Package ‘BayesSenMC’

May 26, 2020

Title Different Models of Posterior Distributions of Adjusted Odds Ratio

Version 0.1.2

Author Jinhui Yang, Haitao Chu, and Lifeng Lin

Maintainer Jinhui Yang <james.yangjinhui@gmail.com>

Description Generates different posterior distributions of adjusted odds ratio under different priors of sensitivity and specificity, and plots the models for comparison. It also provides estimations for the specifications of the models using diagnostics of exposure status with a non-linear mixed effects model. It implements the methods that are first proposed in <doi:10.1016/j.annepidem.2006.04.001> and <doi:10.1177/0272989X09353452>.

License GPL-2

Encoding UTF-8

LazyData true

Imports dplyr, ggplot2, rstan (>= 2.16.2), lme4,

Depends Rcpp (>= 0.12.19)

Suggests gridExtra

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-26 09:50:11 UTC

R topics documented:

bd_meta .. 2
correctedOR .. 3
crudeOR .. 4
diffOR ... 5
fixedCorrOR .. 7
logitOR .. 8
nlmeNDiff ... 10
paramEst ... 11
bd_meta

Description

Records the true positive, true negative, false positive and false negative of each diagnosis accuracy study. Also includes the type of screening instruments (Bipolar Spectrum diagnostic scale / HCL-21 / Mood disorder questionnaire), the cut-off value for diagnostics, and the percentage of bipolar cases that were of bipolar disorder type II or not specified.

Usage

data(bd_meta)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 55 rows and 8 columns.

Source

References

Examples

data(bd_meta)
iplotCurves(phe, times)
correctedOR

Model without misclassification

Description

Generate a stanfit object corresponding to a posterior distribution of uncorrected odds ratio given no misclassification.

Usage

correctedOR(a, N1, c, N0, name = "Corrected Model", chains = 2,
 traceplot = FALSE, inc_warmup = FALSE, window = NULL,
 refresh = 0, seed = NA, ...)

Arguments

a # of exposed subjects in the case group.
N1 # of total subjects in the case group.
c # of exposed subjects in the control group.
N0 # of total subjects in the control group.
name a string of the name of the model. Default to "Corrected Model".
chains number of Markov Chains. Default to 2.
traceplot Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.
inc_warmup Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.
window Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between window[1] and window[2] will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.
refresh an integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.
seed the seed for random number generation. See stan for more details.
... optional parameters passed to stan.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.
Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13

3 MCMC chains with 10000 iterations each

correctedOR(a = 66, N1 = 11782, c = 243, N0 = 57973, chains = 3,
iter = 10000, seed = 0)
correctedOR(a = 66, N1 = 11782, c = 243, N0 = 57973, traceplot = TRUE)

Description

Generate a stanfit object corresponding to a posterior distribution of corrected odds ratio given nondifferential misclassification with crude Se and Sp (i.e., both are constant and at least one of Se or Sp is lower than 1).

Usage

```r
crudeOR(a, N1, c, N0, se, sp, name = "Constant Misclassification Model",
chains = 2, traceplot = FALSE, inc_warmup = FALSE, window = NULL,
refresh = 0, seed = NA, ...)
```

Arguments

- `a` # of exposed subjects in the case group.
- `N1` # of total subjects in the case group.
- `c` # of exposed subjects in the control group.
- `N0` # of total subjects in the control group.
- `se` sensitivity
- `sp` specificity
- `name` a string of the name of the model. Default to "Constant Misclassification Model".
- `chains` number of Markov Chains. Default to 2.
- `traceplot` Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.
- `inc_warmup` Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.
- `window` Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between window[1] and window[2] will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.
diffOR

refresh

an integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.

seed

the seed for random number generation. See stan for more details.

... optional parameters passed to stan.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.

Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13

crudeOR(a = 66, N1 = 11782, c = 243, N0 = 57973, se = 0.744, sp = 0.755, chains = 3,
iter = 10000, seed = 0)
crudeOR(a = 66, N1 = 11782, c = 243, N0 = 57973, se = 0.744, sp = 0.755, traceplot = TRUE)

diffOR

Model with differential misclassification

Description

Generate a stanfit object corresponding to a posterior distribution of corrected odds ratio given a four-variate differential misclassification.

