of positive integers, representing the **modality** ID vector.

A vector of positive integers, representing the **reader** ID vector.

A vector of non-negative integers, representing the number of **hits**.

A vector of non-negative integers, representing the number of **false alarm**.

A positive integer, representing the Total number of lesions for all images, this is a scalar.

Note that the maximal number of confidence level (denoted by C) are included in the above R object. However, each confidence level vector is not included in the data, because it is created automatically from C. To confirm false positives and hits are correctly ordered with respect to the automatically generated confidence vector, the function `viewdata()` shows the table. Revised 2019 Nov 27 Revised 2019 Dec 5

Example data.

Multiple readers and multiple modalities (i.e., MRMC)

<table>
<thead>
<tr>
<th>Modality ID</th>
<th>Reader ID</th>
<th>Confidence levels</th>
<th>No. of false alarms</th>
<th>No. of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>q</td>
<td>c</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

false alarms = False Positives = FP

hits = True Positives = TP

To be passed to the function `rstan::sampling()` in `rstan`. An argument of `rstan::sampling()` in which it is named `iter`. A positive integer representing the number of samples generated by Hamiltonian Monte Carlo method, and, default = 10000. If your model could not converge, then raise this number. Must be greater for more reliable estimates.

Value

A fitted model object of class `stanfitExtended`
Examples

#---------------------------------------
d is data and 1111 is a number of MCMC iterations
#---------------------------------------

d %>>% 1111
Index

%>>%, 397
AFROC, 7
AFROC_curve, 8
aperm, 10
array, 10
array (from_array_to_vector), 266
array_easy_example, 9
array_of_hit_and_false_alarms_from_vector, 10
as, 213
Author_vs_classic_for_AUC, 12
BayesianFROC, 13
BayesianFROC-package (BayesianFROC), 13
check_hit_is_less_than_NL, 27
check_rhat, 31
chi_square_at_replicated_data_and_MCMC_samples, 32, 65
chi_square_goodness_of_fit, 34
chi_square_goodness_of_fit_from_input_all_param, 37
chi_square_goodness_of_fit_from_input_all_param_MRMC, 42
Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean, 10, 46
clearWorkspace, 49
Close_all_graphic_devices, 50
compare, 50
comparison, 51
Confirm_hit_rates_are_correctly_made_in_case_of_MRMC, 54
ConfirmConvergence, 51
create_dataList_MRMC, 62
Credible_Interval_for_curve, 69
d, 72, 90, 93, 109, 216
dark_theme, 73
data.bad.fit, 74, 216
data.hier.ficitious, 76, 216
data.MultiReaderMultiModality, 76
data.nonconverge.srsc, 77
data.SingleReaderSingleModality, 78
data_2modaities_2readers_3confidence, 100
data_of_36_readers_and_a_single_modality, 101
dataList.Chakra.1, 79, 215
dataList.Chakra.1.with.explantation, 72, 78–80, 80, 84, 85, 87, 95–97
dataList.Chakra.2, 16, 82, 216
dataList.Chakra.3, 16, 84, 216
dataList.Chakra.4, 16, 86, 216
dataList.divergent.transition.in.case.of.srsc, 93
dataList.High, 95, 216
dataList.high.ability, 96, 216
dataList.Low, 96, 216
dataList.low.ability, 97, 216
dataList.one.modality, 97
dataset_creator_by_specifying_only_M_Q, 98
dataset_creator_for_many_Readers, 99
dd, 10, 26, 91, 101, 106, 107, 115, 119, 121–124, 127, 216, 303
dd.orderd, 111

402
make_true_parameter_MRMC, 299
metadata_srscc_per_image, 299
metadata_to_DrawCurve_MRMC, 302
metadata_to_fit_MRMC, 10, 303
mu, 308
mu_truth, 309
mu_truth_creator_for_many_readers_MRMC_data, 310
p, 314
p_truth, 342
p_value_of_the_Bayesian_sense_for_chi_square_goodness_of_fit, 343
pairs_plot_if_divergent_transition_occurred, 315
pause, 316
Phi, 316, 318
Phi_inv, 316, 318
plot_methods, 319
plot_curve_and_hit_rate_and_false_rate_simultaneously, 320
plot_FPF_and_TPF_from_a_dataset, 135, 322
plot_test, 328
plotFROC, 319
pnorm_or_qnorm, 328
ppp_MRMC, 332
ppp_srscc, 334
print, 338
print_stanfitExtended, 340
prior_predictor, 341
prior_print_MRMC, 341
prior_print_srscc, 342
rank_statistics_with_two_parameters, 346
replicate_model_MRMC, 347
replicate_MRMC_datalist, 65, 350
sbc, 359, 367
showGM, 353
Simulation_Based_Calibration_histogram, 354
Simulation_Based_Calibration_single_reader_single_modality_via_rstan_sbc, 358
Simulation_Based_Calibration_via_rstan_sbc_MRMC, 366
size_of_return_value, 369
testAUC, 371
Stan_code_validation, 374
StatisticForANOVA, 375
summarize_MRMC, 375
summary_AUC_comparison_MRMC, 376
summary_AUC_comparison_MRMC_with_crayon, 377
summarize_AUC_comparison_MRMC, 377
summary_AUC_comparison_MRMC_without_crayon, 377
summary_EAP_CI_srscc, 378
Test_Null_Hypothesis_that_all_modalities_are_same, 379
to(from_array_to_vector), 266
TRUE.Counter.in.vector, 381
v, 382
v_truth, 392
v_truth_creator_for_many_readers_MRMC_data, 393
validation.dataset_srscc, 382
validation.draw_srscc, 387
vector(from_array_to_vector), 266
INDEX

viewdata_MRMC, 390
viewdata_srsc, 391

waic, 373, 394

z, 395
z_from_dz, 396
z_truth, 397