CRAN Package Check Results for Package Replication

Last updated on 2022-08-09 00:52:31 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.2 21.78 179.70 201.48 NOTE
r-devel-linux-x86_64-debian-gcc 0.1.2 16.21 134.54 150.75 NOTE
r-devel-linux-x86_64-fedora-clang 0.1.2 243.49 NOTE
r-devel-linux-x86_64-fedora-gcc 0.1.2 241.21 NOTE
r-devel-windows-x86_64 0.1.2 33.00 247.00 280.00 NOTE
r-patched-linux-x86_64 0.1.2 0.40 2.67 3.07 ERROR
r-release-linux-x86_64 0.1.2 ERROR
r-release-macos-arm64 0.1.2 91.00 NOTE
r-release-macos-x86_64 0.1.2 105.00 NOTE
r-release-windows-x86_64 0.1.2 29.00 243.00 272.00 NOTE
r-oldrel-macos-arm64 0.1.2 65.00 NOTE
r-oldrel-macos-x86_64 0.1.2 141.00 NOTE
r-oldrel-windows-ix86+x86_64 0.1.2 44.00 209.00 253.00 NOTE

Check Details

Version: 0.1.2
Check: LazyData
Result: NOTE
     'LazyData' is specified without a 'data' directory
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.1.2
Check: package dependencies
Result: ERROR
    Package required but not available: ‘blavaan’
    
    See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’
    manual.
Flavor: r-patched-linux-x86_64

Version: 0.1.2
Check: examples
Result: ERROR
    Running examples in ‘Replication-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: ppc.step2step3
    > ### Title: Prior predictive check step 2 and 3
    > ### Aliases: ppc.step2step3
    > ### Keywords: htest models
    >
    > ### ** Examples
    >
    > ## Don't show:
    > #create data
    > rnorm2 <- function(n,mean,sd) { mean+sd*scale(rnorm(n)) }
    >
    > # simple regression -------------------------------------------------------
    >
    > set.seed(9)
    > #step 1 input
    > #create/load data
    > n.o=30 #sample size original data
    > y.o <- data.frame(y=rnorm2(n.o,0,1),x=rnorm2(n.o,3,1))
    > n.r=50 #sample size new data
    > y.r <- data.frame(y=rnorm2(n.r,0.5,1),x=rnorm2(n.r,3,1))
    >
    > #blavaan model
    > model <- '
    + y ~ x #regression
    + y ~1
    + '
    >
    > #Warning: This is a minimal example;
    > step1.reg <- ppc.step1(y.o=y.o,model=model,nchains=2,n.r=10,nadapt=10,nburnin=10,nsample=10,nsim=10)
    Compiling rjags model...
    Calling the simulation using the rjags method...
    Adapting the model for 10 iterations...
    Warning: The adaptation phase of the model was not completed in 10 iterations, so the current samples may not be optimal - try increasing the number of iterations to the "adapt" argument
    Burning in the model for 10 iterations...
    Running the model for 10 iterations...
    Simulation complete
    Calculating summary statistics...
    Note: The monitored variables 'psi[2,2,1]' and 'alpha[2,1,1]' appear to
    be non-stochastic; they will not be included in the convergence
    diagnostic
    Calculating the Gelman-Rubin statistic for 5 variables....
    Finished running the simulation
    Warning: blavaan WARNING: at least one parameter has a rhat > 1.2.
    Warning: blavaan WARNING: Small effective sample sizes (< 100) for some parameters.
    [1] Creating y.s
    
     |
     | | 0%
     |
     |xxxxx | 10%
     |
     |xxxxxxxxxx | 20%
     |
     |xxxxxxxxxxxxxxx | 30%
     |
     |xxxxxxxxxxxxxxxxxxxx | 40%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxx | 50%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 60%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 70%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 80%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 90%
     |
     |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx| 100%
    >
    > pT <- step1.reg$pT
    > #identify parameters of interest in table (could also be done manually)
    > reg1 <- which(pT$lhs=="y"&pT$op=="~"&pT$rhs=="x")
    > int <- which(pT$lhs=="y"&pT$op=="~1")
    > hyp <- cbind(pT[c(int,reg1),"plabel"],c("<",">"),pT[c(int,reg1),"est"])
    > print(hyp)
     [,1] [,2] [,3]
    [1,] ".p2." "<" "-1.23114183615006"
    [2,] ".p1." ">" "0.39481877636394"
    > H0 <- paste(hyp[,1],hyp[,2],hyp[,3],collapse="&")
    > step23.reg <- ppc.step2step3(step1=step1.reg,y.r=y.r,model=model,H0=H0,H0check=TRUE)
    [1] Calculating likelihood ratio for each y.s
    
     |
     | | 0%
     |
     |===== | 10%
     |
     |========== | 20%
     |
     |=============== | 30%
     |
     |==================== | 40%
     |
     |========================= | 50%
     |
     |============================== | 60%
     |
     |=================================== | 70%
     |
     |======================================== | 80%
     |
     |============================================= | 90%
     |
     |==================================================| 100%Warning in min(x) : no non-missing arguments to min; returning Inf
    Warning in max(x) : no non-missing arguments to max; returning -Inf
    Error in hist.default(llratio.s[-which(llratio.s == Mode(llratio.s))], :
     character(0)
    Calls: ppc.step2step3 -> ppc.plot -> hist -> hist.default
    Execution halted
Flavor: r-release-linux-x86_64