Usage

diffOR(a, N1, c, N0, mu, s.lg.se0, s.lg.se1, s.lg.sp0, s.lg.sp1,
corr.sesp0, corr.sesp1, corr.group = 0, z = NULL,
name = "Model with differential classification", chains = 2,
traceplot = FALSE, inc_warmup = FALSE, window = NULL,
refresh = 0, seed = 0, ...)

Arguments

a

of exposed subjects in the case group.

N1

of total subjects in the case group.

c

of exposed subjects in the control group.

N0

of total subjects in the control group.

mu

vector of length 4; multivariate normal distribution of \(z \sim (\mu, varz) \), where each \(\mu \) corresponds to the logit mean of \(Se_0, Se_1, Sp_0 \) and \(Sp_1 \) (0 for controls, 1 for cases group).
s.lg.se0 standard deviation of logit Se in the control group.
s.lg.se1 standard deviation of logit Se in the case group.
s.lg.sp0 standard deviation of logit Sp in the control group.
s.lg.sp1 standard deviation of logit Sp in the case group.
corr.sesp0 correlation between Se_0 and Sp_0.
corr.sesp1 correlation between Se_1 and Sp_1.
corr.group correlation between Se_0 and Se_1, Sp_0 and Sp_1. Default to 0.
z vector of length 4; used as an initial value for \(z \sim (\mu, var_z) \). Default to \(\mu \).
name a string of the name of the model. Default to "Model with differential misclassification".
chains number of Markov Chains. Default to 2.
traceplot Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.
inc_warmup Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.
window Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between window[1] and window[2] will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.
refresh an integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.
seed the seed for random number generation. See stan for more details.
... optional parameters passed to stan.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.

Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from \url{https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13}

diffOR(a = 66, N1 = 11782, c = 243, N0 = 57973, chains = 3, mu = c(1.069, 1.069, 1.126, 1.126),
s.lg.se0 = 0.893, s.lg.se1 = 0.893, s.lg.sp0 = 0.712, s.lg.sp1 = 0.712, corr.sesp0 = -0.377,
corr.sesp1 = -0.377, corr.group = 0, iter = 10000, seed = 0)
diffOR(a = 66, N1 = 11782, c = 243, N0 = 57973, , mu = c(1.069, 1.069, 1.126, 1.126),
s.lg.se0 = 0.893, s.lg.se1 = 0.893, s.lg.sp0 = 0.712, s.lg.sp1 = 0.712, corr.sesp0 = -0.377,
corr.sesp1 = -0.377, corr.group = 0, traceplot = TRUE)
fixedCorrOR

Model with nondifferential, correlated misclassification

Description

Generate a stanfit object corresponding to a posterior distribution of corrected odds ratio given nondifferential misclassification that extends from the logit model but allows there to be a fixed correlation between sensitivity and specificity.

Usage

```r
fixedCorrOR(a, N1, c, N0, m.lg.se, m.lg.sp, s.lg.se, s.lg.sp,
           lg.se = NULL, lg.sp = NULL, rho,
           name = "Logit Model with Fixed Correlation", chains = 2,
           traceplot = FALSE, inc_warmup = FALSE, window = NULL,
           refresh = 0, seed = NA, ...)
```

Arguments

- `a`
 # of exposed subjects in the case group.
- `N1`
 # of total subjects in the case group.
- `c`
 # of exposed subjects in the control group.
- `N0`
 # of total subjects in the control group.
- `m.lg.se`
 normal distribution of logit Se with (mean = m.lg.se, sd = s.lg.se).
- `m.lg.sp`
 conditional normal distribution of logit Sp given Se with (m.lg.sp, s.lg.sp).
- `s.lg.se`
 standard deviation of logit Se
- `s.lg.sp`
 standard deviation of logit Sp
- `lg.se`
 used as an initial value for logit Se. Default to m.lg.se
- `lg.sp`
 used as an initial value for logit Sp. Default to m.lg.sp
- `rho`
 correlation between Se and Sp
- `name`
 a string of the name of the model. Default to "Logit Model with Fixed Correlation".
- `chains`
 number of Markov Chains. Default to 2.
- `traceplot`
 Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.
- `inc_warmup`
 Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.
- `window`
 Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between `window[1]` and `window[2]` will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.
logitOR

Model with nondifferential, logit normal-distributed misclassification

Description

Generate a stanfit object corresponding to a posterior distribution of corrected odds ratio given nondifferential misclassification under a logit-transformed scaled bivariate normal distribution.

Usage

```r
logitOR(a, N1, c, N0, m.lg.se, m.lg.sp, s.lg.se, s.lg.sp, lg.se = NULL, lg.sp = NULL, name = "Logit Normal Misclassification Model", chains = 2, traceplot = FALSE, inc_warmup = FALSE, window = NULL, refresh = 0, seed = NA, ...)
```

Arguments

- `a`
 # of exposed subjects in the case group.
- `N1`
 # of total subjects in the case group.
- `c`
 # of exposed subjects in the control group.
- `N0`
 # of total subjects in the control group.
- `m.lg.se`
 normal distribution of logit Se with (mean = m.lg.se, sd = s.lg.se).
- `m.lg.sp`
 normal distribution of logit Sp with (m.lg.sp, s.lg.sp).

refresh an integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.

seed the seed for random number generation. See `stan` for more details.

... optional parameters passed to `stan`.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.

Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13

```r
fixedCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, rho = -0.379, chains = 3, iter = 10000, seed = 0)
fixedCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, lg.se = 2.197, lg.sp = 0.744, rho = -0.379, traceplot = TRUE)
```
logitOR

- **s.lg.se**: standard deviation of logit Se
- **s.lg.sp**: standard deviation of logit Sp
- **lg.se**: used as an initial value for logit Se. Default to m.lg.se
- **lg.sp**: used as an initial value for logit Sp. Default to m.lg.sp
- **name**: a string of the name of the model. Default to "Logit Normal Misclassification Model".
- **chains**: number of Markov Chains. Default to 2.
- **traceplot**: Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.
- **inc_warmup**: Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.
- **window**: Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between window[1] and window[2] will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.
- **refresh**: an integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.
- **seed**: the seed for random number generation. See stan for more details.
- **...**: optional parameters passed to stan.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.

Examples

```r
# Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
# Data from \url{https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13}

logitOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, chains = 3, iter = 10000, seed = 0)
logitOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, lg.se = 2.197, lg.sp = 2.197, traceplot = TRUE)
```
nlmeNDiff

Non-differential Generalized Linear Mixed Effects Model

Description

Fit a bivariate generalized linear mixed-effects model (GLMM) for non-differential sensitivity and specificity using the `glmer` function in `lme4`. Lower and upper bounds for Se and Sp can be specified according to the assumptions of the study.

Usage

```r
nlmeNDiff(data, lower = 0.5, upper = 1, id = FALSE, ...)
```

Arguments

- `data` a data frame containing the 2 by 2 data of the diagnostics table of exposure status for every study in a meta-analysis. It contains at least 4 columns in the data named as following: `n11` indicates the true positives, `n01` the false positives, `n00` the true negatives and `n10` the false negatives. Each column is a vector of same length, which is the number of meta-analysis study results used in the model.

- `lower` an optional argument specifying the lower bound assumption of Se and Sp. Default to 0.5 (or the lowest Se/Sp of all studies, whichever is lower), which provides the mild assumption that Se and Sp are better than chance.

- `upper` an optional argument specifying the upper bound assumption of Se and Sp. Default to 1.

- `id` a TRUE of FALSE argument indicating if the supplied data has a `sid` column that gives same studies the same subject ID. Default to FALSE, which assumes that all studies have different IDs.

- `...` optional parameters passed to `glmer`.

Value

It returns an object of class `mermod`. Besides generic class methods, `paramEst()` is implemented in `BayesSenMC` to get the parameter estimates used in the Bayesian misclassification model functions.

Examples

```r
data(bd_meta)
mod <- nlmeNDiff(bd_meta, lower = 0)
```
paramEst

Parameter estimates of the GLMM model

Description

Get parameter estimates of the GLMM model to plug into modeling functions in BayesSenMC for Bayesian inference of adjusted odds ratio.

Usage

```r
paramEst(model, lower = 0.5, upper = 1)
```

Arguments

- `model`: a GLMM model built with the `nlme_nondiff()` function.
- `lower`: an optional argument matching the lower bound assumption of Se and Sp of the input model. Default to 0.5 as in `nlme_nondiff()`.
- `upper`: an optional argument matching the upper bound assumption of Se and Sp. Default to 1 as in `nlme_nondiff()`.

Value

It returns a list of parameter estimates which can be input into the Bayesian model functions in BayesSenMC. `(mean_logSe, var_logSe)` and `(mean_logSp, var_logSp)` are the logit prior distributions for Se and Sp. Se and Sp are the corresponding mean values given the logit prior means. `rho` is the correlation estimate between Se and Sp. `fisher_mean` is the Fisher's mean of the correlation assume a Fisher's distribution.

Examples

```r
data(bd_meta)

mod <- nlmeNDiff(bd_meta, lower = 0) # see nlme_nondiff() for detailed example.
pList <- paramEst(mod)
```

plotOR

Plot Model

Description

Plot the posterior distribution of adjusted odds ratio given the stanfit object. It also plots the density lines of corrected odds ratio given no or constant misclassification, assuming log-normality is true.

Usage

```r
plotOR(model, a, N1, c, N0, se = 1, sp = 1, x.min = 0, x.max = NULL, y.max = NULL, binwidth = 0.25, fill = "gray", ...)
```
 Arguments

model A stanfit object.
a # of exposed subjects in the case group. Along with N1, c, N0, se and sp, they are used to plot probability density with no misclassification and constant misclassification as a comparison.
N1 # of total subjects in the case group.
c # of exposed subjects in the control group.
N0 # of total subjects in the control group.
se sensitivity. Default to 1. If no other values are specified for either se or sp, then only the density curve of corrected model will be drawn.
sp specificity. Default to 1.
x.min shows only samples with corrected odds ratio larger or equal to x.min. Default to 0.
x.max shows only samples with corrected odds ratio smaller or equal to x.max. Default to the largest OR in the posterior samples.
y.max shows only samples or density line within the range of (0, y.max).
binwidth default to 0.25
fill default to "gray"
... optional additional arguments passed to geom_histogram

 Value

It returns a ggplot that can be further customized using the ggplot2 package.

 Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from \url{https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13}

library(ggplot2)

my.mod <- randCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069,
 m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, m.z = -0.399, s.z = 0.139,
 seed = 0)

my.plot <- plotOR(my.mod, a = 66, N1 = 11782, c = 243, N0 = 57973, se = 0.744,
 sp = 0.755, x.max = 3, y.max = 5, binwidth = 0.1) + ggtitle("Model with random correlation")
Description

Generate a stanfit object corresponding to a posterior distribution of corrected odds ratio given nondifferential misclassification that extends from the logit model but allows a random correlation between Sensitivity and Specificity.

Usage

randCorrOR(a, N1, c, N0, m.lg.se, m.lg.sp, s.lg.se, s.lg.sp,
lg.se = NULL, lg.sp = NULL, m.z, s.z, z = NULL,
name = "Logit Model with Random Correlation", chains = 2,
traceplot = FALSE, inc_warmup = FALSE, window = NULL,
refresh = 0, seed = NA, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td># of exposed subjects in the case group.</td>
</tr>
<tr>
<td>N1</td>
<td># of total subjects in the case group.</td>
</tr>
<tr>
<td>c</td>
<td># of exposed subjects in the control group.</td>
</tr>
<tr>
<td>N0</td>
<td># of total subjects in the control group.</td>
</tr>
<tr>
<td>m.lg.se</td>
<td>normal distribution of logit Se with (mean = m.lg.se, sd = s.lg.se).</td>
</tr>
<tr>
<td>m.lg.sp</td>
<td>conditional normal distribution of logit Sp given Se with (m.lg.sp, s.lg.sp).</td>
</tr>
<tr>
<td>s.lg.se</td>
<td>standard deviation of logit Se</td>
</tr>
<tr>
<td>s.lg.sp</td>
<td>standard deviation of logit Sp</td>
</tr>
<tr>
<td>lg.se</td>
<td>used as an initial value for logit Se. Default to m.lg.se</td>
</tr>
<tr>
<td>lg.sp</td>
<td>used as an initial value for logit Sp. Default to m.lg.sp</td>
</tr>
<tr>
<td>m.z</td>
<td>normal distribution of Z with (mean = m.z, sd = s.z).</td>
</tr>
<tr>
<td>s.z</td>
<td>normal distribution of Z with (mean = m.z, sd = s.z).</td>
</tr>
<tr>
<td>z</td>
<td>used as an initial value of Fisher’s Z transformed of rho, where correlation rho = (exp(2z)-1)/(1+exp(2z))).</td>
</tr>
<tr>
<td>name</td>
<td>a string of the name of the model. Default to "Logit Model with Random Correlation".</td>
</tr>
<tr>
<td>chains</td>
<td>number of Markov Chains. Default to 2.</td>
</tr>
<tr>
<td>traceplot</td>
<td>Logical, defaulting to FALSE. If TRUE it will draw the traceplot corresponding to one or more Markov chains.</td>
</tr>
<tr>
<td>inc_warmup</td>
<td>Only evaluated when traceplot = TRUE. TRUE or FALSE, indicating whether or not to include the warmup sample in the traceplot; defaults to FALSE.</td>
</tr>
</tbody>
</table>
smoke_meta

Window

Only evaluated when traceplot = TRUE. A vector of length 2. Iterations between window[1] and window[2] will be shown in the plot. The default shows all iterations if inc_warmup is TRUE and all iterations from the sampling period only if inc_warmup is FALSE. If inc_warmup is FALSE the iterations specified in window do not include iterations from the warmup period. The default number of iterations is 2000 unless otherwise specified in the optional iter argument.

Refresh

An integer value used to control how often the progress of sampling is reported. By default, the progress indicator is turned off, thus refresh <= 0. If on, refresh = max(iter/10, 1) is generally recommended.

Seed

The seed for random number generation. See stan for more details.

... optional parameters passed to stan.

Value

It returns a stanfit object of this model, which inherits stanfit class methods. See here for more details.

Examples

Case-control study data of Bipolar Disorder with rheumatoid arthritis (Farhi et al. 2016)
Data from \url{https://www.sciencedirect.com/science/article/pii/S0165032715303864#bib13}

randCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, m.z = -0.399, s.z = 0.139, chains = 3, iter = 10000, seed = 0)
randCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, m.lg.se = 1.069, m.lg.sp = 1.126, s.lg.se = 0.893, s.lg.sp = 0.712, m.z = -0.399, s.z = 0.139, traceplot = TRUE)

smoke_meta

Meta-analysis data on self-reported smoking diagnosis accuracy

Description

Records the true positive, true negative, false positive and false negative of each diagnosis accuracy study. Also includes the type of questionnaire for reporting (self (SAQ) or interviewer-administered (IAQ)), and the type of diagnosis (by carbon monoxide (CO) / carboxyhemoglobin (COHb) / thiocyanate (SCN) / cotinine (COT)). And the type of subjects (G = general population; S = students), and design of the study (O = observational; I = intervention).

Usage

data(smoke_meta)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 51 rows and 10 columns.
Source
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1614767/

References

Examples
data(smoke_meta)
Index

*Topic dataset
bd_meta, 2
smoke_meta, 14

bd_meta, 2
correctedOR, 3
crudeOR, 4
diffOR, 5
fixedCorrOR, 7
logitOR, 8
nlmeNDiff, 10
paramEst, 11
plotOR, 11
randCorrOR, 13
smoke_meta, 14